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Abstract

Value-Based Medicine (VBM) is imposing itself as 'a new paradigm in healthcare management and medical practice.
In this perspective paper, we discuss the role of VBM in dealing with the large productivity issue of the healthcare
industry and examine some of the worldwide industrial and technological trends linked with VBM introduction. To
clarify the points, we discuss examples of VBM management of stroke patients.
In our conclusions, we support the idea of VBM as a strategic aid to manage rising costs in healthcare, and we explore
the idea that VBM, by establishing value-generating networks among different healthcare stakeholders, can serve as the
long sought-after redistributive mechanism that compensate patients for the industrial exploitation of their personal
medical records.
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Background
Population ageing, rise in prevalence of chronic diseases
and ever-improving medical technologies, drugs and stan-
dards are major stressors for the sustainability of health-
care systems [1]. Under such conditions, the worldwide
healthcare industry is exposing its main Achille’s heel:
inefficiency.
In similar-size worldwide industries, such as IT manufac-

turing of laptops and cell phones, innovation of technology,
economies of scale and raising of operation efficiency
allowed a substantial increase in performance over the last
30 years, together with a drastic reduction in prices (about
75 and 85%, respectively [2]). In the same way, in the last
20 years, the labour productivity of the healthcare work-
force increased of a scant 6%, as compared to the 18% of
other service industries and the 78% of manufacturing [1].
The results of such inefficiency, coupled with the afore-

mentioned stressors, are spiralling costs and large varia-
tions in outcomes, even among hospitals of the same
country [3]. At the systemic level, this situation leads to a
medical inflation that in all OECD countries largely

exceeds GDP growth [1, 3], together with budget reduc-
tions, declining reimbursement, resource constraints, and
difficulties in delivering high standards of care based on
increasingly expensive medical interventions.
The future sustainability of healthcare systems requires

fast and profound improvements in efficiency and product-
ivity of the healthcare industry. As for every other service
industry, this process goes through a maturation of the rela-
tionship with the patient/customer, in which outcomes/
products are defined based on the patients’ priorities. Along
this line, while pursuing efficiency in healthcare has been
traditionally interpreted as trivial cost cutting, more re-
cently, the paradigm shifted toward maximization of value
produced by medical interventions [4].

Main text
Value-based medicine
Centring medical practice around value it means defin-
ing the worthiness to pay a medical performance based
on its potential to achieve a clinical, social or financial
outcome [4, 5]. The idea behind this approach postulates
that an optimal use of resources can be obtained by pur-
suing the outcomes the patient values the most, rather
than focusing on cost-cutting per-se [6]. In other words,
value-based medicine, VBM, is a redefinition of patient-
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centred targets for healthcare strategic interventions and
optimization policies, reducing the risk of false econ-
omies linked with cost-reductions designed on poorly
defined objectives [4].
According to our analysis, at a global level the pursuit

of defining and building value for VBM is leading to five
well-defined trends.

1. Establishing policies for value-based pricing and
reimbursement
The maximization of medium- and long-term outcomes is
driving institutional and private payors at establishing
value-based pricing and reimbursement policies. In prac-
tical terms, this means a progressive transition from
procedure-payments to episode-payments, fostering the in-
tegration of nowadays-fragmented clinical pathways in in-
tegrated ones, encompassing both pre-admission and post-
discharge services [7]. As an example, Germany (from
2000) and the Netherlands (from 2010) introduced such a
system for various chronic diseases as diabetes and chronic
obstructive pulmonary disease, which are endowed with
complex and long-term post-discharge services [8]. A simi-
lar transformation is underway in drug reimbursement
schemes, where an indication value-based pricing (IBP)
framework is gaining popularity [9] across US and some
European Countries, e.g. Italy. In this case, the reimburse-
ment is proportional to the value a molecule has for each
specific pathology, and it is not defined according to stand-
ard volume-price logics [9, 10].

