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Abstract

The lateral intraparietal area (LIP) of macaques has been asserted to play a fundamental role in 

sensorimotor decision-making. Here we dissect the neural code in LIP at the level of individual 

trial spike trains using a statistical approach based on generalized linear models. We show that LIP 

responses reflect a combination of temporally-overlapping task and decision-related signals. Our 

model accounts for the detailed statistics of LIP spike trains, and accurately predicts spike trains 

from task events on single trials. Moreover, we derive an optimal decoder for heterogeneous, 

multiplexed LIP responses that could be implemented in biologically plausible circuits. In contrast 

to interpretations of LIP as providing an instantaneous code for decision variables, we show that 

optimal decoding requires integrating LIP spikes over two timescales. These analyses provide a 

detailed understanding of the neural code in LIP, and a framework for studying the coding of 

multiplexed signals in higher brain areas.

Introduction

Perceptual decision-making is an important and experimentally-tractable cognitive ability 

that involves the timely integration of sensory, cognitive, and motor information. Recent 

work has hypothesized that the lateral intraparietal area (LIP) plays a key role in simple 

forms of perceptual decision-making. Much of this literature has focused on either 

normative models, which aim to derive the optimal decision-making strategy for a given 

task from first principles1–8, or mechanistic models, which aim to qualitatively reproduce 
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the dynamics governing neural activity in decision-making circuits9–15. Although these lines 

of work have generated many intriguing hypotheses and experiments, both of these 

approaches start with strong assumptions about the function of LIP and a limited view of its 

functional heterogeneity.

Here we describe a data-driven, statistical approach for investigating the encoding and 

decoding of information in LIP spike trains during a sensorimotor decision-making task. We 

begin by formulating a generalized linear encoding model characterizing LIP spike 

responses as a function of the external variables of interest on the scale of individual trials. 

Encoding models have been used to describe and quantify information transfer in early 

sensory areas16–19 as well as motor cortices20–22 and rodent hippocampus23,24, but have so 

far had limited application to decision-making areas25–27.

A statistical model based approach differs from other methodologies in that it does not seek 

a particular mechanistic or normative theory of LIP function. Rather, it aims to develop a 

rich, descriptive model of the statistical features of LIP spike responses and their 

dependencies on task and behavioral variables. The primary challenge here is that, in 

contrast to primary sensory or motor areas, an area like LIP may reflect a panoply of signals, 

some of which are tightly coupled with known sensory and motor events, and some of which 

may be the product of more elusive cognitive operations28–30. Here we show that the sort of 

generalized linear model (GLM) previously applied to spike representations in the early 

visual system can be extended to model LIP activity recorded during a decision-making 

task, in which many of the key elements of the task were variable, either temporally or in 

their value, and hence dissociable. The model reveals that LIP responses are best described 

as an interacting set of temporally-overlapping response components, implying that some of 

the spikes emitted during decision formation are potentially related to a number of factors, 

some of which are irrelevant to the accumulation of evidence. The model also provides a 

framework for understanding statistically optimal readout of various kinds of information 

from single-trial spike trains. Our analyses show that the superposition of sensory, decision, 

and motor variables encoded in LIP can be demultiplexed to read out decisions using a 

simple linear mechanism that spans multiple timescales. This encoding-decoding approach 

thus both identifies and then resolves a puzzle: LIP spike rates do not purely encode the 

accumulation of evidence during the formation of decisions, but LIP (or another area with 

similar responses) could feasibly be decoded to extract more choice-related information than 

conventional spike-counting analyses have suggested.

Generally, the analyses of LIP based on the GLM provide a detailed account of the time-

varying information carried by LIP spikes, and operates at the level of single trials, 

providing a testing ground for interpreting the functional meaning of LIP spikes on the 

timescale of individual stimulus events and decisions. This approach provides a platform for 

quantitatively characterizing the information carried by LIP, for comparing LIP responses 

across experiments, and for assessing the adequacy of various theories of LIP function. After 

explaining the statistical model in the context of the moving dots task, we discuss the 

implications of this framework for a broader range of ongoing debates and future work 

surrounding LIP’s functional role in sensorimotor behaviors.
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Results

We analyzed the spiking activity of 80 LIP neurons recorded from two monkeys while they 

performed a moving-dot direction-discrimination task31. In this well-known task32, monkeys 

view a random dot kinetogram and make decisions about the net direction of dot motion. 

They communicate their choice by making a saccadic eye-movement to one of two choice 

targets on the screen. From trial to trial, the fraction of dots moving coherently in the correct 

direction is varied, spanning a range of difficulties from easy (high coherence) to hard (low 

coherence). Fig. 1a illustrates the decision-making task and the variable timings of the four 

principal task elements: fixation point, choice targets, moving dots, and saccade. We varied 

the timings (and/or values) of the first three elements independently, and the saccade 

exhibited intrinsic timing variability as a part of the animal’s behavior (see Methods).

Classical analyses of coding in LIP rely on the peri-stimulus time histogram (PSTH) aligned 

to events such as the onset of the moving dots or the occurrence of the saccade (Fig. 1b). 

Other approaches might regress binned spike rates against levels of various experimental 

variables, and are sometimes applied at the level of single trials or single neurons7,33–35. Our 

model works at the resolution of individual spikes, neurons, and trials—quantifying the 

dependencies of the neural response on multiple task variables by regressing single trial 

spike trains against the timing and value of each variable represented on each trial—while 

also capturing the (autoregressive) influence of a spike history on subsequent spikes, and a 

nonlinearity associated with spike generation from these inputs. It is therefore possible to 

dissociate firing rate components associated with each element given the decorrelated design 

of the task components (e.g., trial-to-trial variability in the relative timings of events, and 

independent variation of intensities such as motion coherence relative to other factors), 

while also capturing the neuron’s own temporal response properties (e.g., refractoriness, 

burstiness, longer time scale autocorrelations).

Encoding: a description of the neural code in area LIP

An encoding model aims to describe p(r|x), the probability of a spike train response r given 

a set of external variables x on a single trial. Our model defines this probability in terms of a 

time-varying spike rate λt, given by

(1)

where (ki * xi)(t) denotes linear convolution of xi(t), the timecourse for the i’th external 

event (e.g., it’s zero everywhere except the time at which the saccade targets appear), with 

the linear filter or kernel ki, which captures the time-varying relationship between this event 

and the neuron’s probability of spiking. The second term (h * rhist)(t) denotes the linear 

convolution of the neuron’s spike history rhist with the post-spike filter h. This filter allows 

the model to capture non-Poisson spike-history effects such as refractoriness, bursting, and 

spike rate adaptation. We illustrate these components in a model diagram shown in Fig. 2a.

Under this model, the probability of a spike train for a single trial is given by a Poisson 

likelihood:
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(2)

where Δ is the time bin size, T is the number of time bins in the trial, rt is the spike count at 

time t, and θ = {{ki}, h} are the model parameters.

