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Objective. The current study examined gender-related differences in hemispheric asymmetries of graph metrics, calculated from a
cortical thickness-based brain structural covariance network named hemispheric morphological network. Methods. Using the T1-
weighted magnetic resonance imaging scans of 285 participants (150 females, 135 males) retrieved from the Human Connectome
Project (HCP), hemispheric morphological networks were constructed per participant. In these hemispheric morphologic
networks, the degree of similarity between two different brain regions in terms of the distributed patterns of cortical thickness
values (the Jensen-Shannon divergence) was defined as weight of network edge that connects two different brain regions. After
the calculation and summation of global and local graph metrics (across the network sparsity levels K = 0.10-0.36), asymmetry
indexes of these graph metrics were derived. Results. Hemispheric morphological networks satisfied small-worldness and global
efficiency for the network sparsity ranges of K =0.10 - 0.36. Between-group comparisons (female versus male) of asymmetry
indexes revealed opposite directionality of asymmetries (leftward versus rightward) for global metrics of normalized clustering
coefficient, normalized characteristic path length, and global efficiency (all p <0.05). For the local graph metrics, larger
rightward asymmetries of cingulate-superior parietal gyri for nodal efficiency in male compared to female, larger leftward
asymmetry of temporal pole for degree centrality in female compared to male, and opposite directionality of interhemispheric
asymmetry of rectal gyrus for degree centrality between female (rightward) and male (leftward) were shown (all p <0.05).
Conclusion. Patterns of interhemispheric asymmetries for cingulate, superior parietal gyrus, temporal pole, and rectal gyrus are
different between male and female for the similarities of the cortical thickness distribution with other brain regions.
Accordingly, possible effect of gender-by-hemispheric interaction has to be considered in future studies of brain morphology
and brain structural covariance networks.

1. Introduction

Structural MRI (sMRI) has been used in attempts to con-
struct group brain networks by detecting whole-brain mor-
phological connectivity patterns based on the interregional
morphological similarities or “brain structural covariance”
across participants (interindividual) [1] or per individual
(intraindividual) [2]. On the other hand, diffusion tensor
imaging (DTI) and functional magnetic resonance imaging

MRI (fMRI) have been commonly used for constructing the
individual brain networks connected by way of the axonal
pathways (in DTI) or coupled changes of brain functional
activations (in fMRI), respectively [3, 4]. The brain structural
covariance network partly reflects the patterns of brain white
matter-based physical connectivity [5-7], coordinated oscil-
lations in BOLD signal changes across the whole brain during
the resting status (so-called resting state functional connec-
tivity) [8, 9], and coordinated brain development and
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maturation [1, 10, 11]. For the construction of brain network,
the SMRI could be preferred to fMRI or DTI because of its
advantages in terms of easy access, high signal-to-noise ratio,
and relative insensitivity to artifacts.

The hemispheric asymmetry of the structural and func-
tional networks has been studied because it could be an
important aspect in understanding the organization of the
human brain [12-14]. Interregional asymmetry studies were
focused on identifying which regions and/or connections are
stronger in one hemisphere than in the other. Further, repre-
senting the characteristics of the brain as a network can pro-
vide novel insights into the brain system [15]. For instance, a
network of hemispheric brain asymmetry could assess the
differences in the configuration (degrees of integration as
well as segregation) of anatomical substrates for facilitating
the information transfer between different brain regions
[12]. A graph-theoretical analysis of brain networks has been
applied successfully in investigating how the human brain is
organized in healthy individuals and in patients with neuro-
psychological diseases such as Alzheimer’s disease (AD),
schizophrenia [16-19], major depressive disorder [20],
obsessive-compulsive disorder [2], and eating disorder [21],
among others. Tian et al. investigated the difference in the
topologies of the hemispheric functional networks in healthy
right-handed adults. The researchers showed regions that
exhibited hemispheric-related differences in regions formerly
observed to be functionally or structurally asymmetric [13].
Zhong et al. investigated how topological asymmetries evolve
from adolescence to young adulthood and determined that
rightward asymmetry in both global and local network effi-
ciencies was consistently observed in adolescents and young
adults and that the degree of asymmetry was significantly
decreased in young adults [22].

Of note, gender is known as one of the key factors associ-
ated with not only the interregional asymmetry but also the
hemispheric asymmetry of the brain networks. For instance,
Iturria-Medina et al. studied the difference between the topo-
logical organizations of the two hemispheric structural net-
works in healthy right-handed individuals and discovered
that the left hemisphere presented more central and essential
regions, whereas the right hemisphere was more efficient and
interconnected [12]. Tian et al. showed that males tend to be
more locally efficient in their right hemispheric networks and
females in their left hemispheric networks, which suggested
that the local efficiency of the hemispheric network could
be associated with behavioral and cognitive differences
between men and women [13]. Caeyenberghs and Leemans
found that males have a greater global efficiency of the struc-
tural hemispheric networks than do females [23].

Compared to the interindividual brain structural covari-
ance network, intraindividual brain covariance networks
could be more convenient in finding the neural correlates
of specific neuropsychiatric disorders (to be used for the
machine learning-based disease classification) and of specific
human behaviors (by way of the calculation of correlation
coefficients). Accordingly, several methods have been devel-
oped to estimate the intraindividual version of brain struc-
tural covariance network [24-26]. Tijms et al. constructed
an individual network using the intensity similarity between
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the patches on volume space, with different numbers of
nodes for each individual. Thus, it was difficult to be used
for group analysis because the sizes of the constructed indi-
vidual networks were generally different [24]. Kong et al. pro-
posed to construct a morphological brain network based on
interregional morphological connectivity in terms of the
Kullback-Leibler (KL) divergence among a regional morpho-
logical distribution and revealed longitudinal changes in
morphological connectivity of the thalamus after long-term
sleep deprivation [25, 27]. However, because the KL diver-
gence is asymmetric, the average of a corresponding pair of
values was used to calculate the morphological connectivity
between two regions.

To the best of our knowledge, no study has reported
hemisphere-related differences in the topological organiza-
tion of brain structural (morphological) covariance net-
works. Furthermore, very little is known about the patterns
of gender-by-hemispheric interaction in terms of the global
(i.e., balance of brain network integration) versus segregation
and local (i.e., which brain regions well reflect the general
trend of brain morphology across the brain) graph metrics.
By applying the norm of Jensen-Shannon (JS) divergence
for calculating the weights of network edges [28, 29], an
intraindividual brain structural covariance network named
“hemispheric morphological network”—that reflects the
levels of similarities between different brain regions in terms
of the cortical thickness distribution per participant—was
constructed. We investigated (1) whether each hemispheric
morphological network exhibits small-world and high effi-
ciency properties, (2) whether the hemispheric and gender
effects exist in the morphological network at the global and
regional scales, and (3) whether a gender difference in the
hemispheric asymmetry exists in the morphological network
at the global and regional scales.

2. Materials and Methods

The framework of this study design is shown in Figure 1. The
details of the procedures are described below. All MRI data
were analyzed using CIVET v2.1 pipeline (https://wiki.bic.mni
.mcgill.ca/ServicesSoftware/CIVET), MATLAB (MATLAB
R2016b, The MathWorks, Inc., Natick, Massachusetts,
United States), and R [30].

