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Abstract 
Predicting individual and population risk for disease outcomes and identifying persons at elevated risk is a key 
prerequisite for targeting interventions to improve health. However, current risk stratification tools for the 
common, chronic diseases that develop over the lifecourse and represent the majority of disease morbidity, 
mortality and healthcare costs are aging and achieve only moderate predictive performance. In some common, 
highly morbid conditions such as mental illness no risk stratification tools are yet available. There is an urgent 
need to improve predictive performance for chronic diseases and understand how cumulative, multifactorial 
risks aggregate over time so that intervention programs can be targeted earlier and more effectively in the 
disease course. Chronic diseases are the end outcomes of multifactorial risks that increment over years and 
represent cumulative, temporally-sensitive risk pathways. However, tools in current clinical use were 
constructed in older data and utilize inputs from a single data collection step. Here, we present RiskPath, a 
multistep deep learning method for temporally-sensitive biomedical risk prediction tailored for the constraints 
and demands of biomedical practice that achieves very strong performance and full translational explainability. 
RiskPath delineates and quantifies cumulative multifactorial risk pathways and allows the user to explore 
performance-complexity tradeoffs and constrain models as required by clinical use cases. Our results highlight 
the potential for developing a new generation of risk stratification tools and risk pathway mapping in time-
dependent diseases and health outcomes by leveraging powerful timeseries deep learning methods in the 
wealth of biomedical data now appearing in large, longitudinal open science datasets.   
 
Introduction 
Risk stratification, the identification of individuals or populations at elevated risk for a particular disease or 
condition, is a cornerstone of clinical practice and public health. Appropriate risk stratification allows risk 
mitigation by targeting interventions, implementing preventative strategies or choosing among treatments. 
Continuous biomedical innovation has also spurred a growing focus on personalized medicine, where 
interventions are tailored to the individual or subpopulation based on their predicted response to a specific 
treatment. Effective risk stratification is built on a foundation of predictive modeling, where the overall objective 
is to explain outcome variance as well as possible and identify statistical regularities that generalize to other 
data with similar distributions. Importantly, effective predictive models do not necessarily include disease 
causes, and “cheap and easy to measure surrogates or biomarkers of causes” may be included and even 
preferred. 1 For instance, the ubiquitous Framingham Risk Score contains non-causal predictors of cardiac 
disease risk like High Density Lipoprotein or ‘Good’ Cholesterol. 2  
 
Because the goal of prediction is to explain outcome variance as well as possible, maximizing model accuracy 
and/or minimizing error is the desirable performance criterion. In biomedicine, positive predictive value 
(precision or PPV) sensitivity (recall) and specificity are also high priorities. Accordingly, there has been 
increasing interest in deep learning, given its empirical ability to leverage overparameterized regimes and 
achieve strong performance. For instance, convolutional neural networks (CNNs) applied to imaging data have 
built on advances in computer vision to produce highly-accurate risk predictions for melanoma, 3 tuberculosis, 4 
lung cancer, 5 diabetic retinopathy6 and macular edema7 with clinically-deployable classifiers that are equal to 
or better in discriminating cases than board-certified specialists. 8-10 Performance is very strong, with accuracy 
of ~0.88-0.95 and good sensitivity and specificity. 7,10,11 Outside of image recognition, deep learning has 
achieved less purchase in the clinic. In particular, there is a prominent need for improved predictive risk 
stratification in chronic disease processes such as mental illness, cardiovascular disease, diabetes, chronic 
obstructive pulmonary disease (COPD), osteoarthritis, colorectal and breast cancer, which are highly prevalent 
and collectively represent >90% of morbidity, mortality and healthcare costs. 12  Most current risk stratification 
instruments for chronic conditions are 10-30 years old and were formulated using logistic regression or 
decision-tree algorithms (e.g. CART). They exhibit only relatively fair predictive performance. For instance, 
predictive accuracy varies from 0.51-0.83 in standard of care risk calculators in COPD, diabetes, colorectal and 
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breast cancer and cardiovascular conditions and PPV and specificity is frequently ≤0.15. 2,13-28 Of note, their 
constituent predictors were manually selected based on prior studies that used linear, groupwise inferential 
testing to identify factors with significant differences between cases and controls, i.e., associations. Such 
variables may not necessarily be optimal for prediction since “even statistically strong associations with very 
low p values often shed only modest light on their value for the goal of prediction” 29 and likely lack a uniform 
theoretical basis. 30-32 
 