Fig. 2 illustrates the model fit to data from a typical LIP neuron. To provide intuition for the 

model’s basic capabilities, we plot the three kernels related to the three primary task 

elements that occur on each trial: (1) the appearance of the choice targets; (2) the moving 

dots stimulus; and (3) the saccade made by the monkey to indicate a decision (either into or 

out of the response field of the neuron under study, which we refer to as IN and OUT). At 

right, we plot the predicted time-varying change in spike rate due to each task element, for 

each of five possible motion coherences and two possible saccade directions (Fig. 2b). For 

each component, we show the linear convolution of the kernel with the timecourse of the 

corresponding task element, and passed through an exponential nonlinearity. The resulting 

traces show the multiplicative effect of each task element on the neuron’s probability of 

spiking. The product of three such components, forms the predicted spike rate for a single 

trial (Eq. 1). These predictions closely match the neuron’s actual PSTH (Fig. 2c).

Randomness and variability in the timings of experimental events are essential factors for 

dissociating the different components of the response. For example, if the interval between 

the onset of the choice targets and the saccade were constant, we could not differentiate 

spikes time-locked to the targets from those time-locked to the saccade. Similarly, stimulus 

kernels for each motion coherence can be dissociated thanks to randomized coherences and 

duration, despite having onset locked to the appearance of targets. The large number of task 

elements makes for a large number of model parameters; we therefore fit kernels in smooth 

temporal basis and applied Bayesian regularization methods to prevent over-fitting (see 

Methods). We verified the fits via PSTH prediction (Fig. 3b), single trial prediction on the 

test set (Fig. 5a), time-varying spike count variance (Supplementary Fig. 4), and inter-spike 

interval statistics (Supplementary Fig. 5).

Previous work has shown that LIP neurons are heterogeneous36, with diverse response 

characteristics during the moving-dots task31. We fit the model to each LIP neuron in the 

dataset, and found that it captures the responses of both conventional and radically 

unconventional LIP neurons with high accuracy (Fig. 3a). The fitted model parameters 

reveal that LIP neurons carry information about a variety of task elements, and that the 

output of each LIP neuron reflects a roughly multiplicative combination of signals 

(Supplementary Fig. 6 and Supplementary Fig. 7). Furthermore, individual cells may encode 

these elements in distinct ways, both in terms of overall magnitude and in more nuanced 

aspects of the time course. This cell-by-cell analysis suggests that the striking differences in 

PSTHs may arise from the combination of heterogeneous task-related components that can 

now be considered in isolation at the level of single neurons.

In addition to capturing the average timecourse of neural activity for different stimulus and 

choice conditions, the model can predict spiking activity on single trials from the timings 
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and values of task elements (Fig. 4). Despite the diversity of responses across trials and 

across neurons, the model captures the details of single-trial spike rate modulations very 

well, on par or better than the model’s account of the full PSTH. Note that these predictions 

are unique to each neuron, and differ for each trial because the task elements have 

randomized times.

Single-trial prediction accuracy improves even further when the model includes a post-spike 

filter, which captures the effects of spike history on a neuron’s probability of firing (Fig. 5a). 

The autocorrelation functions of spike trains in LIP vary substantially across neurons (Fig. 

5b), and frequently exhibit fine timescale structure that is inconsistent with a Poisson 

response model (or a Poisson model with refractory period). A model without post-spike 

filters cannot account for the detailed shape of these autocorrelation functions, yet the full 

model captures them accurately. The fitted post-spike filters (Fig. 5c) reveal detailed and 

diverse shapes that are not obvious from the autocorrelation function. One striking 

observation is that for these neurons, the probability of firing is enhanced for more than 200 

ms after a spike (but not much longer; see Supplementary Fig. 8). Note that such a long 

timescale of self-excitation is a statistical description (as opposed to a proposed recurrent 

mechanism), and reflects a form of temporal integration above and beyond that explained by 

the components linked to external task elements. Despite their contribution to spike train 

prediction, it is reassuring that the inclusion of the post-spike filters in the model exerts only 

a modest scaling effect on the other temporal kernels (i.e., the median correlation coefficient 

of the kernels fit with or without the post-spike filter is 96%, and the median scaling effect is 

75%).

We can validate the use of an exponential nonlinearity by non-parametrically reconstructing 

the nonlinear relationship between filter output and firing rate, and we find a close match 

between the non-parametric estimate and an exponential (Supplementary Fig. 6a). This is 

consistent with multiplicative interaction among components (but see Supplementary Fig. 

6b,c for comparison to rectified linear function), which is critical for the statistically optimal 

linear decoding mechanism we will describe below.

Together, these parts of the encoding model—linear kernels for task variables, a post-spike 

filter, and an approximately exponential nonlinearity—work together to capture the 

statistical relationship between LIP responses and various external and internal variables 

relevant to a sensorimotor decision-making task, enabling the model to predict spike trains 

on single trials and capture the fine structure of each cell’s autocorrelation function. These 

results suggest that, despite LIP’s cognitive function and more distant relation to simple 

sensory and motor processing, simpler neural signals may make up the bulk of LIP 

responses and can be captured by a type of statistical model already shown to be successful 

in sensory and motor circuits. However, the value of the encoding model goes beyond its 

ability to account for what makes an LIP neuron respond during the dots task, as we 

demonstrate below with an application for decoding (or de-multiplexing) of decision-related 

information from single-trial responses.
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Decoding: readout of decision-related information from LIP spike trains

Encoding models specify an explicit probability distribution over neural activity given a set 

of external task variables. They also provide a powerful tool for analyzing the readout of 

information from spike trains. In this particular application, we can decode decisions from 

spiking activity in LIP by using the fitted model to evaluate the probability of the spikes on a 

single trial under both possible choices (i.e., saccades to one target or the other). For each 

trial, the model provides a prediction in the form of a Poisson spike rate hypothesized to 

have generated the activity on that trial. Intuitively, decoding amounts to evaluating whether 

the spikes are more probable under the rate function consistent with a saccade IN or an OUT 

of an LIP neuron’s response field.2

Fig. 6a shows spike trains and corresponding rate predictions for pairs of randomly-selected 

IN and OUT trials from three different neurons. By considering the spikes up to each point 

in time, we can obtain a time-varying estimate of the animal’s eventual decision (shown 

below each trial’s spike train and rate predictions). Note that these probabilistic estimates 

diverge from 0.5 (the prior probability of an IN decision) as soon as the rate predictions 

diverge. For the six trials shown, the decoder achieves near certainty (probability of an IN 

choice close to one or zero) by the time of saccade, although this does not occur for all trials 

or in all neurons.

Formally, model-based decoding of the animal’s decision relies on the posterior distribution 

over choice given the spikes, which can be derived from the encoding distribution using 

Bayes’ rule. If we assume that IN and OUT choices are equally probable a priori, the 

posterior probability is given by

(3)

where x̃ denotes all other covariates besides the choice direction component xc. The 

posterior probability of an OUT choice is simply 1 − p(xc = IN|r,x̃), as the posterior must 

sum to 1.