2. Defining patient-centric outcomes
The search for a proper and patient-oriented definition of
value is leading to the creation of a number of different ap-
proaches to measure outcome. One of the most wide-
spread and promising is the definition of Patient Reported
Outcome Measures (PROMs) [5, 11] and Patient Reported
Experience Measures (PREMs). These calculate health and
wellbeing gains using pre- and post-intervention surveys
[5], encompassing caregiver-defined (PROMs) or patient-
defined (PREMs) questions/issues. In this way, patients
and their informal caregivers are included in the develop-
ment of the outcome review, measuring the procedure effi-
ciency based on the patients’ priorities [12].

3. Data-driven operations in healthcare
The need for sophisticated information about patients’
medical history and short-, medium- and long-term clin-
ical and social outcomes is promoting an IT revolution
in hospitals. These changes aim at making all clinically
relevant data manageable and available, and at allowing
integration between institutional and individual data. As
healthcare delivery will involve and require more and
more data and services both before admission and after
discharge, hospitals will need to organize an IT

infrastructure able to foster the role of hospitals as hubs
for preventive, primary, acute and follow-up healthcare.
This revolution is forcing hospitals to invest in inter-
operability, standardization and connectivity [5], and it is
driving investments toward the healthcare service indus-
try for the implementation of patients’ remote monitor-
ing, remote consultations, cloud computing and data
analytics solutions [5, 13]. In its most extreme forms, the
transformation of hospitals into hubs is leading to the
creation of totally decentralized hospitals, i.e. fully virtual
healthcare services, such as the Indian Apollo virtual
hospitals or the Ningbo and the Evergrande Group cloud
hospitals in China [13]. According to recent projections,
10% of the world’s hospitals will become, or will be in
the process of becoming, “smart” by 2025 [14].

4. Artificial intelligence and big data
Together with an IT revolution, the intrinsically complex
nature of VBM data (which frequently are fragmented
and non-structured by definition), coupled with the
aforementioned effort in achieving efficiency in health-
care, is driving an unprecedented level of employment of
Artificial Intelligence (AI) and Big Data Mining analysis
techniques to clinical data [15–20]. AI approaches are
tested and employed at all levels of the clinical pathway,
before diagnosis [21], for diagnosis [22–39], for treat-
ment and prognosis (treatment- and hospitalization [33,
40, 41], complications [27, 42–46], susceptibility to in-
fections and relapses forecast [30, 47]) and for remote
home monitoring after discharge [14, 16, 48]. At the
same time, Big Data mining is increasingly employed on
the already-existing clinical data mass, allowing all
healthcare stakeholders to ameliorate efficiency in terms
of variability reduction [49], treatment personalization
[37, 50–52], identification of patterns or side effects in
responses to treatments and relapses [18, 42, 53], admis-
sion and readmission rates to ERs [41, 54–56], and over-
all medical output at discharge [57].

5. Value-based procurement and research
The progressive introduction of value-based reimburse-
ments and the overall evolution of healthcare processes and
hospitals is forcing the healthcare service industry, such as
pharmaceutical companies and medical-technology sup-
pliers, to incorporate VBM value in their strategy [3, 14,
58]. As a matter of fact, if not properly managed by health-
care services, VBM just raises new barriers to procurement
and reimbursement, obliging companies to spend large
amount of moneys and efforts in demonstrating the actual
value of their product/services to health technology assess-
ment (HTA) agencies, payors and insurers [3, 58]. In re-
sponse to such a changed environment, healthcare service
companies are embracing a new model of innovation, gen-
erating highly collaborative R&D ecosystems that comprise
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providers (usually hospitals). This allows i) the development
of more focused technologies for the specific needs of a
hospital and its regional network, and ii) the access to real-
world patient outcome data, which are increasingly
necessary for FDA/EMA and HTA agencies approvals [3,
14, 58]. In many cases, such precious data are traded-off for
risk-sharing deals, in which procurement costs are propor-
tional with the value actually generated by the innovation
(new technology or drug) at the hospital involved in the
deal (e.g. [48]).
As discussed in the introduction, the fire under the pot of