2.1. Sample Characteristics and MRI Acquisition. The data
used in this study were selected from the publicly available
S900 Release of Human Connectome Project (HCP), WU-
Minn Consortium [31, 32]. The samples were selected from
the HCP data according to these two criteria: (1) they had a
handedness score greater than or equal to 50 and (2) they
did not share family members between them. A total of 285
right-handed individuals between the ages of 22 and 36 years
(150 females and 135 males) were selected. The experiments
were performed in accordance with relevant guidelines and
regulations, and the experimental protocol was approved by
the Institutional Review Board (IRB) (IRB # 201204036;
Title: Mapping the Human Connectome: Structure, Func-
tion, and Heritability). Written informed consent was
obtained from all participants. The data analysis was
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F1GURE 1: Flowchart for the construction of a hemispheric morphological network using cortical thickness. Cortical thickness was extracted
from the brain surface model using CIVET pipeline v2.1 (a). The regional distributions of the cortical thickness based on the upsampled AAL
atlas were estimated (b). In (c), the hemispheric morphological networks were constructed using the Jensen-Shannon similarity (JSS) based
on Jensen-Shannon divergence (JSD) as the edge. The global and local graph metrics of the network were calculated and integrated (d, e).
Finally, the asymmetry indexes of the integrated global and local graph metrics of the network were calculated (f).

performed in accordance with the ethical guidelines of the
Hanyang University Ethics Committee. The structural T1-
weighted MRI was acquired on a 3T Siemens Skyra scanner
using a three-dimensional magnetization prepared rapid
gradient-echo (MPRAGE) sequence. The main MR parame-
ters were the repetition time (TR) = 2.4, echo time (TE) =
2.14ms, inversion time (TI)=1000ms, flip angle =8, field
of view (FOV) = 224 x 224 mm, and 0.7 mm isotropic voxels.

2.2. Cortical Surface Modeling and Extraction of Cortical
Thickness Values. T1-weighted MRIs were preprocessed by
PreFreeSurfer using HCP Pipelines anatomical modules
[33]. And preprocessed T1-weighted MRIs were processed
using CIVET v2.1 pipeline developed by the Montreal Neu-
rological Institute (MNI). First, native MRI images were reg-
istered into a standardized stereotaxic space using an affine
transformation [34]. The intensity nonuniformity resulting
from the inhomogeneity in the magnetic field was corrected
using N3 algorithms [35], and nonbrain tissue was excluded
using the brain extraction tool (BET) algorithm [36]. Subse-
quently, gray matter (GM), white matter (WM), and cerebro-
spinal fluid were defined on the stereotaxic brain mask using
an artificial neural net classifier [37]. The inner surfaces con-
sisting of polygons of triangular components were extracted
from the defined WM mask images and then expanded to
the outer surfaces using the constrained Laplacian-based
automated segmentation with proximities (CLASP) algo-

rithm [38]. The cortical thickness was defined using the
Euclidean distance between the linked vertices of the inner
and outer surfaces, after applying an inverse transformation
matrix to the cortical surfaces and reconstructing them in
the native space [38, 39].

2.3. Construction of the Hemispheric Brain Morphological
Network. The cortex was initially divided into 78 regions
using the automated anatomical labeling (AAL) atlas [40]
(see Table S1 in Supplementary Materials). The regions
were then upsampled into 512 cortical regions with a
similar number of vertices in each region [41, 42] because
recent studies have highlighted the effect of region size on
structural connectivity [43, 44]. We used the sphere model
corresponding cerebral surface model to balance the region
size in the AAL atlas. We applied k-means algorithm with
different number of clusters to each region in order to
make all the subregions of similar size. Network nodes were
specified as 512 cortical regions, which contained an
average of 149 vertices with a standard deviation of 22
vertices. Since we used the AAL atlas, the generated
subregions maintain anatomical boundaries such as gyri
and sulci. Regions within the upsampled AAL atlas are
therefore approximately equal in size and maintaining
anatomically constrained. Finally, 256 x 256 left- and right-
hemispheric morphological networks were constructed
from each subject. Network edges between two regions



were defined using the Jensen-Shannon divergence (JSD),
as follows:

P

(P(x) + ()12 1

+1J (%) log — 25 gy .
2) %8 (o) + g2 ™

ISD(p,q) = 5 [ p(+) Iog

The parameters p and g are the distributions of the
cortical thickness in each region, which were estimated
using the kernel density estimation method [25, 45]. While
the bandwidth is difficult to determine in kernel density
estimation, it is associated with sample size [46, 47]. The
mesh points that is sample size (N =27) was experimentally
determined; therefore, the bandwidth was manually
determined, because the brain regions were parcellated into
a similar size. Because the estimated regional distributions
provide a description of brain regions, similarity based on
morphological distribution can present a reasonable way of
quantifying relationship between two regions. The JSD was
converted to a similarity measure (JSS), as follows:

JSS(p, q) = ¢ PP, 2)

Note that the JSS ranges from 0 to 1 for two probability
distributions. Finally, each hemispheric network was binarized
over sparsity ranges from 10% to 36% at 0.02 intervals.
Sparsity is defined as the ratio of the total number of edges to
the maximum possible number of edges in a network. The
minimum sparsity calculated from the mean degree over all
the nodes should be at least 2 xlog (N), or 10%, and the
maximum sparsity was chosen to allow prominent small-
world properties in the brain network, at 36% [16, 48, 49].
Note that we did not covariate the constructed network
matrix for any score of brain lateralization (i.e., the Edinburgh
score).

2.4. Network Analysis: Global Graph Metrics. The global
graph metrics were calculated for each hemispheric morpho-
logical network at a sparsity level of K=0.10-0.36 (with
0.02 interval) using the Brain Connectivity Toolbox (BCT)
[50]. The global graph metrics included the (1) normalized
characteristic path length, (2) normalized clustering coeffi-
cient, (3) small-worldness, (4) global efficiency, and (5) local
efficiency.

First, the characteristic path length L, (a global graph
metric reflecting the degree of network integration and infor-
mation transfer) was derived as a harmonic mean of the
shortest path lengths between two different nodes (L;;; N is
the number of nodes comprising a given network (G), i <N,
j <N, i#j) comprising a network (G) [49]:

i€ je ‘iL;’1 B

Second, the clustering coefficient C, (a graph metric of
network segregation) was calculated by averaging the fraction

BioMed Research International

of triangles around each node (or the fraction of node’s
neighbors that were also connected each; k; is the number
of nodes within a network (G) connected to the ith node,
and E; is the number of neighboring edges around the ith
node) across the whole network (G) [49]:

1 2% E;
Cp= ﬁz k;(k, _11) : (4)

ieG i\

In addition, the normalized characteristic path length and
normalized clustering coefficient values were derived by divid-
ing the original L, or C, values using the averaged values of
characteristic path length or clustering coefficient for a total
of 100 random networks (L, or C,,, respectively; con-
structed by random shuffling of edges within the original net-
work, the number of nodes and edges, and the degree
(number of edges connected to each node) distribution pre-
served) [51].