Fortuitously, these posterior probabilities can be computed very simply under our model. 

For a GLM with Poisson noise and exponential nonlinearity, Bayesian decoding can be 

achieved with a linear weighting of the spike response. Specifically, the log-likelihood ratio 

(LLR), which is also the log of the ratio of posterior probabilities, is given by

(4)

where w denotes a set of linear decoding weights over time, and the additive constant does 

not depend on the response r (see Methods). The LLR leads to a simple decoding rule for 

predicting the animal’s choice: whenever LLR > 0, an IN saccade is more probable; 

whenever LLR < 0, an OUT saccade is more probable. The optimal decoding weights are in 

fact given by w = kIN − kOUT, the difference of the fitted saccade kernels for IN and OUT 

choices (see Fig. 6a).
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Bayesian decoding of decisions from LIP spike trains can therefore be implemented with a 

set of time-varying linear weights. The shape of each neuron’s weight profile tells us how 

much information that neuron’s spikes carry about the animal’s decision, as a function of 

time before the movement. The weights determined empirically from data challenge the 

view that instantaneous spike rate encodes the animal’s accumulated evidence for a decision, 

as they frequently extend out to 1.5 s before the movement, indicating that spikes from LIP 

should themselves be integrated over a relatively long window to optimally predict the 

decision. Note that this linear readout mechanism would not be statistically optimal if the 

nonlinearity were not exponential, since our model technically sits within the family of log-

linear models with “Poisson-like” noise known as probabilistic population codes 

(PPC)6,37,38.

This decoding analysis supports a model-based extension of the basic concept of Choice 

Probability (CP), a metric for quantifying the information that neural responses carry about 

an animal’s decision38. Conventional CP applies to scalar quantities such as spike count, and 

assumes that the optimal rule for reading out a pair of neuron and “anti-neuron” responses is 

to choose the option with larger response (a “max” decoding rule). Model-based CP, on the 

other hand, can be defined using any model-based decoding rule, and applies to non-scalar 

representations of neural activity such as a binned spike train. If we assume an anti-neuron 

for the neuron we are decoding to have exactly the same model weights, except with 

swapped choice related decoding weights kIN for kOUT, and vice versa), then a simple 

comparison rule for the projection to both neurons suffices for decoding, because the 

threshold is exactly the same for both neurons. We can therefore decode choices using the 

model-based projection of a spike train, instead of simple spike count.

The key difference between conventional CP and model-based CP is that the model weights 

provide the relative importance of different time bins for reading out the choice. Fig. 6b–d 

shows a comparison of model-based and conventional choice probability for quantifying 

decoding performance. Model-based CP outperforms conventional CP as the time window 

grows towards the saccade (Fig. 6c). Moreover, model-based CP increases almost 

monotonically, while conventional CP fluctuates more around chance levels. Conventional 

CP is clearly inadequate for decoding LIP neurons like example cell 3, where the polarity of 

rate associated with IN trials and OUT trials are reversed through time. But even for the 

more canonical example cell 1, model-based decoding extracts significantly more decision-

related information than the conventional approach. Model-based CP is on average 6.2% 

point higher than conventional CP on average (mean model-based CP, 75.2%; mean 

traditional CP, 69.9%). Fig. 6d illustrates the advantage of model-based decoding for a 

population of 80 neurons.

Implementation: low-dimensional readout of LIP population activity

So far we have considered the problem of decoding choices from spikes in LIP using an 

ideal observer with access to the saccade time and other task variables for the trial in 

question. This perspective is useful for determining theoretical limits on the accuracy with 

which downstream neurons could read out choice-related information from LIP, but it does 

not necessarily appl to neurally plausible readout mechanisms. At first glance, statistically 
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optimal readout seems difficult due to the fact that each neuron has a unique decoding-

weight profile, and these weights exhibit significant cell-to-cell heterogeneity.

However, there exists a practical mechanism for population readout that requires no 

knowledge of the saccade (or decision) timing, is insensitive to other task variables, and 

flexibly accommodates the heterogeneity of the temporal decoding weight profiles—but 

which still performs very close to theoretically optimal decoding. First, we can compute the 

linear projection of the spike trains onto the decoding weights in continuous time via linear 

filtering: at each time the output of the linear filter is exactly the log-likelihood ratio (Eq. 4) 

for a “preferred” saccade at the current time. Second, instead of projecting to the time-

varying decoding weights associated with each neuron—which are highly diverse Fig. 7a 

(top row)—we can approximately decompose each decoding weight as a linear combination 

of a few principal components of the collection of decoding weights (Fig. 7a bottom row), 

and then sum the results. Indeed, we find that the constellation of decoding weights are well 

spanned by 2 principal components (explaining 93.3% of the variance). To represent the 

total log-likelihood of LIP neurons corresponding to the same decision (i.e., with 

overlapping RFs), the filter outputs corresponding to each RF can simply be summed. Third, 

we find that the “decoding subspace” spanned by these two principal components can be 

well approximated by a pair of exponential filters. This simplifies the problem of 

implementation because, while single neurons may not be able to perform arbitrary time-

dependent weightings of spikes on the timescale of a second, a neuron or a population of 

neurons can naturally implement a leaky integrator. We find that two exponential filters e−t/τ 

with τ = 237,410 ms explain 92.1% of the variance of the seemingly diverse decoding 

weights (dashed lines in Fig. 7a). Finally, we posit the existence of two competing 

populations, each integrating evidence for one of the choice alternatives (i.e., two opposite 

RF locations), with balanced contributions from the other response components so that the 

influence of the other task variables cancels.

Fig. 7b shows a schematic of the proposed decoding circuit: (1) Each subpopulation of LIP 

neurons associated with the same choice/RF project to two readout populations with 

appropriate weights, (2) each readout population acts as a simple first-order temporal filter 

with different time constants, (3) the overall activity of the readout population can be 

instantaneously summed to represent choice activity, and (4) through a winner-take-all 

mechanism the choice information is selected, then transmitted to the motor system that 

controls the saccade.

The proposed scheme yields compelling improvements over traditional decoders (Fig. 7c): 

Decoding performance using the model-derived weights is substantially better than simply 

adding the spike counts in a fixed time window (i.e., a boxcar). Moreover, decoding with 

two leaky integrators performs virtually as well as with the seemingly complex individual 

decoding weights.

In summary, this decoding scheme lays out one plausible way to read out the choice given 

the population activity of LIP neurons. It characterizes how decision-related information is 

represented in the temporal evolution of population spiking activity. The dimensionality 

reduction implementation shows that this information could be exploited by a biologically-
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reasonable neural circuit. This exercise suggests that statistically-optimal readout of 

decisions could be implemented by neural circuits that read out the activity of LIP, even in 

the face of multiplexed signals and considerable heterogeneity across neurons.