healthcare VBM revolution are population ageing and the
rise in chronic diseases, which to date account for over a
third of the total healthcare expenditures at global level [1].
In 2019 alone, the number of people aged over 65 increased
by 3.5% worldwide [59]. The reason for such a high drainage
of resources for chronic diseases is not just their prevalence
per se, but the fact that affected patients generally have mul-
tiple concomitant long-term conditions [60]. According to a
2017 report [61] US citizens with five or more chronic con-
ditions are the 12% of population, but account for the 41%
of total healthcare expenditure. Also, the 90% of US total
healthcare expenditure goes for people with chronic or
mental conditions [61]. Thus, chronic diseases management
is the field where VBM process and system efficiency im-
provements can make a real difference. According to
McKinsey Consulting projections, VBM implementation in
chronic diseases could achieve savings of 9 to 16% on the
total healthcare providers’ budget [1]. At a systemic level,
this would lead to an average “30% decrease in the average
annual increase in national health expenditures” [1]. This
numbers explain why in the last decade such a high number
of VBM and HTA studies and projects concentrated on
chronic diseases. Among such diseases, we find interest in
examining VBM application to stroke.

Value-based medicine and stroke
The analysis of what is happening worldwide in the ap-
plication of VBM principles to stroke is very instructive,
since it provides a comprehensive picture of how the
aforementioned trends are playing together, and it sug-
gests an innovative macroeconomic perspective on what
healthcare value can achieve in modern societies.
Stroke is a pathology characterized by: i) a complex in-

hospital acute phase - where outcomes crucially depend
on the timing of intervention - followed by a very long
chronic phase, which requires extensive rehabilitation; ii)
a high prevalence, since it affects about 200 people per
100,000 [62] and it ranks second as global cause of
death, behind ischemic heart disease [63]; iii) a high eco-
nomic and social cost, both for healthcare systems
(about €21,000 per patient in 2010 [64]) and for informal
caregivers. As such, much pressure has grown worldwide

in optimizing the clinics, management and social costs
linked with stroke.
By first considering the development of value-based reim-

bursement plans implementation, stroke is following the
same pathway as other similar chronic or severely impair-
ing pathologies. Various networks have been established
worldwide to link the healthcare services provided by gen-
eral practitioners (GPs) and consultants, hospitals and re-
habilitation structures. A bright example is the Netherlands
Heart Network (NHN), which operates in the Eindhoven
area and works according to a VBM logic [65, 66]. Realizing
how diverse was the management of patients with atrial fib-
rillation (a leading cause of stroke) by local GPs and cardi-
ologists, NHN built an IT and managerial structure
organized around the Catharina Hospital Eindhoven (the
network hub) to harmonize and coordinate the clinical
management of patients. The network links all relevant
providers, here comprising GPs, consultants, nurses, ambu-
lance service, thrombosis service, home care organizations,
pharmacists, and diagnostic centres, with the aim of struc-
turing a “total care delivery value chain” [66]. Data collec-
tion and analysis is shared with insurers, which represent
the major payors in the Dutch system; at each step value is
evaluated through PROMS defined by the Netherlands
Heart Registration and the ICHOM system [67]. NHN,
supported by a manufacturer’s sponsorship [68], provided
innovative tools to consultants and at-risk citizens to pro-
mote early diagnosis and preventive care, established a net-
work of outpatient clinics, and generated value by reducing
costs and improving patient outcomes [65]. The econom-
ical sustainability of the network was achieved thanks to a
funding model based on bundled payments agreed with in-
surers [66]. This experience was awarded with the Value-
Based HealthCare Prize 2019 [66].
In parallel with value-based reimbursement, some

value-based pricing experiences are recently gaining mo-
mentum. An example here is the recent deal between
the US health insurer Harvard Pilgrim Health Care and
the Pharma company Amgen for Repatha® (Evolocumab),
a monoclonal antibody designed to decrease the risk of
stroke and heart attacks by reducing circulating LDL
cholesterol. In this case, the Pharma company took a
risk-sharing approach, granting full rebate to the health
plan if a patient suffers stroke or heart attack despite the
regular assumption of Repatha®. This approach, already
widespread in oncology [58], is now finding its way in
other medical specialities, too. In this case, the actual
risk-sharing approach is linked with a bet on the amount
of value (i.e. savings) produced by the use of a very ex-
pensive category of drug and on the selection of the at-
risk population that maximizes such value. It will be
interesting in the future to measure the incremental
value generated by such a deal, as compared with the
standard situation of widespread prevention achieved
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though a less effective but extremely cheap class of
drugs (statins) [69].
The need for ultrafast interventions at the stroke onset,