Third, the small-worldness o (a global graph metric for
the balance of network integration L,/L,,, and network seg-

regation C,/C ) was defined as [49]

ran

ran

O
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Fourth, the global efficiency Eq, (a global graph metric
of network integration and information transfer) was defined
as an average of the inverse shortest path length [52]:

1 1
Eglobal = 57— ) (6)
NN - l)iez(:;jeGZ];#iLij

Fifth, the local efficiency E, ., (a graph metric of local net-
work segregation) was calculated by averaging the changed
values of local clustering among the neighbors of ith node
(N is the number of nodes comprising a given network (G),
i< N) when the ith node is deleted across the whole nodes
within a network (G) [52]:

1
Elocal = N ZElocal,i' (7)
i€G

2.5. Network Analysis: Local Graph Metrics. The local graph
metrics were calculated for each hemispheric morphological
network at a sparsity level of K=0.10-0.36 (with 0.02
interval) using BCT. The (1) degree centrality and (2) nodal
efficiency were calculated to explore the local network prop-
erties of the hemispheric morphological network.

First, the degree centrality of the ith node k; was defined
as the number of links (a,-j is the presence (1) or absence (0)
of edge connecting the ith and jth nodes within a network
(G); N is the number of nodes comprising a given network
(G), i< N, j<N, i#j) connected to the ith node of a net-
work (G):

k=) a. (8)
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Second, the nodal efficiency of the ith node E,4,; was
defined as the global efficiency value computed on the
neighborhood of the ith node and is related to the clustering
coefficient [53]:

1 1

dali = o —. 9)
nodal,i N_I#ZE:GLU‘

E
2.6. Network Analysis: Integrated Graph Metrics. The inte-
grated graph metrics were obtained because a specific
sparsity level selection may not be sufficient to reveal the
topological properties [13]. The integrated global graph
metrics were defined as follows:

Y erMeasure(r)
Mglobal = rGRR— (10)
N

The parameter R is the set of sparsity values with a 0.02
interval over a range of 0.1-0.36. The parameter Ry is the
number of elements in the set of sparsity values, and
Measure(r) is the global network metric (LP, Cp, 05 Eglopans
and E, ) at sparsity r. The integrated local graph metrics
of node i are defined similarly as follows:

Y cgmeanMeasure(Ly o, 1)
Mlocal,LAAL ==K R : ( 11 )
N

The parameter R is the set of sparsity values with an
interval 0.02 over the network sparsity range of 0.1-0.36.
The parameter Ry is the number of elements in the set of
sparsity values, and meanMeasure(L,,, ) is the mean local
network metric (k;  , E,oqq,,, ) of @ region Ly, at sparsity
r. The parameter L,,; is one of the 78 cortical regions
within the AAL atlas.

2.7. Asymmetry Index of Global and Local Graph Metrics. For
the global and local graph metrics, the asymmetry indexes
(Als) of the hemispheric morphological network were calcu-
lated as follows:

2% (M — Mp)

AI(M) = 100 * TRSTN

(12)

The parameters My and M; are the integrated global and
local graph metrics of the right and left hemispheric net-
works, respectively. The integrated global and local graph
metrics of the hemispheric network were used as the sum-
mary of the graph metrics over the sparsity range. Note that
positive AI(M) means leftward asymmetry and negative Al
(M) rightward asymmetry.

2.8. Statistical Analyses. A two-way repeated-measures anal-
ysis of variance (ANOVA) was performed with hemisphere
(left and right) as a repeated-measures factor, gender as a
between-subject factor, and age as covariate, to determine
whether there were significant effects on any of the global
graph metrics. A one-sample ¢-test within each gender was
performed to determine whether the global and local metrics

in the hemispheric networks of each gender showed asym-
metry. A two-sample -test between each gender was per-
formed to identify whether the Als of the global and local
metrics were different. The significance threshold of the sta-
tistical analysis was set at p < 0.05 for the global and local
integrated metrics. The significance threshold was set at the
false discovery rate- (FDR-) corrected value p < 0.05 for the
local graph metrics. All statistical analyses were performed
in R.

3. Results

3.1. Small-Worldness and Global/Local Efficiencies of
Hemispheric Brain Morphological Networks. For both male
and female, the hemispheric brain morphological networks
showed small-worldness since o is larger than 1.5 over the
entire range (see Figure 2) [49], in addition to the higher
Eocq and lower Eg.,, than those of the matched random net-

works (see Figure 3) in the network sparsity range of K =
0.10 - 0.36. The results are consistent with those of previous
hemispheric brain network studies [13, 14].

3.2. Gender and Hemispheric Effect on Global and Local
Graph Metrics. The asymmetries of global graph metrics
showed a significant hemisphere effect on o (F, =10.227,
Py <0.05), a significant gender effect on C, (F¢, =4.062,

Pcp <0.05), and hemisphere-gender interaction effects on

L, and Eggy (Fi,=6595, p;,<0.05 Fryu, =4.846,

pEglobal<O.05) (see Table S2). The asymmetries of local
graph metrics showed significant hemisphere effects (FDR-
corrected p < 0.05) on 38 nodes and significant hemisphere-
gender interaction effects (FDR-corrected p <0.05) on 2
nodes (see Figure 4). For the degree, we observed a
significant hemisphere effect (FDR-corrected p < 0.05) on 33
nodes, a significant gender effect (FDR-corrected p < 0.05)
on 7 nodes, and a significant hemisphere-gender interaction
effect (FDR-corrected p <0.05) on 2 nodes (see Figure 4).
Significant hemispheric effects on two local graph metrics
were observed on nearly the same nodes. Both global and
local characteristics of morphological network showed not
only hemispheric effect but also gender effect. Furthermore,
there is interaction effect also in the global and local
characteristics of morphological network.

3.3. The Asymmetry Index of the Global and Local Graph
Metrics within Groups. Females showed significant rightward
hemispheric asymmetries in L, (f,, = -3.551, p;, < 0.01) and
significant leftward hemispheric asymmetry in Egq,
(tggiob =2-873 and ppyyp, =0.05). Males showed significant
rightward hemispheric asymmetry in o (f;, =-3.662, p, <
0.01) (Table 1).

For asymmetries of nodal global efficiency, females
showed significant asymmetries on 35 nodes (20 leftward
asymmetries and 15 rightward asymmetries), and males
showed significant asymmetries on 29 nodes (15 leftward
asymmetries and 14 rightward asymmetries) at the FDR-
corrected p value < 0.05 (Figure 5); asymmetries of nodal
global efficiencies are in the same direction on 28 nodes in
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F1GURE 2: The averaged small-worldness of the hemispheric morphological network. The small-worldness was averaged across the individuals
within the group of females and the group of males, respectively. The averaged small-worldness was plotted over the sparsity range of K =
0.1-0.36. For both male and female, the hemispheric brain morphological networks showed small-worldness since averaged small-

worldness is larger than 1.5 over the entire range.

both females and males. For asymmetries of degree central-
ity, females showed significant asymmetries on 28 nodes
(12 leftward asymmetries and 16 rightward asymmetries),
and males showed significant asymmetries on 31 nodes (16
leftward asymmetries and 15 rightward asymmetries) at the
FDR-corrected p value < 0.05 (see Figure 5). The asymme-
tries of the females and males are in the same direction in
26 nodes. While local graph metrics showed leftward and
rightward asymmetries together in females and males, global
graph metrics of the morphological network tended leftward
in both females and males.