Chronic diseases are the end outcomes of multifactorial risks that increment over years and represent 
cumulative, temporally-sensitive risk pathways. As such, there are likely multiple, sequential opportunities for 
mitigation and prevention if risk stratification could incorporate the time-dependent characteristics of these 
diseases and identified important precedent predictors and their requisite periods for intervention. However, 
tools in current clinical use were constructed and utilize inputs from a single data collection interval. In 
essence, improved risk stratification in chronic disease implies shifting from the current approach of 
contemporaneous or one-period prediction to multistep, sequence-based prediction.  In turn, this implies the 
use of longitudinal data as ex ante input features and techniques that render such data tractable for prediction. 
A premier algorithmic class for deep learning in sequence prediction problems is the recurrent neural network 
(RNN), which has proven successful in climate science, financial forecasting and speech recognition. RNNs 
such as Long Short-Term Memory (LSTM) neural networks are typically applied to long timeseries data from 
one or a few sensors and conventionally ingest square data. However, the preponderance of data that is 
appropriate and available for large-scale, effective chronic disease risk stratification (e.g., demographic, clinical 
assays, cognitive testing or social determinants data) has the obverse characteristics, being non-square 
tabular data available from thousands of people (‘sensors’) over relatively few timepoints. Moreover, in order to 
be pragmatically operationalizable, models must be translationally explainable, precluding classical 
dimensionality reduction, since we must know the identity of the original predictors (in order to collect them 
anew in the clinic) and ideally understand the predictive cost-benefit tradeoff of streamlining the set of features 
to a compact representation -- since it is typically too costly or onerous to collect dozens or hundreds of non-
imaging variables de novo.  
 
To address these challenges, we present RiskPath, a multistep predictive pipeline for temporally-sensitive 
biomedical risk stratification that achieves very strong performance and is tailored to the constraints and 
demands of biomedical practice. The core algorithm is a LSTM network that we adapted to data with 
characteristics common in clinical practice (tabular; non-square; collected annually; ≤10 timepoints) and 
rendered translationally explainable by extending the Shapley method33 of computing feature importances for 
timeseries data and embedding this into the model. We further provide data-driven approaches for streamlining 
features in timeseries data before and during model training and analyzing performance-complexity tradeoffs in 
model construction, showing that the inherent topologic complexity of deep learning provides a useful 
performance buffer to achieve the representational compactness demanded by clinical practice. 
 
Here, we demonstrate RiskPath in major mental illnesses (MI) and hypertension, which are paradigmatic 
examples of chronic illness.  The onset of clinical MI represents the accumulation of multifactorial risk factors 
over 8-10 years and treatments are currently palliative rather than curative. Because three-quarters of lifetime 
MI develops in the peri-adolescent lifestage (10-24 years of age), 34-36 patients are affected during the 
productive years of adulthood, which in the aggregate makes MI the most costly and disabling illness class. 37 
However, no current clinical risk stratification instruments exist to reliably predict major MIs, which collectively 
affect ~20% of the population. 38 In particular, understanding the cumulative process of risk aggregation is a 
central research priority in the field. 39  Using data from the Adolescent Brain Cognitive Development (ABCD) 
cohort, the largest long-term study of child development in the US, we predicted cases of Anxiety, Depression, 
Attention Deficit Hyperactivity Disorder (ADHD), Disruptive Behaviors and the total burden of MI symptoms at 
age 14 -- the point by which 50% of lifetime illness has onset. We constructed holistic, temporally-sensitive 
disease prediction models that delineate cumulative risk trajectories from 9-14 years of age. Their strong 
performance in generalization testing (Accuracy and AUC: 0.93-0.98) represents a substantial increment over 
extant single-period prediction in this domain (~0.70-0.80 accuracy). 40-48 Moreover, RiskPath also delivers very 
strong precision, recall and specificity. While our primary use cases were the most common mental illnesses, 
RiskPath is applicable to any disease where it is desirable to provide modernized, time-sensitive foundation for 
earlier and more accurate risk stratification and longitudinal data is available. To illustrate this adaptability, we 
also provide an example of using RiskPath to predict hypertension in older adults using data from the 
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Cardiovascular Health Study (CHS), a longitudinal study of risk factors for development and progression of 
cardiovascular diseases and stroke in people aged 65 years and older. Here, we constructed prediction models 
that mapped out cumulative risk trajectories over 10 annual timepoints to achieve performance (Accuracy and 
AUC: 0.84) that was again superior to the performance of current single-period risk stratification instruments in 
the cardiovascular domain which is in the range 0.65-0.81 AUC with very low (~≤0.15) precision and specificity. 