together with very long-term rehabilitation after discharge,
is forcing a boost in the IT capabilities of hospitals, in order
to organize and exchange data in real-time with their local
networks. In particular, the need for a fast differential diag-
nosis is driving the introduction of AI in the diagnostic
process [16], both in the ambulance and at the ER, with
four pieces of software for stroke diagnosis approved by
FDA in 2018 only [16, 70]. Digital transformation and the
large data sets now available in smart hospitals are also
helping with the reduction of door-to-needle times inside
hospitals, by allowing data-driven optimization of patient
management. Rai and colleagues [49], for instance, demon-
strated how the application of industrial optimization
models, such as the Six-Sigma Motorola System, can re-
duce variability and improve outcome of stroke patients. In
two recent experiences moreover, accurate data analysis
helped reshape the pharmaco-economics [71] and the oper-
ations [72] of stroke patient management, respectively, with
measurable impacts on value.
AI and Big data analysis also found application in assist-

ing and improving standard neuroimaging (MRI and CT).
Nowadays, numerous support-vector machine algorithms
or Bayesian classifiers can detect, classify and segment
stroke lesions on MRI/fMRI [73–76] or CT [29–31, 43,
77] brain images comparably with a trained expert. Simi-
larly, IT improvements and AI have been employed to
verify for each patient the clinical/economical suitability
[78], the risk of side effects and the dose optimization of
intravenous thrombolytic drugs [79–81]. Linked with the
high costs of treatment and hospitalization, specialized lit-
erature is blossoming in a series of papers proposing AI-
or artificial neural network-based algorithms to predict
outcome or mortality at discharge or in the long run
(most of them with a > 97% accuracy), based on the ana-
lysis of physiological parameters in the first 48 h from the
event [82–84], or of standard medical images [43, 85, 86].
The encouraging decrease in stroke-related acute mor-

tality seen worldwide comes together with a similar in-
crease in the number of patients surviving with serious
disabilities and requiring very-long-term rehabilitations
before and after discharge [63]. This comes together with
a situation of chronic lack of rehabilitation places in many
OECD countries, such as Italy, where, according to recent
estimations, only 20% of the necessary high-specialization
rehab beds are available [87]. Logistic aspects (increased
number of patients needing rehabilitation and chronic
lack of beds), economical considerations (reduction in re-
imbursements, leading to shorter hospitalizations [88])
and recent data, supporting the early discharge of sub-
acute stroke patients [89], are moving the prize for value
toward smart solutions for home monitoring and tele-

rehabilitation [12, 90]. Notwithstanding such techniques
are still in their infancy, encouraging feasibility and cost-
benefit studies are showing how, despite still inferior to
standard in-person procedures [91], tele-rehabilitation is
largely cheaper than standard approaches, and it expands
the service to individuals who would not otherwise have
received any [92].
By considering the aforementioned examples and ap-

plications altogether, one important lesson can be drawn
on the application of VBM to a complex disease. The
environments where providers, payors and suppliers pro-
duced value in a synergic way, as in the case of NHN, or
the situations where technological innovations intro-
duced real value to the system, as for AI diagnostics in
the ambulance or tele-rehabilitation, are all resting on
defined and well-structured networks (Fig. 1).
In the case of stroke, such digital and physical networks