3.4. Between-Group Differences in Asymmetry Index of Global
and Local Graph Metrics. For the asymmetries of global
graph metrics, significant group differences were observed
on Cp, Lp, and Eglobal (tcp = —2040, pcp = 0.042, AIFemale,Cp
< AIMale,Cp; tLp =-2.846, pr =0.005, AIFemale,Lp < AIMa.le,Lp;
tEglobal = 2479’ pEglobal = 0014’ and AIFemale,Eglobal >A
Intale Eglobat) (€€ Table 1). The females showed significantly
greater rightward asymmetry in L, and significantly greater
leftward asymmetry in Eg . Note that the degree of asym-
metry in the females is greater. While the females showed
rightward asymmetry, the males showed leftward asymmetry
on C,.

For asymmetries of nodal global efficiency, the males
showed greater rightward asymmetries on 2 nodes (median
cingulate and paracingulate gyri, tg,o4amcG = 3-942, FDR-
corrected PEnodal,MCG <0.05 » mean of AIFemale,Enodal,MCG ==

1.771, mean of Alyy podaivcg = —2-285; superior parietal
gyrus, tp,.daspg = 4-532, FDR-corrected pp oq4.1pg < 0-05,
mean of AIFemale,Enodal,SPG =-0.525, mean of AIMale,Enodal,SPG
=-1.039) (see Figure 5). For asymmetries of degree central-
ity, the males showed leftward asymmetries, and the females
showed rightward asymmetries on 1 node (the gyrus rectus,
tDegreerEC = —2-469, FDR-corrected ppegeerpc < 0.05, mean
of AIFemale,Degree,REC = _3'536’ mean  of AIMa.le,Degree,REC =
3.997) and showed greater leftward asymmetries on 1 node
(temporal pole: middle temporal gyrus, fpegreerpOmid =
3.395, FDR-corrected Ppegeepomia <0-05, mean of A

IFemale,Degree,TPOmid = 30141’ mean Of AIMale,Degree,TPOmid =
20.892).

Opposite directionality of asymmetries (leftward versus
rightward) was shown for global metrics of clustering coeffi-
cient, characteristic path length, and global efficiency. For the
local metrics, larger rightward asymmetries of cingulate-
superior parietal gyri for nodal global efficiency in male com-
pared to female, larger leftward asymmetry of temporal pole
for degree centrality in female compared to male, and oppo-
site directionality of interhemispheric asymmetry of rectal
gyrus for degree centrality between female (rightward) and
male (leftward) were shown.

4. Discussion

The current study examined gender-related differences in
hemispheric asymmetries of graph metrics, calculated from
cortical thickness-based brain structural covariance network
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FiGURE 3: The averaged (a) global efficiency and (b) local efficiency of the hemispheric morphological network

each hemisphere could be of similar efficiency to that of the whole brain.

. The global and local
efficiencies were averaged across the individuals within the group of females and the group of males, respectively. The global and local
efficiencies were plotted over the sparsity range of K=0.1-0.36. For both male and female, the hemispheric brain morphological
networks showed higher global and local efficiencies than the matched random networks over the entire range. Note that “Observed” is
hemispheric morphological network and “Random” is matched random network. The findings suggest that information processing within
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(a) Gender effect

(b) Hemispheric effect

G O

(c) Gender x hemispheric effect

FIGURE 4: Significant (a) gender, (b) hemisphere, and (c) interaction effects on the regional integrated measures of the hemispheric network.
Two-way repeated-measures ANOV A was performed to investigate various effects on the regional integrated measures. The significance level
was set as FDR-corrected value p < 0.05. The color bar represents the F values.

TABLE 1: Asymmetry of the global integrated measures of the hemispheric network within/between the gender groups. A one-sample ¢-test
was performed to investigate the asymmetries of the global integrated measures within gender. The positive ¢ values in females and males
indicate leftward asymmetry, and the negative t values in females and males indicate rightward asymmetry. A two-sample t-test was
performed to investigate the gender difference in the asymmetries of the global integrated measures between genders. The greater positive
and negative ¢ values indicate greater leftward or rightward asymmetry in one group than in the other. The significance level for all

analyses is p<0.05. C,, L,, 0Egyqp

and E, , denote the clustering coefficient, characteristic path length, small-worldness, global

efficiency, and local efficiency, respectively. The significance (p < 0.05) is indicated by the bold text and indicator (*).

G Ly o Egobal Ejocal
t val -1.381 -3.551" -1.947 2.873" -0.861
Within females (left-right) vate
(p value) (0.168) (0.000) (0.054) (0.005) (0.395)
t value 1.522 0.576 -3.662" -0.689 1.481
Within males (left-right) v
(p value) (0.131) (0.565) (0.000) (0.486) (0.143)
t value -2.009" -2.836" 1.489 2.479* -1.637
Between groups (females—males)
(p value) (0.042) (0.006) (0.152) (0.015) (0.100)

named hemispheric morphological network. Hemispheric
morphological networks satisfied small-worldness and global
efficiency for the network sparsity ranges of K =0.10 - 0.36.
Between-group comparisons (female versus male) of asym-
metry indexes revealed opposite directionality of asymme-
tries (leftward versus rightward) for global metrics of
clustering coefficient, characteristic path length, and global
efficiency. For the local metrics, larger rightward asymme-
tries of cingulate-superior parietal gyri for nodal global
efficiency in male compared to female, larger leftward
asymmetry of temporal pole for degree centrality in female
compared to male, and opposite directionality of inter-

hemispheric asymmetry of rectal gyrus for degree central-
ity between female (rightward) and male (leftward) were
shown. The overall results of this study indicate that brain
network analysis using morphological features provides
insights into the understanding of hemispheric asymmetry
related to gender.

4.1. Economical Small-World Network Properties of the
Hemispheric Brain Morphological Networks. The identifica-
tion of economical small-world properties of the human
brain network could help in the understanding of the human
brain [4, 15]. It has been shown that the whole brain network
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Nodal efficiency

Degree

(a) Female

(b) Male

(c) Female-male

FIGURE 5: Significant asymmetry related to gender on the regional integrated measures of the hemispheric network. In (a) and (b), one-sample
t-tests were performed to investigate the asymmetries of the regional integrated measures within gender. The significance level was set as the
FDR-corrected value p < 0.05. The color bar represents the ¢ values. Red-yellow indicates leftward asymmetry, and blue—cyan indicates
rightward asymmetry. In (c), two-sample t-test was performed to investigate the gender differences on the asymmetries of the regional
integrated measures between the genders. The significance level was set as the FDR-corrected value p < 0.05. The color represents the
t values. A larger positive or negative t value indicates a greater leftward or rightward asymmetry in one group than in the other.

of healthy subjects is characterized by economical small-
world properties [3, 54-56]. In an individual morphological
brain network, the presence of economical small-world prop-
erties has been reported as convergent evidence [24, 25, 57].
Furthermore, the presence of economical small-world net-
work properties in hemispheric networks was reported using
sMRI and fMRI [12, 13, 58]. Our results extend previous
findings by showing that individual hemispheric morpholog-
ical networks also demonstrate economical small-world
properties, indicating that information processing within
each hemisphere could be of similar efficiency to that of the
whole brain.