Invariance to target-induced changes in firing

In addition to its neural plausibility, the decoding mechanism we have proposed achieves 

performance that is invariant to firing rate modulations induced by variables not directly 

relevant to the task. In particular, we manipulated the visual saccade targets so that on half 

of the trials they persisted until the end of the trial ("targets-ON" trials), while on the other 

half they flashed briefly and then disappeared ("targets-FLASH" trials; the animal made a 

saccade to the remembered, stereotyped target location). Although this manipulation did not 

affect choice behavior, it produced large changes in spike rate in many neurons31. This 

presents a major challenge to models in the prior literature that regard the firing rate of an 

LIP neuron as a direct neural correlate of log-likelihood ratio or some other normative 

quantity5. Our descriptive model, however, capture the effects of target removal through a 

multiplicative interaction with a target-related kernel. (Although saccade endpoints were 

affected by the targets-FLASH manipulation, the single target-based kernel appears 

sufficient to account for the changes in LIP response; see also40).

Fig. 8a shows an example neuron that reduces its response drastically when visual targets 

are extinguished early in the trial (i.e., before the onset of the moving dots). The model 

captures the difference with a single filter aligned to the time when targets disappear. 

Furthermore, model-based decoding is unaffected by the inclusion of this component, and 

there is negligible difference in decoding performance for the two kinds of trials (Fig. 8b). 

This robustness indicates that the superposition of the target-related kernels and the 

decision-related (saccade-locked) kernels is appropriate. More generally, it demonstrates 

that additional decision-irrelevant factors that affect LIP responses in other tasks might 

similarly be isolated so as to preserve the readout of decisions.

Discussion

We have developed a generalized linear model to describe LIP responses during a complex 

perceptual decision-making task. This framework yields several new insights into the coding 

of information in LIP spike trains. First, it reveals that representations in LIP are 

multiplexed: they can be decomposed into separate components related to the targets, the 

visual stimulus, and the eventual saccadic decision; the superposition of these components, 

in turn, provides accurate prediction of spike responses on single trials. Second, LIP neurons 

exhibit notably long-time-scale self-excitation that is statistically separable from the effects 

of sensory and motor drive, an effect that can be captured with a spike-history dependent 

model component. Third, despite substantial population-level heterogeneity in LIP response 

characteristics, decision-related information is well captured by a two-dimensional linear 

projection of the spike trains, which leads to an implementation of statistically optimal 

decoding using a pair of leaky integrators with distinct timescales.
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Our model-based approach assumes that the spike rate at any time depends on a combination 

of multiple task components. By exploiting the randomized structure of the experimental 

design on a single-trial basis, our analysis shows that LIP activity can be well modeled as 

reflecting a superposition of contributions from different sources. This result mirrors 

insights recently reported in rodent41 and other primate28 decision-making tasks. The 

dominant normative model in the context of the moving dots task—drift diffusion to bound

—takes the coherence-dependent ramping signals seen in averages as a neural correlate of 

an evolving decision variable. This framework assumes that the instantaneous firing rate in 

LIP should reflect the eventual choice. Our analysis adds a dimension to this perspective, 

suggesting a readout rule involving much longer temporal integration of LIP response, on 

the time scale of seconds. In other words, if LIP is the critical encoder of the accumulation 

of evidence, an optimal mechanism would still need to decode it using a time-varying 

weighting function, as opposed to simply thresholding its instantaneous spike rate. Time-

varying decoding weights may be more generally applicable in other contexts for which a 

fixed threshold on LIP responses has also been shown to be untenable42.

Multiplexing applies even to the decision formation period, where spikes are influenced by 

the moving dots stimulus, but also by the placement of the choice targets and the upcoming 

saccade. Although LIP clearly carries decision-related signals, the mixture of sensory, 

cognitive, and motor signals that simultaneously affect it argues against the assumption that 

it is a pure integrator underlying the accumulation of sensory evidence28–30. Instead, our 

encoding analysis suggests that LIP should be regarded as the recipient of multiple task-

related signals, only some of which are directly related to the formation of decisions. Our 

decoding analyses show that it is still possible to read out decisions in the face of this 

multiplexing, with higher accuracy than indicated by conventional choice probability. This 

perspective raises the possibility that the difficulties in distinguishing between various 

functional roles of LIP (e.g., attention/salience, decision-making, motor intention) may have 

arisen because LIP does not have single functional role, but because it simultaneously 

encodes multiple signals that are at least partially separable downstream. The application of 

descriptive statistical models in other tasks and task variants may thus provide the means for 

further integration of visual, attentive, decisional, and motor function in LIP. Further causal 

manipulations of the circuit are likely necessary for a definitive resolution, but our statistical 

analyses have shown that the information is multiplexed at encoding and can be 

demultiplexed by a plausible readout stage. One implication is that if LIP responses are 

critical for decision-making, future empirical work should shift focus from demonstrating 

the encoding of various cognitive factors in LIP, to how these complex signals are de-

multiplexed by later stages of neural processing.

Although our model provides an illuminating perspective on LIP function, it is not without 

limitations. It makes very few assertions about the function of LIP, but does require making 

some assumptions in the structure of the model. However, these assumptions amount to 

decisions about how to represent external, observable variables within a regression 

framework, and thus involve far less conceptual baggage, and a tighter reliance on the data, 

than normative approaches. In this initial report, we attempted to use the simplest approach, 

modeling brief events as impulses and prolonged events as boxcars. Future work will benefit 

from more nuanced manipulation and modeling of finer-grained temporal structure on each 
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trial. Additionally, prior applications of generalized linear models have provided insights 

into the form of dependencies between neurons and the relevance of correlated firing to 

information carried by a neural population; such analyses motivate follow-up work that 

involves recording multiple cells simultaneously43. Our findings about neurally plausible 

implementations of decoding also motivate future investigations into how or where the brain 

might accomplish readout involving simultaneous recordings in multiple brain areas. Indeed, 

work in related structures and paradigms has already been to explore how neurally-

constrained models of the oculomotor system can be applied44,45.

Dynamical models provide another kind of approach to understanding the function of area 

LIP13, and such models have been elaborated to include multiple factors that drive LIP, such 

as the response to visual targets11. A key difference is that such models start with a semi-

biological circuit structure that constrains the neural dynamics, and the framework for 

adding other components is rather flexible. Statistical models of the kind we propose could 

complement these models by providing a principled technique for assessing which 

components to incorporate; these models may thus provide a key tool not just for 

interpreting LIP activity, but for linking normative and mechanistic models of the sorts 

already proposed in this context6,13,46,47.