comprise hospitals and diagnostic centres (providers), gen-
eral practitioners, consultants, emergency services and re-
habilitation clinics, and possibly payors and service
industries. The backbone of such networks is data. Hospi-
tals need data from general practitioners, consultants and
emergency services to improve the quality of their activities
during hospitalization, particularly in VBM-reimbursement
regimes. Also, to estimate value and refine processes, pro-
viders need post-discharge data, which in the vast majority
of times derive from rehabilitation clinics and again, general
practitioners and consultants. The more data accumulate
toward the network hub, the hospital, the higher is the pro-
duction of value for patients and society. This can take the
form of i) medical performance for patients; ii) aggregated
real-world data, good practices, savings on future reim-
bursements, et cetera, for healthcare service industries and
payors; iii) algorithms, procedures and new knowledge for
and from academia and scientific institutes. The existence
of a network, and the availability of valuable real-world
data, in fact, attracts healthcare service industries and pri-
vate payors, which nurture the network with economic,
technological or material resources. The same holds for
Academia, which processes data to generate further social
and economical value. At the same time, as already sug-
gested by [3], what proves to be crucial for the maintenance
of VBM networks is carefully designed procurement, since
it binds the healthcare service industries, and their re-
sources, to the network hub. Once such networks are
established, and measurable clinical improvements are pro-
duced, virtuous circles get in place, promoting the redistri-
bution of value for all stakeholders, in exchange for more
data and further support to the network.
Watching these VBM networks through a macroeco-

nomic lens, it seems to us that value is the currency ex-
changed among stakeholders in return from data. Clinical
data accumulation toward the hub of the network gener-
ates value for patients, which ab origine are the owner of
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data. In a functioning VBM network, this redistribution of
healthcare, social and economical value happens at mul-
tiple levels, encompassing all stakeholders and reaching a
much wider audience of patients, as compared to the re-
stricted number of them who actually provided the data.
Hence, a functioning VBM network realizes a “circular
economy” that pays patients with value for their clinical
data, and, while growing, distributes social dividends to all
stakeholders. As compared with the nowadays situation,
where the flow of patients’ data and the one of clinical
performance are indirectly correlated, mediated by neces-
sity through academia and clinical research, the promise
of value-based medicine is the construction of efficient
economies of scale for value. Here, value is generated in a
much more efficient way, and at all sites along the net-
work. Similarly, value payback is disintermediated, since
many actors in parallel generate and distribute value, and
new knowledge can be built directly on each patient’s
data. In our view, if healthcare providers resist the tempta-
tion to commoditize data, i.e. do not sell raw data to in-
dustries or payors, but maintain a central role in the
exploitation of data for value production, VBM will
achieve different goal in parallel. i) VBM will maximize
value for patients, i.e. the clinical results patients value the
most; ii) value maximization will save money to healthcare
systems, both by hooking costs with effective healthcare
benefits and by lowering operational costs; and iii) VBM

will force providers to think in strategic terms, consolidat-
ing relationships with all stakeholders in networks.

Conclusions
Our analysis of value-based medicine (VBM) led us to two
key considerations: i) VBM is a key factor to make health-
care systems sustainable in the long-term, since it tackles
the crucial productivity issue of the healthcare industry. ii)
By establishing networks among stakeholders and by ma-
terializing the medical and social benefits for patients,
payors and society, VBM can be the sought-after redis-
tributive mechanism that compensates patients for the ex-
ploitation of their personal medical data.
The very quantitative-oriented approach to healthcare

proposed by VBM is subject to some criticisms. Accord-
ing to some scholars, VBM’s approach disregards the
value of the caring act and replaces trust in professionals
with accountability, undermining solidarity as an essen-
tial aspect of medical acts [93]. Despite the argument de-
serves deep consideration, scientification of medicine,
already started with evidence-based medicine, is in our
opinion an essential ingredient of sustainability.
The ongoing introduction of VBM in healthcare systems

rests upon two pillars: the generation of data-permeable
networks, which keep value in circulation, and a value-
based management of procurement, which ties healthcare
service providers, and their resources, to the networks.

Fig. 1 Graphic representation of the VBM network. Patients’ data concentrates toward the centre, the provider, which in turn redistribute value to
all stakeholders. Resources for the network can derive from suppliers (pharma or medical devices companies) or from public or private payors.
Procurement or reimbursement deals, together with exchange of value in the form of real-world data, keep suppliers and payors linked with the
network. Icons designed by Makyzz - Freepik.com
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In this very moment, the ball is in the court of world-
leading healthcare providers, which have the unique
chance to define what value exactly is for each path-
ology. In the upcoming gold rush generated by this new
economy, being the first in defining what the accepted
data-of-interest and PROMS are for a disease will be a
massive competitive advantage.
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