4.2. Gender-Related Effects in Asymmetry of Global Graph
Metrics. The left hemisphere in females may be more efficient
in the exchange of information in parallel. The Ej g, in

females shows leftward asymmetry. Although the left and
right hemispheres of the human brain consistently commu-
nicate with each other, asymmetry of the human brain hemi-
spheric network and its differences with respect to gender
have been reported. For instance, Iturria-Medina et al.
showed that the right hemisphere is more efficient with right-
ward Egg,, and Ej,, than the left hemisphere in right-
handed individuals [12]. Shang et al. showed that the func-
tional left hemispheric network is more globally efficient than
the functional right hemispheric network, and Sun et al
reported, using the structural hemispheric network, that the
left hemispheric network is globally efficient [59, 60]. Gong

et al. showed that the cortical anatomical network is more
efficient globally and locally in females than in males [61].
Tian et al. reported that the two hemispheres and genders
are not significantly different in transferring information
between the brain regions; however, females and males are
both more globally efficient in their right hemispheres [13].
These findings are different, depending on the modality and
methodology used. Some aspects of asymmetry observed in
this study are reflected observations based on the structural
and functional networks. This study suggests that the left
hemispheric morphological network is more globally effi-
cient in females, in accordance with previous observations
based on the structural and functional networks [59-61].

4.3. Gender-Related Effects in Asymmetry of Local Graph
Metrics. It was observed that males and females have similar
asymmetric patterns in nodal global efficiency and degree
centrality. Significant leftward asymmetries were observed
in the frontal region, precuneus, and temporal region, while
significant rightward asymmetries were observed in the cin-
gulate gyrus and occipital gyrus. These patterns have been
observed to be structurally asymmetric in previous studies
[62]. This asymmetry pattern along the fronto-occipital axis
is similar to that reported by Plessen et al. [63] and may be
related to the Yakovlevian torque, where frontal/occipital
bending in the human brain is present [64]. However, some
regions related to behavior (properties) differences showed
gender difference in asymmetry. A gender difference in

asymmetries was observed in four brain regions (E, 4, the
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MCG, SPG; Degree: REC and TPOmid) in this study (see
Figure 5). Most of these regions, such as the MCG, SPG,
and TPOmid, have been reported as hubs in previous studies
based on the structural and functional networks [65]. Given
that the left hemisphere is dominant in language processing
and the right hemisphere is dominant in spatial processing
[66], the asymmetries of the local graph metrics may underlie
advantageous verbal processing in females and advantageous
spatial processing in males [67]. The nodal global efficiency
in the MCG and SPG regions shows more rightward asym-
metry in males than in females. In particular, the visuospatial
processing regions, such as the right SPG, showed greater
nodal global efficiency in males, which may directly contrib-
ute to the previous observation [68, 69]. These regions were
also reported in the studies on the nodal global efficiency of
the brain network [22, 23, 61]. For instance, Zhong et al.
reported that the nodal global efficiency of the hemispheric
structural network is more rightward asymmetric on the
MCG and SPG. Caeyenberghs and Leemans observed right-
ward asymmetry of the nodal global efficiency in the MCG
region using the structural network [23]. The rightward
asymmetry of the nodal global efficiency in these regions is
consistent with those found in previous studies using the
structural network. The right hemispheric morphological
network is more locally efficient in males than in females.
The degree centrality in TPOmid region shows more leftward
asymmetry in females than in males. The structural leftward
asymmetry of the TPOmid region was studied [70, 71]. Price
reported left hemispheric dominance for language in the
middle temporal pole [72]. The significant leftward asymme-
try of the degree centrality in the TPOmid regions is consis-
tent with those found in previous studies. The degree
centrality in the REC region shows rightward asymmetry in
females and leftward asymmetry in males. The REC region
is known as a nonfunctional gyrus [73]; hence, it is difficult
to interpret gender difference from this region. For example,
Belfi et al. reported that the REC region, a narrow strip of the
cerebral cortex, has a larger volume in females; however, the
gender difference could be in terms of psychological gender
rather than biological gender. Therefore, higher femininity
scores in gender assessments of males were associated with
a larger volume of the REC region [74]. The opposing direc-
tions of asymmetry of the degree centrality in the REC
regions between females and males might reflect the individ-
ual’s personality rather than the biological gender.

4.4. Limitations. There are still some limitations in this study.
First, the selection of the brain atlas could affect the topolog-
ical properties of the individual brain network [57]. In the
future, it is important to validate this experiment with a dif-
ferent atlas. Second, we used cortical thickness as a morpho-
logical feature to construct a morphological brain network.
Several recent studies have reported methodologies to con-
struct networks using multiple features [75, 76]. In the future,
it would be interesting to use multiple features to construct
the brain network using our method. However, it is notice-
able that an exact physiological explanation of this network
is still difficult. Third, we observed significant hemisphere
and gender effects in topological properties of the morpho-

BioMed Research International

logical brain network. Some aspects of these effects observed
in this study are consistent with those based on structural and
functional brain networks, while others are not [13, 61].
Because morphological similarity is related to the underlying
axonal connectivities [77], a further study simultaneously
evaluating the topologies of structural networks and of func-
tional networks is expected [78-80]. Fourth, we observed sig-
nificant asymmetries related to gender in topological
properties of the morphological network. Brain asymmetry
is closely related to lateralized behaviors. Thus, further anal-
ysis should be implemented for a better understanding of the
basis of lateralized functions such as language and visuospa-
tial processing. Finally, changes in brain asymmetries are
closely related to the pathophysiology of various brain diseases
such as schizophrenia and Alzheimer’s disease. Therefore,
evaluating the topological organization of morphological
brain networks within hemispheres is likely to improve our
knowledge about the pathology of various brain diseases.

5. Conclusions

In this study, hemispheric morphological brain networks
were constructed, and graph-theoretical approaches were
used to examine the hemispheric asymmetry in females and
males. First, the hemispheric morphological networks
showed small-world properties and a high efficiency, similar
to those of structural and functional networks. Second, the
hemispheric asymmetry within and between the gender
groups was investigated. In the global scale, males tend to
be locally efficient in the left hemispheric network, and
females are more globally efficient in the left hemispheric
network. In the local scale, the right asymmetry in the nodal
global efliciency is greater around the cingulate gyrus and
superior parietal gyrus in males than in females. The left
asymmetry in degree centrality is greater around the tempo-
ral pole in females than in males. These findings may provide
evidence for the topological difference in the hemispheric
morphological network and for the behavioral differences
related to gender. The overall results of this study indicate
that brain network analysis using morphological features
provides insights into the understanding of hemispheric
asymmetry related to gender.

Data Availability

The brain MRI dataset analyzed during this study is available
in the Human Connectome Project repository (http://www
.humanconnectome.org/).

Conflicts of Interest

The authors have no conflicts of interest to declare.