More generally, we note that a variety of both classical and recent controversies regarding 

LIP’s functional role have relied on attempts to dissociate or isolate various response 

components. For example, a recent paper reported that LIP responses were modulated by the 

magnitude of either appealing or aversive outcomes (consistent with a "salience" account) as 

opposed to being sensitive to value (in the neuroeconomic sense) per se48. A follow-up 

debate then focused on whether the data were generalizable, owing to the lack of strong 

persistent activity seen during the task49,50. Our analysis could provide a path towards 

resolution of this sort of debate, by testing whether persistent activity can be modeled as an 

independent driver of the LIP response (in which case, its presence or absence is irrelevant 

to the salience/value issue), or whether it indeed interacts with salience/valuation. The latter 

outcome would not just demonstrate that persistent activity is necessary to observe value 

signals in LIP, but would suggest intriguing computations that link these two components.

More consideration will be required to create families of experimental designs amenable to 

analysis via the generalized linear model. However, we feel that the framework promises 

both to enrich interpretations within well-studied paradigms and to pave the way for more 

ambitious and direct tests of hypotheses about higher brain function27.

Online Methods

The data analyzed in this paper were initially described in a previous empirical report31. 

Here, we briefly summarize the experimental methods as most important to the analyses 

described here.

Preparation, neurophysiology, and tasks

All procedures were performed in accordance with National Institutes of Health guidelines 

and the Institutional Animal Care and Use Committee at the University of Texas at Austin. 
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Two male rhesus macaque monkeys underwent surgery for implantation of a head-holder 

and a recording chamber over the posterior parietal cortex. A single electrode was advanced 

into LIP based on anatomical references, and was further located by signature neural activity 

observed during an instructed saccade task, which was also used to locate the response field 

(RF) of a neuron. Only neurons that were spatially selective during an instructed saccade 

task are included in this paper31. After the RF was determined using an instructed saccade 

task, the neuron’s spiking responses were recorded during the decision task.

The decision task was a standard variable-duration moving-dot direction-discrimination that 

has been used previously. In order to achieve fixation at a trial’s start, the monkey’s eye 

position had to register within a window around the central fixation point within 3 seconds 

of fixation point appearance. The monkey then needed to maintain eye position within that 

window until the fixation point vanished, which was the “go-signal” for the monkey to make 

a saccade to a target.

500 ms after the monkey achieved fixation, two saccadic target choices appeared. One 

choice target was located in the RF of the neuron (the IN choice), whereas the other choice 

target was diametrically opposite (the OUT choice). Randomly, on half of the trials, the 

targets disappeared after 100 ms (in figures showing PSTHs or single trials, we show only 

the “targets-ON” trials). 200 ms after the appearance of the choice targets, a motion stimulus 

appeared in a circular aperture and the monkey had to decide the net direction of motion and 

communicate their decision with a saccade to one of the two choice targets.

The algorithm for generating the dot motion display was identical to that used in prior LIP 

studies by Shadlen and colleagues31,33. Motion coherence strengths of 0, 3.2, 6.4, 12.8, 25.6 

and 51.2% were used. At 0% coherence (no motion on average), the monkey was randomly 

rewarded with 50% probability. After the motion was displayed for a specified time (500–

1000 ms, uniform distribution), the motion stimulus vanished. The monkey continued to 

maintain fixation for another 500 ms until the fixation point also disappeared, thus signaling 

that he could now saccade to the correct target location to obtain a reward. The monkey 

received a liquid reward 200 ms after eye position entered the spatial window around the 

correct target. The monkey was considered to have made a saccade to a target location if eye 

position registered within the spatial window around the target location within 100 ms after 

leaving the fixation point window. Entry into the spatial window around the target also had 

to occur within 450 ms after the go-signal to be considered a complete trial. About 800–

1200 trials were collected per recording session (per neuron).

Plotting neural response

PSTHs were smoothed with a gaussian filter (standard deviation, 75 ms). In Figs. 2 and 3, 

each conditional PSTH was stitched together by averaging temporally overlapping local 

PSTHs of length 500–1000 ms that were obtained by aligning at the median event time. The 

spike trains corresponding to fixed windows around the aligned time are collected and 

averaged to obtain the local PSTHs. For example, for the dots motion event, we aligned to 

the onset and offset separately with −25–600 ms and −400–500 ms time windows, 

respectively. Conditional PSTHs with less than 20 trials are not shown and were excluded 

from the variance explained analysis.
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Trials in Fig. 4 were chosen by sorting the mean square error between the predicted spike 

rate and the boxcar smoothed spike trains within the 2 second window around saccade time. 

Only the correct decision trials with high coherence in the cross-validation set were used.

The autocorrelation function R(τ) was normalized by the mean firing rate m to quantify 

excess spike rate:

where t is over all bins, r(t) is the binned spike train, and N(τ) is the number of bins such 

that both r(t) and r(t − τ) are valid. We have removed the 0-th lag component from the 

autocorrelation plots in Fig. 5b.

Model parameter representation

The spike trains were discretized into 1 ms bins. Each event was represented as a delta-

function over time, and convolved with a filter (or a kernel, see Supplementary Fig. 1). We 

used smooth temporal basis functions defined by raised cosine bumps separated by π/2 

radians (50 ms) to parameterize the filters (see Supplementary Fig. 10). Each event kernel 

was represented as a linear combination of basis functions that cover a specified range of 

time: 2 s window after fixation point onset, 1 s window after target onset, 4 s window after 

target disappearance, and 500 ms window after the dots disappearance. For the saccade 

response, we had two kernels, one for each direction which was anti-causal for 2504 ms for 

monkey J, and 2662 ms for monkey P and with total duration of 5.3 s. We grouped the 

directional coherence levels into 5 groups (to reduce the number of parameters): one for 

zero-coherences (0%), and two each for high (51.2%, 25.6%, 12.8%), and low (6.4%, 3.2%) 

in each direction. The dot-motion stimulus was represented as a boxcar of corresponding 

duration, and the filter duration for each coherence level was 800 ms. The post-spike history 

filter was parameterized by 20 linear weights; ten 1 ms uniform basis (to represent the fast 

refractory effects) followed by ten raised cosine basis stretched in a logarithmic scale that 

spanned 265 ms17 (see Supplementary Fig. 10). The total number of parameters for each 

neuron was 402 (or 422 with post-spike history filter) from the 11 (or 12) filters above. To 

facilitate visual interpretation, a rank-2 parametrization was used for the 5 coherence kernels 

for Figs. 1 and 2.

Fitting

The encoding model was fit by maximizing the log posterior, where we used a ridge prior to 

regularize the weights:

where θ is a vector representing the weights on the basis functions, and ξ is chosen from a 

grid to maximize the marginal likelihood. The marginal likelihood p(r|ξ) = ∫ p(r|θ,ξ)p(θ|ξ)dθ 
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was computed using Laplace approximation. For each neuron, we divided the trials 

randomly into five equally-sized sets to perform 5-fold cross-validation. Maximizing 

marginal likelihood for selecting the hyperparameter ξ is known as “evidence optimization”, 

and it does not require cross-validation, hence we only use cross-validation sets for 

evaluating the resulting fits.