2,13,14,49 
 
Results 
 
Overview of the RiskPath pipeline 
Applying LSTMs in tabular timeseries big data for biomedical pathway prediction presents three major, 
interrelated challenges: feature selection, explainability and topologic optimization. LSTMs are customarily 
used with image, speech or text data and all available features are typically used. However, if a clinically 
operationalizable model is to be designed for tabular data, feature selection must occur. Typically, non-imaging 
risk stratification models used in clinical practice have ≤10 features since it is impractical and costly to collect 
more measures. Further, if new data is to be collected from a patient, the original identity of selected predictors 
must be exposed, even within a black box model. Hence, extant instruments were based on linear or tree-
based models. LSTMs are innately highly parameterized given their complex topology: parameter size (N) 
quickly and easily exceeds 100,000 and can be in the millions or more. Few participant samples are sized such 
that N< n and therefore learning usually occurs within overparameterized regimes rather than the conventional 
bias-variance tradeoff zone. While participation in overparameterized learning has been demonstrated to 
account for the empirically observed strength of deep learning performance, 50 optimizing the topology of 
timeseries deep learning algorithms remains largely unexplored in the ‘double descent’ literature pertaining to 
overparameterization, particularly in the context of obligate feature selection.  
 
Feature selection 
The existing generation of risk prediction tools were often constructed with smaller datasets acquired for a 
specific disease class. Here, features were selected based on domain knowledge, i.e. metrics derived from 
prior group-level inferential studies. However, good scores in inferential metrics (e.g. p-value significance) do 
not guarantee performance in predictive analyses29 and it is preferable to select features on the basis of 
predictive rather than inferential performance. Moreover, longitudinal population-level datasets are now 
available allowing biomedical discovery across disease classes such as the UK Biobank (n=500,000), All of Us 
(n=100,000) and ABCD (n=11,500) cohorts. Such studies collect thousands of variables about participants 
across time permitting fully data-driven approaches to risk prediction and novel discoveries. To accomplish 
principled, data-driven feature selection, the first step in our pipeline leverages two gold standard techniques 
that select features based on predictive performance: the LASSO CV (linear) and Boruta (nonlinear, ensemble) 
techniques. We adapted each algorithm for timeseries data to compute variable importances across all 
timepoints and extract a unique set of features that is important across the timeseries. A third, blended 
algorithm returns the union of the feature set extracted with both methods (linear + nonlinear). These three 
options are provided since it is not known whether linear or nonlinear feature selection is optimal for deep 
learning, a nonlinear technique. RiskPath offers users the ability to impose importance thresholds during 
selection to generate more parsimonious feature sets.  
 
Explainability 
Like most deep learning algorithms, LSTMs do not natively return the identity of predictors. To provide 
multistep prediction algorithms suitable for development into risk stratification tools, we extended the Shapley 
values technique to timeseries deep learning to render translationally explainable LSTMs. Shapley values are 
an approach from cooperative game theory widely used in machine learning to compute variable importances, 
though not historically RNNs. RiskPath integrates Shapley computations into LSTMs and extends the 
technique to return feature importance within each time period and to compute importances across all time 
periods. Collectively, this provides a complete picture of predictors and how risk aggregates across and within 
precedent time epochs to disease onset. This information can be used to guide assessment and intervention 
planning.  
 