Acknowledgments

This work was supported by Institute of Information & Com-
munications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (No. 2020-0-01373,
Artificial Intelligence Graduate School Program (Hanyang


http://www.humanconnectome.org/
http://www.humanconnectome.org/

BioMed Research International

University)). Data were provided by the Human Connectome
Project, WU-Minn Consortium (principal investigators:
David Van Essen and Kamil Ugurbil; 1U54MH091657),
funded by the 16 NIH institutes and centers that support
the NIH Blueprint for Neuroscience Research and by the
McDonnell Center for Systems Neuroscience at Washington
University.

Supplementary Materials

Table S1: abbreviations for the brain regions of interest. Table
S2: hemisphere and gender effects on the global integrated
measures of the hemispheric network revealed by two-way
repeated-measures ANOVA. Two-way repeated-measures
ANOVA was performed to investigate hemisphere and gen-
der effects and interaction effects on the global integrated
measures. The significance level for all analyses is p < 0.05.
Cp» Ly, 0, Eggpa and Ejo,; denote the clustering coefficient,

characteristic path length, small-worldness, global effi-
ciency, and local efficiency, respectively. The significance
(p<0.05) is indicated by the bold text and indicator (x).
(Supplementary materials)

References

[1] A. Alexander-Bloch, J. N. Giedd, and E. Bullmore, “Imaging
structural co-variance between human brain regions,”
vol. 14, no. 5, pp. 322-336, 2013.

[2] J. Y. Yun, P. S. W. Boedhoe, C. Vriend et al., “OUP accepted
manuscript,” Brain, vol. 143, no. 2, pp. 684-700, 2020.

[3] P. Hagmann, M. Kurant, X. Gigandet et al., “Mapping human
whole-brain structural networks with diffusion MRI,” PLoS
One, vol. 2, no. 7, article €597, 2007.

[4] E. Bullmore and O. Sporns, “Complex brain networks: graph
theoretical analysis of structural and functional systems,”
Nature Reviews Neuroscience, vol. 10, no. 3, pp- 186-198, 2009.

[5] G. Ball, R. Beare, and M. L. Seal, “Charting shared develop-
mental trajectories of cortical thickness and structural connec-
tivity in childhood and adolescence,” Human Brain Mapping,
vol. 40, no. 16, pp. 4630-4644, 2019.

[6] D. A.Hoagey, J. R. Rieck, K. M. Rodrigue, and K. M. Kennedy,
“Joint contributions of cortical morphometry and white mat-
ter microstructure in healthy brain aging: a partial least
squares correlation analysis,” Human Brain Mapping, vol. 40,
no. 18, pp. 5315-5329, 2019.

[7] W. Sato and S. Uono, “The atypical social brain network in
autism: advances in structural and functional MRI studies,”
Current Opinion in Neurology, vol. 32, no. 4, pp. 617-621,
2019.

[8] L. G. Matthews, C. D. Smyser, S. Cherkerzian et al., “Maternal
pomegranate juice intake and brain structure and function in
infants with intrauterine growth restriction: a randomized
controlled pilot study,” PLoS One, vol. 14, no. 8, article
€0219596, 2019.

[9] F. Han, Y. Gu, G. L. Brown, X. Zhang, and X. Liu, “Neuroim-
aging contrast across the cortical hierarchy is the feature max-
imally linked to behavior and demographics,” Neuroimage,
vol. 215, article 116853, 2020.

[10] R.J. Jirsaraie, A. N. Kaczkurkin, S. Rush et al., “Accelerated
cortical thinning within structural brain networks is associated

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

(25]

11

with irritability in youth,” Neuropsychopharmacology, vol. 44,
no. 13, pp. 2254-2262, 2019.

T. Qi, G. Schaadt, R. Cafiero, J. Brauer, M. A. Skeide, and A. D.
Friederici, “The emergence of long-range language network
structural covariance and language abilities,” Neuroimage,
vol. 191, pp. 36-48, 2019.

Y. Iturria-Medina, A. P. Fernandez, D. M. Morris et al., “Brain
hemispheric structural efficiency and interconnectivity right-
ward asymmetry in human and nonhuman primates,” Cere-
bral Cortex, vol. 21, no. 1, pp. 56-67, 2011.

L. Tian, J. Wang, C. Yan, and Y. He, “Hemisphere- and
gender-related differences in small-world brain networks: a
resting-state functional MRI study,” Neurolmage, vol. 54,
no. 1, pp. 191-202, 2011.

M. Li, H. Chen, J. Wang et al., “Handedness- and hemisphere-
related differences in small-world brain networks: a diffusion
tensor imaging tractography study,” Brain Connectivity,
vol. 4, no. 2, pp. 145-156, 2014.

O. Sporns, “Structure and function of complex brain net-
works,” Dialogues in Clinical Neuroscience, vol. 15, no. 3,
pp. 247-262, 2013.

D. S. Bassett, E. Bullmore, B. A. Verchinski, V. S. Mattay, D. R.
Weinberger, and A. Meyer-Lindenberg, “Hierarchical organi-
zation of human cortical networks in health and schizophre-
nia,” The Journal of Neuroscience, vol. 28, no. 37, pp. 9239-
9248, 2008.

K. Supekar, V. Menon, D. Rubin, M. Musen, and M. D.
Greicius, “Network analysis of intrinsic functional brain
connectivity in Alzheimer’s disease,” PLoS Computational
Biology, vol. 4, no. 6, article €1000100, 2008.

C.-Y. Lo, P.-N. Wang, K.-H. Chou, J. Wang, Y. He, and
C.-P. Lin, “Diffusion tensor tractography reveals abnormal
topological organization in structural cortical metworks in
Alzheimer’s disease,” The Journal of Neuroscience, vol. 30,
no. 50, pp. 16876-16885, 2010.

A. Griffa, P. S. Baumann, J. P. Thiran, and P. Hagmann,
“Structural connectomics in brain diseases,” Neurolmage,
vol. 80, pp. 515-526, 2013.

T. Wang, K. Wang, H. Qu et al., “Disorganized cortical thick-
ness covariance network in major depressive disorder impli-
cated by aberrant hubs in large-scale networks,” Scientific
Reports, vol. 6, no. 1, 2016.

E. Collantoni, P. Meneguzzo, E. Tenconi, R. Manara, and
A. Favaro, “Small-world properties of brain morphological
characteristics in anorexia nervosa,” PLoS One, vol. 14, no. 5,
p. €0216154, 2019.

S. Zhong, Y. He, H. Shu, and G. Gong, “Developmental
changes in topological asymmetry between hemispheric brain
white matter networks from adolescence to young adulthood,”
Cerebral Cortex, vol. 27, no. 4, pp. 2560-2570, 2017.

K. Caeyenberghs and A. Leemans, “Hemispheric lateralization
of topological organization in structural brain networks,”
Human Brain Mapping, vol. 35, no. 9, pp. 4944-4957, 2014.
B. M. Tijms, P. Series, D. J. Willshaw, and S. M. Lawrie, “Sim-
ilarity-based extraction of individual networks from gray mat-
ter MRI scans,” Cerebral Cortex, vol. 22, no. 7, pp. 1530-1541,
2012.

X. Z. Kong, Z. Liu, L. Huang et al, “Mapping individual
brain networks using statistical similarity in regional mor-
phology from MRI,” PLoS One, vol. 10, no. 11, article
e0141840, 2015.


http://downloads.hindawi.com/journals/bmri/2020/3560259.f1.docx

12

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

H. J. Kim, J. H. Shin, C. E. Han et al., “Using individualized
brain network for analyzing structural covariance of the cere-
bral cortex in Alzheimer’s patients,” Frontiers in Neuroscience,
vol. 40, p. 394, 2016.