Goodness-of-fit in Fig. 3 was computed on the stitched PSTH smoothed with a 25 ms 

Gaussian for each stimulus coherence and behavioral choice pair. Conditions with less than 

30 trials were discarded from the comparison. Spike prediction accuracy in Fig. 5a were 

computed by taking the difference between the full model log-likelihood and the log-

likelihood of a (single parameter) homogeneous Poisson model normalized by the number of 

spikes on the cross-validation set17.

Decoding

We derive the log-likelihood ratio (Eq. 4) decoding rule. Let tc be the time when the 

decision is read out.
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where the constant terms do not depend on r.

Note that the dot product can be computed continuously at every time point by a simple 

linear filter since  where L is the length of the weight 

vector, w̃ is the time reversed weight, and r(t) is the length L vector of response approaching 

up to t.

Choice probability (CP) quantifies the dependence between the spike counts of a neuron and 

a binary decision variable while keeping all sensory information constant. Given a randomly 

selected IN trial, and an OUT trial, the probability that the higher spike count belongs to the 

IN trial is CP. A high CP implies that the spike count contains much “information” about the 

decision. CP in Fig. 6c,d was computed by randomly drawing 1000 pseudorandom (IN, 

OUT) pairs of trials. We estimated repeated this procedure 40 times to obtain the error bars. 

For the traditional CP, we used the spikes count in the −1500–50 ms window before the 

saccade detection (for Fig. 6c, the beginning of the window was fixed at −1500 ms, and x-

axis shows the end of the window). For the model-based CP, spike trains on the cross-

validation set were projected with the weights obtained from the corresponding training set.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank J. Yates, K. Latimer, and L. Cormack for discussions, K. Eastman for assistance with data collection, and 
C. Rorex and S. Winston for technical support.

This project was supported by NEI EY017366 (A.C.H.), NIMH MH099611 (J.W.P. & A.C.H.), Sloan Foundation 
(J.W.P.), McKnight Foundation (J.W.P.), and NSF Career award IIS-1150186 (J.W.P.).

References

1. Platt ML, Glimcher PW. Neural correlates of decision variables in parietal cortex. Nature. 1999 Jul; 
400(6741):233–238. [PubMed: 10421364] 

2. Shadlen MN, Newsome WT. Neural basis of a perceptual decision in the parietal cortex (area LIP) 
of the rhesus monkey. J. Neurophysiol. 2001 Oct; 86(4):1916–1936. [PubMed: 11600651] 

3. Huk AC, Shadlen MN. Neural activity in macaque parietal cortex reflects temporal integration of 
visual motion signals during perceptual decision making. J. Neurosci. 2005 Nov; 25(45):10420–
10436. [PubMed: 16280581] 

4. Kable JW, Glimcher PW. The neural correlates of subjective value during intertemporal choice. Nat. 
Neurosci. 2007 Dec; 10(12):1625–1633. [PubMed: 17982449] 

5. Yang T, Shadlen MN. Probabilistic reasoning by neurons. Nature. 2007; 447(7148):1075–1080. 
[PubMed: 17546027] 

6. Beck JM, Ma WJ, Kiani R, Hanks T, Churchland AK, Roitman J, Shadlen MN, Latham PE, Pouget 
A. Probabilistic population codes for Bayesian decision making. Neuron. 2008; 60(6):1142–1152. 
[PubMed: 19109917] 

7. Seo H, Barraclough DJ, Lee D. Lateral intraparietal cortex and reinforcement learning during a 
mixed-strategy game. J. Neurosci. 2009; 29(22):7278. [PubMed: 19494150] 

8. Cisek P, Kalaska JF. Neural mechanisms for interacting with a world full of action choices. Annu. 
Rev. Neurosci. 2010; 33:269–298. [PubMed: 20345247] 

Park et al. Page 16

Nat Neurosci. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9. Mazurek ME, Roitman JD, Ditterich J, Shadlen MN. A role for neural integrators in perceptual 
decision making. Cereb. Cortex. 2003; 13(11):1257. [PubMed: 14576217] 

10. Lo CC, Wang XJ. Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time 
tasks. Nat. Neurosci. 2006 Jul; 9(7):956–963. [PubMed: 16767089] 

11. Wong KF, Huk AC, Shadlen MN, Wang XJ. Neural circuit dynamics underlying accumulation of 
time-varying evidence during perceptual decision making. Front Comput Neurosci. 2007; 1:6. 
[PubMed: 18946528] 

12. Fusi S, Asaad WF, Miller EK, Wang X-J. A neural circuit model of flexible sensorimotor 
mapping: learning and forgetting on multiple timescales. Neuron. 2007 Apr; 54(2):319–333. 
[PubMed: 17442251] 

13. Wang X-J. Decision making in recurrent neuronal circuits. Neuron. 2008 Oct; 60(2):215–234. 
[PubMed: 18957215] 

14. Ganguli S, Bisley JW, Roitman JD, Shadlen MN, Goldberg ME, Miller KD. One-dimensional 
dynamics of attention and decision making in LIP. Neuron. 2008 Apr; 58(1):15–25. [PubMed: 
18400159] 

15. Soltani A, Wang XJ. Synaptic computation underlying probabilistic inference. Nat. Neurosci. 2010 
Jan; 13(1):112–119. [PubMed: 20010823] 

16. Pillow JW, Paninski L, Uzzell VJ, Simoncelli EP, Chichilnisky EJ. Prediction and decoding of 
retinal ganglion cell responses with a probabilistic spiking model. J. Neurosci. 2005; 25:11003–
11013. [PubMed: 16306413] 

17. Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EPEJ. Simoncelli. Spatio-
temporal correlations and visual signaling in a complete neuronal population. Nature. 2008; 
454:995–999. [PubMed: 18650810] 

18. Jacobs AL, Fridman G, Douglas RM, Alam NM, Latham PE, Prusky GT, Nirenberg S. Ruling out 
and ruling in neural codes. Proc. Natl. Acad. Sci. U.S.A. 2009 Apr; 106(14):5936–5941. [PubMed: 
19297621] 

19. Fernandes HL, Stevenson IH, Phillips AN, Segraves MA, Kording KP. Saliency and saccade 
encoding in the frontal eye field during natural scene search. Cerebral Cortex. 2013 Jul.

20. Paninski L, Fellows M, Shoham S, Hatsopoulos N, Donoghue J. Superlinear population encoding 
of dynamic hand trajectory in primary motor cortex. J. Neurosci. 2004; 24:8551–8561. [PubMed: 
15456829] 

21. Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN. A point process framework for 
relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. 
J. Neurophysiol. 2005; 93(2):1074–1089. [PubMed: 15356183] 

22. Yu BM, Cunningham JP, Santhanam G, Ryu SI, Shenoy KV, Sahani M. Gaussian-process factor 
analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol. 
2009; 102(1):614. [PubMed: 19357332] 

23. Brown E, Frank L, Tang D, Quirk M, Wilson M. A statistical paradigm for neural spike train 
decoding applied to position prediction from ensemble firing patterns of rat hippocampal place 
cells. J. Neurosci. 1998; 18:7411–7425. [PubMed: 9736661] 

24. Barbieri R, Wilson MA, Frank LM, Brown EN. An analysis of hippocampal spatio-temporal 
representations using a Bayesian algorithm for neural spike train decoding. IEEE T. Neur. Sys. 
Reh. 2005 Jun; 13(2):131–136.