Topologic optimization for performance and utility 
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LSTMs are among the more complex deep learning architectures since they incorporate input, output and 
forget gates that tend to balloon the number of model parameters. Generically, the number of parameters in an 
LSTM is 4(hm + h2 + h), where h = number of hidden units and m = the number of features. Commonly, 
practitioners use bidirectional layers which further increases the number of parameters.  In a learning 
environment where we wish to constrain the number of features, m, the width of the LSTM h will therefore tend 
to assume greater prominence. There is no principled method to discover the optimal topology of a deep 
neural network and many practitioners use heuristics or trial and error. RiskPath embeds the option of an 
increasing range of model widths which may be controlled by the practitioner to identify a value for h and 
explore complexity-performance and time-complexity tradeoffs. RiskPath also adapts LSTMs for non-square 
data, since in both research and clinical practice it is commonly challenging to collect the same assessments in 
each time period.   
 
Evaluation and performance of baseline models 
We evaluated the performance of RiskPath in predicting cases of 4 leading MIs, the total burden of MI and 
hypertension and compared it with a standard deep learning feedforward (3-layer) network.  
 
a Training 

subjects 
Number 
features 

Accuracy AUC Precision Recall Specificity F1 Loss Time 
(secs) 

Total MI  1263 176 0.961 0.961 0.945 0.958 0.964 0.961 0.370 1669 
Depression 805 187 0.925 0.926 0.911 0.892 0.960 0.924 0.411 1140 
Anxiety 967 232 0.938 0.939 0.923 0.918 0.960 0.938 0.386 1721 
ADHD 762 149 0.961 0.961 0.950 0.950 0.974 0.961 0.644 1104 
Disruptive 
Hypertension 

514 

958 

80 

216 

0.981 

0.837 

0.981 

0.838 

0.973 

0.800 

0.982 

0.828 

0.981 

0.848 

0.982 

0.840 

0.621 

0.497 

711 

2568 

 
 
b Training 

subjects 
Number 
features 

Accuracy AUC Precision Recall Specificity F1 Loss Time 
(secs) 

Total MI  1263 243 0.964 0.964 0.953 0.954 0.975 0.964 0.402 83 
Depression 805 185 0.933 0.934 0.919 0.908 0.960 0.933 0.415 64 
Anxiety 967 139 0.941 0.941 0.961 0.945 0.937 0.942 0.416 69 
ADHD 762 196 0.967 0.970 0.962 0.949 0.987 0.968 0.402 63 
Disruptive 
Hypertension 

514 

958 

142 

216 

0.981 

0.821 

0.981 

0.821 

0.964 

0.775 

1.000 

0.820 

0.961 

0.822 

0.982 

0.826 

0.664 

0.540 

56 

52 

Table 1: Performance of RiskPath compared with standard deep learning in predicting mental illness cases 
Performance statistics are shown for the best-performing model in generalization testing in held-out, unseen 
data for a RiskPath with three-dimensional feature inputs (participants * time * features) versus b the same 
feature inputs flattened as two-dimensional inputs to a standard feedforward. In both cases 10-fold cross-
validation is performed during training with learning rate=1.00 x 10-5, decay=0.1 and AdamW optimizer. 
 
The same samples and hyperparameter settings were used and hidden units allowed to vary in the range 
[5,1200].  Features sets were determined as described above with default settings (non-zero LASSO 
correlations and p≤0.05 in the Boruta) and were input to LSTMs as three-dimensional (3D) data and as 
flattened two-dimensional (2D) data to feedforwards. Performance in testing in held-out, unseen data was very 
strong with RiskPath across all models and well above 0.85 for MIs (the commonly accepted threshold for 
clinical utility) across all metrics of interest. Performance was also very similar between 3D and 2D models, 
with fractional differences observed across standard metrics. We did not detect any directional relationships 
between feature selection with the LASSO, Boruta or LASSO+Boruta methods with best-performing models 
arising from all methods. On average, RiskPath LSTM models took 1486 seconds (~25 minutes) to compute 
versus 65 seconds (~1 minute) for the feedforwards.   
 