X. Z. Kong, X. Wang, L. Huang et al., “Measuring individual
morphological relationship of cortical regions,” Journal of
Neuroscience Methods, vol. 237, pp. 103-107, 2014.

D. M. Endres and J. E. Schindelin, “A new metric for probabil-
ity distributions,” IEEE Transactions on Information Theory,
vol. 49, no. 7, pp. 1858-1860, 2003.

B. Fuglede and F. Topsoe, “Jensen-Shannon divergence and
Hilbert space embedding,” in International Symposium on
Information Theory, 2004, ISIT 2004, Proceedings, p. 31, Chi-
cago, IL, USA, 2004.

R. Core Team, R: a language and environment for statistical
computing, 2017.

D. C. Van Essen, K. Ugurbil, E. Auerbach et al., “The Human
Connectome Project: a data acquisition perspective,” Neuro-
Image, vol. 62, no. 4, pp. 2222-2231, 2012.

D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. J. Behrens,
E. Yacoub, and K. Ugurbil, “The WU-Minn Human Connec-
tome Project: an overview,” Neurolmage, vol. 80, pp. 62-79,
2013.

M. F. Glasser, S. N. Sotiropoulos, J. A. Wilson et al., “The min-
imal preprocessing pipelines for the Human Connectome Pro-
ject,” Neuroimage, vol. 80, pp. 105-124, 2013.

D. L. Collins, P. Neelin, T. M. Peters, and A. C. Evans, “Auto-
matic 3D intersubject registration of MR volumetric data in
standardized Talairach space,” Journal of Computer Assisted
Tomography, vol. 18, no. 2, pp. 192-205, 1994.

J. G. Sled, A. P. Zijdenbos, and A. C. Evans, “A nonparametric
method for automatic correction of intensity nonuniformity in
MRI data,” IEEE Transactions on Medical Imaging, vol. 17,
no. 1, pp. 87-97, 1998.

S. M. Smith, “Fast robust automated brain extraction,” Human
Brain Mapping, vol. 17, no. 3, pp. 143-155, 2002.

A. Zijdenbos, A. Evans, F. Riahi, J. Sled, J. Chui, and
V. Kollokian, “Automatic quantification of multiple sclerosis
lesion volume using stereotaxic space,” in Visualization in Bio-
medical Computing. VBC 1996, K. H. Hohne and R. Kikinis,
Eds., vol. 1131 of Lecture Notes in Computer Science,
pp. 439-448, Springer, Berlin, Heidelberg, 1996.

J. S. Kim, V. Singh, J. K. Lee et al., “Automated 3-D extraction
and evaluation of the inner and outer cortical surfaces using a
Laplacian map and partial volume effect classification,” Neuro-
Image, vol. 27, no. 1, pp- 210-221, 2005.

K. Im, J.-M. Lee, J. Lee et al., “Gender difference analysis of
cortical thickness in healthy young adults with surface-based
methods,” Neurolmage, vol. 31, no. 1, pp. 31-38, 2006.

N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou et al.,
“Automated anatomical labeling of activations in SPM using
a macroscopic anatomical parcellation of the MNI MRI
single-subject brain,” NeuroImage, vol. 15, no. 1, pp. 273-
289, 2002.

A. M. Hermundstad, D. S. Bassett, K. S. Brown et al., “Struc-
tural foundations of resting-state and task-based functional
connectivity in the human brain,” Proceedings of the National
Academy of Sciences, vol. 110, no. 15, pp. 6169-6174, 2013.
Z. Zhang, E. Klassen, and A. Srivastava, “Robust comparison
of kernel densities on spherical domains,” Sankhya A,
vol. 81, pp. 144-171, 2018.

(43]

(44]

(45]

[46]

(47]

(48]

[49]

(50]

(51]

(52]

(53]

(56]

(57]

(58]

(59]

(60]

BioMed Research International

D. S. Bassett, J. A. Brown, V. Deshpande, J. M. Carlson, and
S. T. Grafton, “Conserved and variable architecture of human
white matter connectivity,” Neuroimage, vol. 54, no. 2,
pp. 1262-1279, 2011.

P. Hagmann, L. Cammoun, X. Gigandet et al., “Mapping the
structural core of human cerebral cortex,” PLoS Biology,
vol. 6, no. 7, article €159, 2008.

Z. 1. Botev, J. F. Grotowski, and D. P. Kroese, “Kernel density
estimation via diffusion,” The Annals of Statistics, vol. 38,
no. 5, pp. 2916-2957, 2010.

N. G. Ushakov and V. G. Ushakov, “On bandwidth selection in
kernel density estimation,” Journal of Nonparametric Statistics,
vol. 24, no. 2, pp. 419-428, 2012.

S. Chen, “Optimal Bandwidth Selection for Kernel Density
Functionals Estimation,” Journal of Probability and Statistics,
vol. 2015, Article ID 242683, 21 pages, 2015.

W. Liao, J. Ding, D. Marinazzo et al., “Small-world directed
networks in the human brain: multivariate Granger causality
analysis of resting-state fMRI,” Neurolmage, vol. 54, no. 4,
pp. 2683-2694, 2011.

D.J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’” networks,” Nature, vol. 393, no. 6684, pp. 440-442,
1998.

M. Rubinov and O. Sporns, “Complex network measures of
brain connectivity: uses and interpretations,” Neurolmage,
vol. 52, no. 3, pp. 1059-1069, 2010.

S. Maslov and K. Sneppen, “Specificity and stability in topol-
ogy of protein networks,” Science, vol. 296, no. 5569,
pp. 910-913, 2002.

V. Latora and M. Marchiori, “Efficient behavior of small-world
networks,” Physical Review Letters, vol. 87, no. 19, article
198701, 2001.

S. Achard and E. Bullmore, “Efficiency and cost of economical
brain functional networks,” PLoS Computational Biology,
vol. 3, no. 2, p. el7, 2007.

D. S. Bassett and E. Bullmore, “Small-world brain networks,”
The Neuroscientist, vol. 12, no. 6, pp. 512-523, 2007.

Y. He, Z. J. Chen, and A. C. Evans, “Small-world anatomical
networks in the human brain revealed by cortical thickness
from MRL” Cerebral Cortex, vol. 17, no. 10, pp. 2407-2419,
2007.

J. Wang, “Graph-based network analysis of resting-state func-
tional MRI,” Frontiers in Systems Neuroscience, vol. 4, p. 16,
2010.

H. Wang, X. Jin, Y. Zhang, and J. Wang, “Single-subject mor-
phological brain networks: connectivity mapping, topological
characterization and test-retest reliability,” Brain and Behav-
ior: A Cognitive Neuroscience Perspective, vol. 6, no. 4, pp. 1-
21, 2016.

Y. Sun, Y. Chen, S. L. Collinson, A. Bezerianos, and K. Sim,
“Reduced hemispheric asymmetry of brain anatomical net-
works is linked to schizophrenia: a connectome study,” Cere-
bral Cortex, vol. 27, pp. 602-615, 2015.