25. Rorie AE, Gao J, McClelland JL, Newsome WT. Integration of sensory and reward information 
during perceptual decision-making in lateral intraparietal cortex (LIP) of the macaque monkey. 
PLoS One. 2010; 5(2):e9308. [PubMed: 20174574] 

26. Park J, Zhang J. Sensorimotor locus of the buildup activity in monkey lateral intraparietal area 
neurons. J. Neurophysiol. 2010; 103(5):2664–2674. [PubMed: 20164399] 

27. Jenison RL, Rangel A, Oya H, Kawasaki H, Howard MA. Value encoding in single neurons in the 
human amygdala during decision making. J. Neurosci. 2011; 31(1):331–338. [PubMed: 21209219] 

28. Rishel CA, Huang G, Freedman DJ. Independent category and spatial encoding in parietal cortex. 
Neuron. 2014 Jul; 77(5):969–979. [PubMed: 23473325] 

29. Huk AC, Meister ML. Neural correlates and neural computations in posterior parietal cortex during 
perceptual decision-making. Frontiers in integrative neuroscience. 2012; 6

Park et al. Page 17

Nat Neurosci. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Gottlieb J, Goldberg ME. Activity of neurons in the lateral intraparietal area of the monkey during 
an antisaccade task. Nat Neurosci. 1999 Oct; 2(10):906–912. [PubMed: 10491612] 

31. Meister MLR, Hennig JA, Huk AC. Signal multiplexing and single-neuron computations in lateral 
intraparietal area during decision-making. J. Neurosci. 2013 Feb; 33(6):2254–2267. [PubMed: 
23392657] 

32. Newsome WT, Pare EB. A selective impairment of motion perception following lesions of the 
middle temporal visual area (MT). J. Neurosci. 1988 Jun; 8(6):2201–2211. [PubMed: 3385495] 

33. Roitman JD, Shadlen MN. Response of neurons in the lateral intraparietal area during a combined 
visual discrimination reaction time task. J. Neurosci. 2002; 22(21):9475. [PubMed: 12417672] 

34. Sugrue LP, Corrado GS, Newsome WT. Matching behavior and the representation of value in the 
parietal cortex. Science. 2004 Jun; 304(5678):1782–1787. [PubMed: 15205529] 

35. Foley NC, Jangraw DC, Peck C, Gottlieb J. Novelty enhances visual salience independently of 
reward in the parietal lobe. The Journal of Neuroscience. 2014 Jun; 34(23):7947–7957. [PubMed: 
24899716] 

36. Premereur E, Vanduffel W, Janssen P. Functional heterogeneity of macaque lateral intraparietal 
neurons. J. Neurosci. 2011 Aug; 31(34):12307–12317. [PubMed: 21865473] 

37. Ma WJ, Beck JM, Latham PE, Pouget A. Bayesian inference with probabilistic population codes. 
Nat. Neurosci. 2006; 9:1432–1438. [PubMed: 17057707] 

38. Jazayeri M, Movshon JA. Optimal representation of sensory information by neural populations. 
Nat Neurosci. 2006 May; 9(5):690–696. [PubMed: 16617339] 

39. Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA. A relationship between 
behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 1996; 
13(01):87–100. [PubMed: 8730992] 

40. Steenrod SC, Phillips MH, Goldberg ME. The lateral intraparietal area codes the location of 
saccade targets and not the dimension of the saccades that will be made to acquire them. Journal of 
neurophysiology. 2013 May; 109(10):2596–2605. [PubMed: 23468388] 

41. Brunton BW, Botvinick MM, Brody CD. Rats and humans can optimally accumulate evidence for 
Decision-Making. Science. 2013 Apr; 340(6128):95–98. [PubMed: 23559254] 

42. Gottlieb J, Balan P. Attention as a decision in information space. Trends in Cognitive Sciences. 
2010 Jun; 14(6):240–248. [PubMed: 20399701] 

43. Bollimunta A, Totten D, Ditterich J. Neural dynamics of choice: Single-trial analysis of decision-
related activity in parietal cortex. J. Neurosci. 2012 Sep; 32(37):12684–12701. [PubMed: 
22972993] 

44. Schall JD, Purcell BA, Heitz RP, Logan GD, Palmeri TJ. Neural mechanisms of saccade target 
selection: gated accumulator model of the visual-motor cascade. The European journal of 
neuroscience. 2011 Jun; 33(11):1991–2002. [PubMed: 21645095] 

45. Purcell BA, Schall JD, Logan GD, Palmeri TJ. From salience to saccades: multiple-alternative 
gated stochastic accumulator model of visual search. The Journal of neuroscience : the official 
journal of the Society for Neuroscience. 2012 Mar; 32(10):3433–3446. [PubMed: 22399766] 

46. Gold JI, Shadlen MN. The neural basis of decision making. Annu. Rev. Neurosci. 2007; 30:535–
574. [PubMed: 17600525] 

47. Churchland AK, Kiani R, Chaudhuri R, Wang X, Pouget A, Shadlen MN. Variance as a signature 
of neural computations during decision making. Neuron. 2011; 69(4):818–831. [PubMed: 
21338889] 

48. Leathers ML, Olson CR. In monkeys making value-based decisions, LIP neurons encode cue 
salience and not action value. Science. 2012 Oct; 338(6103):132–135. [PubMed: 23042897] 

49. Newsome WT, Glimcher PW, Gottlieb J, Lee D, Platt ML. Comment on “In monkeys making 
value-based decisions, LIP neurons encode cue salience and not action value”. Science. 2013 Apr.
340(6131):430. [PubMed: 23620037] 

50. Leathers ML, Olson CR. Response to comment on “In monkeys making value-based decisions, 
LIP neurons encode cue salience and not action value”. Science. 2013 Apr.340(6131):430. 
[PubMed: 23620038] 