Performance sensitivity to feature ablation 
To generate models that are more clinically tractable, we explored the sensitivity of results to feature ablation. 
Because RiskPath computes feature importances across all time periods in a holistic manner, the relative 
importance of individual features to the model can be exposed and examined. Figure 1 demonstrates that 
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feature importance drops off quickly after the first ~10 features and asymptotes over less important (w
features.  The latter - collectively representing a substantial portion of the entire feature set - were th
excellent candidates for ablation.  
 

 
 
Accordingly, we performed additional experiments using the feature ablation options offered in RiskPa
re-fit the best performing models. In the first, the number of features was determined at the elbow of th
shown in Figure 1 after model training. For example, the 23 most important features in the Anxiety mo
the second, the top 10 most important features, a convenient heuristic for clinical operationalizabilit
selected for each condition based on their importances determined after selection with the LASSO CV m
but before training any models.   
Comparing the metrics presented in Tables 1 and 2 enables quantification of the impact of feature abla
performance. We found that while the elbow method ablated an average of >85% of the feature sets
the five conditions, it resulted in only a 2.0% decrement to absolute average accuracy. Preserving just 
10 features after feature selection prior to training was similarly unobtrusive, resulting in only a 2.2% lo
of average accuracy. Other performance metrics were also minimally impacted. In essence, this demon
that the majority of features can be safely ablated without a substantial impact to performance. Not
every condition all performance metrics remained >0.85 in MI and ~0.80 in hypertension, further indicat

 (weaker) 
 therefore 

Path and 
 the curve 
model. In 
ility, were 
V method 

blation on 
ts across 
st the top 
 lowering 
onstrates 
otably, in 
ating that 
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clinically important metrics such as PPV, specificity and sensitivity are similarly minimally affected by feature 
ablation.     
 
a Training 

subjects 
Number 
features Accuracy AUC Precision Recall Specificity F1 Loss Time 

(secs) 
Total MI  1263 27 0.941 0.941 0.913 0.950 0.931 0.942 0.683 2105 
Depression 805 21 0.911 0.911 0.875 0.914 0.910 0.914 0.669 1506 
Anxiety 967 23 0.905 0.904 0.866 0.918 0.891 0.908 0.683 1696 
ADHD 762 16 0.948 0.948 0.921 0.962 0.934 0.950 0.667 1442 
Disruptive 
Hypertension 

514 
958 

10 
24 

0.957 
0.804 

0.957 
0.825 

0.938 
0.800 

0.963 
0.863 

0.951 
0.833 

0.959 
0.854 

 

0.679 
0.489 

 

1082 
669 

 
b Training 

subjects 
Number 
features Accuracy AUC Precision Recall Specificity F1 Loss Time 

(secs) 
Total MI  1263 10 0.939 0.939 0.913 0.933 0.946 0.940 0.617 2102 
Depression 805 10 0.920 0.919 0.881 0.950 0.892 0.923 0.687 1510 
Anxiety 967 10 0.910 0.911 0.898 0.857 0.966 0.907 0.552 1701 
ADHD 762 10 0.939 0.939 0.917 0.930 0.947 0.939 0.640 1451 
Disruptive 
Hypertension 

514 
958 

10 
10 

0.962 
0.803 

0.962 
0.804 

0.946 
0.800 

0.963 
0.783 

0.961 
0.825 

0.963 
0.804 

0.698 
0.533 

1087 
2391 

Table 2: Predictive performance of RiskPath after feature ablation 
Performance statistics are shown for the best-performing model in generalization testing in held-out, unseen 
data using RiskPath with a) number of features selected at the elbow of importances ranked after model 
training and  b) the top 10 features ranked after feature selection with the LASSO. In both cases 10-fold cross-
validation is performed during training with learning rate=1.00 x 10-5, decay=0.1 and AdamW optimizer. 
Performance metrics presented correspond to the same individual models as Table 1 after feature ablation. 
 