Y. Sun, J. Li, J. Suckling, and L. Feng, “Asymmetry of hemi-
spheric network topology reveals dissociable processes
between functional and structural brain connectome in
community-living elders,” Frontiers in Aging Neuroscience,
vol. 9, p. 361, 2017.

W. Shang, T. Li, J. Xiang et al., “Hemispheric asymmetry of the
functional brain connectome,” in Cognitive Systems and Signal
Processing. ICCSIP 2016, F. Sun, H. Liu, and D. Hu, Eds,,



BioMed Research International

[61]

[62]

[63]

[64]

[65]

(66]

(67]

[68]

(69]

(70]

(71]

(72]

(73]

(74]

(75]

(76]

vol. 710 of Communications in Computer and Information
Science, pp. 541-547, Springer, Singapore, 2017.

G. Gong, P. Rosa-Neto, F. Carbonell, Z. J. Chen, Y. He, and
A. C. Evans, “Age- and gender-related differences in the corti-
cal anatomical network,” The Journal of Neuroscience, vol. 29,
no. 50, pp. 15684-15693, 2009.

T. Guadalupe, D. C. Glahn, P. M. Thompson et al., “Mapping
cortical brain asymmetry in 17,141 healthy individuals world-
wide via the ENIGMA consortium,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 115, no. 22, pp. E5154-E5163, 2018.

K.J. Plessen, K. Hugdahl, R. Bansal, X. Hao, and B. S. Peterson,
“Sex, age, and cognitive correlates of asymmetries in thickness
of the cortical mantle across the life span,” The Journal of Neu-
roscience, vol. 34, no. 18, pp. 6294-6302, 2014.

J. J. Maller, R. Anderson, R. H. Thomson, J. V. Rosenfeld, Z. J.
Daskalakis, and P. B. Fitzgerald, “Occipital bending (Yakovle-
vian torque) in bipolar depression,” Psychiatry Research: Neu-
roimaging, vol. 231, no. 1, pp. 8-14, 2015.

M. P. van den Heuvel and O. Sporns, “Network hubs in the
human brain,” Trends in Cognitive Sciences, vol. 17, no. 12,
pp. 683-696, 2013.

S. P. Springer and G. Deutsch, “Left brain, right brain: perspec-
tives from cognitive neuroscience,” in A Series of Books in Psy-
chology, W H Freeman/Times Books/Henry Holt & Co., 5th
edition, 1998.

E. M. Weiss, G. Kemmler, E. A. Deisenhammer, W. W.
Fleischhacker, and M. Delazer, “Sex differences in cognitive
functions,” vol. 35, no. 4, pp. 863-875, 2003.

E. Zarahn, G. Aguirre, and M. D’Esposito, “Replication and
further studies of neural mechanisms of spatial mnemonic
processing in humans,” vol. 9, no. 1, pp. 1-17, 2000.

R. Everts, K. Lidzba, M. Wilke et al., “Strengthening of lateral-
ity of verbal and visuospatial functions during childhood and
adolescence,” Human Brain Mapping, vol. 30, no. 2, pp. 473-
483, 2009.

K. E. Watkins, T. Paus, J. P. Lerch et al., “Structural asymme-
tries in the human brain: a voxel-based statistical analysis of
142 MRI scans,” Cerebral Cortex, vol. 11, no. 9, pp. 868-877,
2001.

E. Luders, K. L. Narr, P. M. Thompson, D. E. Rex, L. Jancke,
and A. W. Toga, “Hemispheric asymmetries in cortical thick-
ness,” Cerebral Cortex, vol. 16, no. 8, pp. 1232-1238, 2006.

C. J. Price, “The anatomy of language: contributions from
functional neuroimaging,” Journal of Anatomy, vol. 197,
no. 3, pp. 335-359, 2000.

M. S.Joo, D. S. Park, C. T. Moon, Y. Il Chun, S. W. Song, and
H. G. Roh, “Relationship between gyrus rectus resection and
cognitive impairment after surgery for ruptured anterior com-
municating artery aneurysms,” Journal of Cerebrovascular and
Endovascular Neurosurgery, vol. 18, no. 3, pp. 223-228, 2016.
A. M. Belfi, A. L. Conrad, J. Dawson, and P. Nopoulos, “Mas-
culinity/femininity predicts brain volumes in normal healthy
children,” Developmental Neuropsychology, vol. 39, no. 1,
Pp. 25-36, 2009.

J. Seidlitz, P. B. Jones, A. Raznahan et al., “Morphometric sim-
ilarity networks detect microscale cortical organization and
predict inter-individual cognitive variation,” Neuron, vol. 97,
no. 1, pp. 231-247.e7, 2017.

X. Li, X. Wang, K. Yu, Q. Li, X. Zhang, and S. Li, “Individual
morphological brain network construction based on multivar-

[77]

(78]

(79]

(80]

13

iate Euclidean distances between brain regions,” Frontiers in
Human Neuroscience, vol. 12, 2018.

D. C. Van Essen, “A tension-based theory of morphogenesis
and compact wiring in the central nervous system,” vol. 385,
no. 6614, pp. 313-318, 1997.

R. Meuli, C. J. Honey, O. Sporns et al., “Predicting human
resting-state functional connectivity from structural connec-
tivity,” Proceedings of the National Academy of Sciences,
vol. 106, no. 6, pp. 2035-2040, 2009.

N. Langer, A. Pedroni, and L. Jancke, “The problem of thresh-
olding in small-world network analysis,” PLoS One, vol. 8,
no. 1, article €53199, 2013.

M. P. van den Heuvel, S. C. de Lange, A. Zalesky, C. Seguin,
B. T. T. Yeo, and R. Schmidt, “Proportional thresholding in
resting-state fMRI functional connectivity networks and con-
sequences for patient-control connectome studies: issues and
recommendations,” Neurolmage, vol. 152, pp. 437-449, 2017.



	Gender-Related and Hemispheric Effects in Cortical Thickness-Based Hemispheric Brain Morphological Network
	1. Introduction
	2. Materials and Methods
	2.1. Sample Characteristics and MRI Acquisition
	2.2. Cortical Surface Modeling and Extraction of Cortical Thickness Values
	2.3. Construction of the Hemispheric Brain Morphological Network
	2.4. Network Analysis: Global Graph Metrics
	2.5. Network Analysis: Local Graph Metrics
	2.6. Network Analysis: Integrated Graph Metrics
	2.7. Asymmetry Index of Global and Local Graph Metrics
	2.8. Statistical Analyses

	3. Results
	3.1. Small-Worldness and Global/Local Efficiencies of Hemispheric Brain Morphological Networks
	3.2. Gender and Hemispheric Effect on Global and Local Graph Metrics
	3.3. The Asymmetry Index of the Global and Local Graph Metrics within Groups
	3.4. Between-Group Differences in Asymmetry Index of Global and Local Graph Metrics

	4. Discussion
	4.1. Economical Small-World Network Properties of the Hemispheric Brain Morphological Networks
	4.2. Gender-Related Effects in Asymmetry of Global Graph Metrics
	4.3. Gender-Related Effects in Asymmetry of Local Graph Metrics
	4.4. Limitations

	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments
	Supplementary Materials