Park et al. Page 18

Nat Neurosci. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Decision-making task and classical analysis of LIP responses
(a) The task requires an observer to fixate, judge the direction of a moving (dots) stimulus, 

and report a decision by moving the eyes to one of two targets. Temporal variability in the 

task design variables (indicated by gray arrows) allows for statistical dissociation of the 

effects of different extrinsic variables on neural responses. (b) Standard analysis of spike 

responses from an LIP neuron: Spike trains are conditioned on the stimulus coherence, the 

fraction of dots moving towards (’+’) or away from (’−’) the neuron’s response field, and 

aligned to the stimulus onset (left) or saccade time (right). Although the spike trains exhibit 

substantial variability (top), their average time-courses (below) exhibit coherence-dependent 

ramping. The gray area indicates the short portions of trials often considered in prior work33.
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Figure 2. Encoding model, fitted components, and rate predictions
(a) The model specifies the probabilistic relationship p(r|x) between external variables x and 

a set of neural spike trains r. The parameters consist of linear weights specifying the 

neuron’s dependence on the external variables and spike history. (b) Illustration of fitted 

model components for an example LIP neuron. Because the nonlinearity is exponential, we 

can plot the exponentiated output of each filter as a gain signal reflecting the influence of 

each task element on the time-varying spike rate. These signals are combined 

multiplicatively to obtain the instantaneous spike rate, which drives spiking via a 

conditionally Poisson process with feedback (8 out of 12 total kernels shown; see Methods, 

Supplementary Figs. 1 and 2 for more detail). (c) Peri-stimulus time histograms (PSTHs) 

predicted by the model (above) and computed from real data (below). Each trace reflects a 

different coherence level and saccade direction.
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Figure 3. Encoding model captures responses across a heterogeneous population
(a) Fitted model components for five additional neurons (columns 1–5), showing the relative 

contributions of targets, moving dots, and saccades to the predicted spike rate of each 

neuron (rows 1–3) and predicted and observed PSTH (rows 4–5) as in Fig. 2. The population 

exhibits substantial heterogeneity across neurons: e.g., the fourth neuron’s PSTH peaks early 

and then declines, regardless of choice (column 4, bottom row), yet the model still extracts a 

classical “ramping” choice-related component (3rd row). More unusually, the fifth neuron’s 

choice-dependent component (5th column, row 3) exhibits a time-dependent reversal, 

meaning that early in the trial, the neuron fires more spikes before saccades to the anti-

preferred (OUT) target. (b) Goodness-of-fit across the population. Each point corresponds 

to the percent of variance accounted for in the PSTH of each neuron.
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Figure 4. Model-based single trial predictions
Each column shows 4 example trials from a single neuron. Black ticks at the bottom indicate 

the observed spike train, and the black trace shows an estimate of spike rate obtained by 

smoothing the spike train with a 100 ms boxcar. Colored rectangles show the timing and 

identity of task elements for the trial in question (targets, moving dots, and saccade), and the 

orange trace shows the model-based spike rate prediction for that trial. The top two rows 

show example cross-validation trials for which prediction accuracy was highest, while the 

bottom two rows show example trials with median prediction accuracy. More trials are 

shown in Supplementary Fig. 3.
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Figure 5. Spike history effects captured by the post-spike filter
(a) Spike train prediction accuracy, quantified by the log-likelihood per spike under the 

model fit with and without spike history (cross-validation data). Positive values indicate how 

much better each model is compared to a baseline model (homogeneous Poisson). The 

model with post-spike filters captures an average of 137% more information about single-

trial spike trains. (b) Spike train autocorrelations computed on neural data (blue), and on 

spike trains simulated from the model fit without (green) and with post-spike filter (red). 

The model with a post-spike filter almost perfectly captures the empirical autocorrelation 

function (red curve overlaps blue curve). Example cells chosen to illustrate the diversity of 

history effects. (c) Fitted post-spike filters for the three neurons shown in b. These filters 

express the multiplicative change in spike probability as a function of time since a spike. 

These effects accumulate across multiple spikes, allowing the model to capture the complex 

temporal structure observed in the autocorrelations in b. See Supplementary Fig. 2 for 

diversity in population.
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Figure 6. Single-trial prediction and model-based decoding of spike trains
(a) Single trial responses from three neurons, for one randomly selected IN (top row) and 

OUT trial (bottom row) spanning a range of coherences. For each trial, the model predicts 

time-varying spike rate both under IN (red) and OUT (blue) choices. Model-based decoding 

amounts to assessing whether the observed spikes on a single trial (black ticks) are more 

likely generated from IN or the OUT spike rate. (Thin black traces show estimated rate by 

filtering spikes with a 100 ms boxcar, for visualization purposes only). Thick black traces 

(below) indicate the probability that the monkey will saccade IN given the spikes observed 

so far in the trial, as computed under the model. When the model predicts a higher rate for 

the IN choice, every spike evokes a jump in the probability of an IN choice, whereas silence 

evokes a gradual decrease. (b) Red and blue traces show saccade-related model components 
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for movements IN or OUT of the neuron’s RF. The difference of these components gives 

linear decoding weights (black), which determine how spikes from each neuron should be 

integrated in order to optimally predict the saccade direction. (c) Traditional and model-

based choice probability (CP), as a function of time interval used to integrate spikes, for 

zero-coherence trials (cross-validation data). Traditional CP (red) weights all spikes in the 

decoding window equally, while model-based CP (black) uses the time-dependent weights 

shown in b. Model-based CP exceeds or matches traditional CP for nearly all time windows, 

and accurately deciphers the peculiar time-varying decision signal from Cell 3 (shown 

previously in Fig. 4, column 5) using weights that change sign midway through the trial. (d) 
Comparison of traditional and model-based choice probability for all neurons in the 

population, using spikes at least 50 ms prior to saccade on zero-coherence trials. Vertical 

and horizontal lines show SD bootstrap confidence intervals. For the majority of neurons in 

the population, model-based decoding supports more accurate readout of the animal’s 

decisions from LIP spike trains.
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Figure 7. Decoding from low dimensional decoding weight space
(a) Top, decoding weights from all cells. Bottom, corresponding principal components (PC) 

that span the weights (numbers indicates variance explained). Dashed lines show the 2 PCs 

approximated with 2 optimized exponential functions (τ = 237,410 ms). For more details, 

see Supplementary Fig. 9 and Supplementary Table 1. (b) Schematic for decoding LIP 

neurons. Two populations with opposing RFs have corresponding readout populations. Each 

neuron projects to a subpopulation that filters their spiking activity with first order 

dynamics. The population response is averaged within the two pools of neurons that 

compete with each other to control the saccade. (c) Decoding performance comparisons on 

zero-coherence trials assuming neuron-antineuron pools. Higher log-likelihood ratio implies 

easier distinction between the choices given a pair of trials.
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Figure 8. Targets absent manipulation
(a) On half of the trials, the targets disappeared early (Targets-FLASH condition), which 

often resulted in large changes in firing rate (blue vs. red curves). The encoding model 

captures this effect well with a single kernel aligned to target offset. The four sub-panels 

show high (left), zero (right) coherence conditions for IN (top) and OUT (bottom) eventual 

saccades. (b) Decoding performance of zero-coherence trials with and without targets (80 

neurons). Using the same decoding kernel, the trials can be decoded almost as well. Filled 

circle indicates the population average with standard errors. Decoding targets-ON trial is 

2.6% easier (p-value 0.003; paired t-test), a significant but small effect.
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