 
Risk pathway mapping 
 
RiskPath leverages timeseries deep learning to allow full mapping of multistep risk pathways that predict 
disease cases with model complexity controlled by the practitioner. Here, we demonstrate how risk predictors 
for the total burden of MI aggregate over time in the 10-predictor model reported in Table 2b. The relative 
importance of each predictor is computed within each time period and mapped across all time periods to 
provide an integrated picture of cumulative predictor pathways over successive time periods (Figure 2a). 
Alternatively, the more conventional metric of mean predictor importance over the entire model may be 
computed (Figure 2b). The additional granularity offered by a multistep map shows how individual predictor 
importance may vary substantially from one period or lifestage to the next. For example, a deficit in executive 
function (the higher-level cognitive skills used to control other cognitive functions) is only an important predictor 
in late childhood (age 9-10) and thereafter recedes from the model.  In contrast, sleep problems are a less 
important predictor in late childhood but accelerate over time to become one of the most important predictors in 
subsequent lifestages. The cumulative risk pathways delineated by RiskPath can therefore serve as prototype 
clinical intervention maps for clinicians to prioritize treatments and target specific lifestages for risk mitigation.   
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Performance-complexity tradeoffs 
 
Sample collection is at a premium in biomedicine: most practitioners will use all available observation
thousands of observations (participants) is typically considered a large dataset. Further, for trans
tractability it is often preferred to limit the size of the feature set. Thus, the likeliest deep learning envir
is one where N >> n. In the present study, the smallest number of parameters, N, in our baseline LSTM
models (Figure 1a) ranged in [4182, 46,638,322] but in all cases was larger than n, the sample size (Ta
2). LSTMs are one of the more topologically complex and highly parameterized artificial neural network
an algorithmic class where performance is quite sensitive to parameterization. Practitioners control
number of hidden units (network width) but there is no principled method to optimize this setting and it
implies tradeoffs with compute demand, since increasing h typically increases runtime. Accordingly, R
allows the practitioner to directly specify the number of hidden units or explore performance across a ra
h. We performed successive experiments varying LSTM topology with hidden units in the range [5,1200]
 
In Figure 3, we depict these performance-complexity tradeoffs for our baseline models reported in Tab
all cases, we observed a suboptimal learning zone with lower parameterization and hidden unit size as 
initially entered the overparameterized regime. Typically, this corresponds to the end of the convention
variance tradeoff zone. Here, test metrics were higher than training metrics suggesting less robust 
overall higher loss and lower accuracy. However, as network width increased further in
overparameterized regime, the observed train/test curves smoothed out. A clear inflection point was rea
~100-500 hidden units into a learning regime where test metrics dipped slightly below training metric
sustained basis as hidden unit size was further increased. Consistent performance after this point su
that it characterizes an observable transition to a learning regime with desirable properties of robust
high performance. While the very best models in some cases were obtained with unit sizes >1000, very
performance was obtainable anywhere in the learning regime after this transition point.  
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Discussion 
 
Our understanding of the cumulative risk pathways of evolving conditions like chronic diseases ha
impeded by a paucity of effective methods to perform multistep prediction in the biomedical context.
paper, we present a new method that captures a fine-grained picture of risk aggregation over time via m
case prediction from longitudinal data in a holistic model. Unlike existing predictive and risk strati
techniques in biomedicine, typically based on single-period prediction, this allows the delineation 

 

has been 
xt. In this 
 multistep 
atification 
n of risk 
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trajectories and the quantification of relative predictor importance both across and within time periods. 
Accordingly, findings obtained from RiskPath can serve as a useful substrate for improved disease mitigation, 
enabling practitioners to identify, evaluate and set priorities for early intervention and prevention strategies. For 
example, targeting an intervention to a specific time period or lifestage or performing simulations on the risk 
mitigation profile of an intervention. RiskPath delivers performance that comfortably exceeds typical domain 
performance in one-step learning and notably achieves similarly strong and consistent performance in metrics 
that are usually more challenging in biomedical prediction such as PPV, sensitivity and specificity. For context, 
typical classification performance in one-step prediction in the mental health domain is 0.7-0.8 accuracy and 
AUC and in cardiovascular medicine is 0.65-0.81 AUC with very low (~≤0.15) precision and specificity. LSTMs 
and timeseries deep learning have very occasionally been used in biomedical risk prediction with tabular data 
but to our knowledge only as black box predictive models, where they exhibited more uneven performance and 
lacked the embedding and exposition of risk trajectories offered by RiskPath. 51,52   
 
RiskPath exploits the properties of LSTMs for temporal risk stratification but also delivers very strong 
performance. However, the latter is not attributable to an RNN-based structure per se but rather to its inbuilt 
topologic optimization. As we show, building similar topologic optimization into standard feedforwards using the 
same data as flattened, 2D inputs yields similarly strong performance. Recently, a rich literature has emerged 
on the topic of performance-complexity tradeoffs in machine learning, particularly with respect to deep learning. 
This shows that the empirically-observed strong performance of these methods is likely due to their 
participation in overparameterized learning regimes. Here, ‘double-descent’ is initially observed in the 
conventional bias-variance tradeoff zone (U-shaped test loss), but beyond the interpolation point where N = n, 
training loss continues to fall and test loss reverses itself to also descend to a performance level better than 
that of the nadir observed in the conventional learning regime. 50,53 Effectively, better performance is achieved 
via overparameterization, i.e. where N>n. However, pragmatic feature ablation has only been thinly explored in 
this literature. Mindful of the need for parsimony in clinical contexts, we add to this literature by demonstrating 
that using the tabular data common in biomedicine, the vast majority of features can be safely ablated in such 
overparameterized learning environments without unduly affecting performance. Moreover, this large-scale 
ablation may be performed without the need to train a model first if principled feature selection based on 
feature importance is conducted, as we offer in RiskPath. In the present study across multiple chronic mental 
health conditions, we show that >95% of input features may be ablated with only a ~2% absolute decrement in 
most performance statistics. The overall very strong performance of this topologically-optimized deep learning 
approach provides a buffer for feature ablation and maintains consistently strong performance statistics to 
promote clinical utility while achieving the parsimony required by pragmatic data collection concerns in the 
clinic.  
 
Since LSTMs are inherently complex algorithms, they consume more runtime resources. In the dataset used 
here, training time was ~25 minutes for RiskPath versus ~1 minute for feedforwards, an expected result. If a 
practitioner is interested in training a full RiskPath model in new data, this longer runtime makes the algorithm 
more suitable for intervention and prevention planning or for development into a temporally-sensitive risk 
stratification tool. Should very fast turnaround be required (for example, within a 20-30 minute clinic visit), we 
encourage pre-training a model that is implemented in later deployment. RiskPath is implemented in Python 
and PyTorch with a modular architecture to allow practitioners to select among its features. Future work may 
apply this method in other datasets to validate our findings and discern multistep risk trajectories in other 
diseases.  
 
Experimental Procedures 
 
Resource Availability 
 
Lead contact 
 
Further information and requests will be fulfilled by the lead contact, Nina de Lacy (nina.delacy@utah.edu) 
 
 
Data and code availability   
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ABCD data used in this study may be obtained by applying to the ABCD Repository at the National Institute of 
Mental Health Data Archive (https://nda.nih.gov/abcd): DOI: 10.15154/z563-zd24 
 
CHS data used in this study may be obtained by applying to the BioLINCC repository at the National Institutes 
of Health (https://biolincc.nhlbi.nih.gov/home/): Accession Number: HLB00040019a 
 
RiskPath is an open source code repository in Python and PyTorch that is available at our GitHub repository 
(https://github.com/delacylab/RiskPath). 
 
Data and Data Pre-Processing 
 
This study has been deemed not human subjects research by the University of Utah Institutional Review 
Board. 
 
ABCD Data 
The ABCD data used in this study comes from the ABCD open science repository. ABCD is an 
epidemiologically-informed study launched in 2017 which is collecting data over 10 years from a 21-site cohort 
of adolescents across the US. Participants (52% male; 48% female) were enrolled at age 9-10 and are 
currently 13-14 years old. This is a naturalistic, unstratified cohort. Further descriptions of the overall design as 
well as recruitment procedures and the participant sample may be found in Jernigan et al; Garavan et al; and 
Volkow et al54-56 and the study website at abcdstudy.org.  ABCD collects rich multimodal data youth participants 
and their parents. Here, we utilize variables from assessments of physical and mental health, substance use, 
neurocognition, school performance and quality, culture, community and environment contributed by youth and 
their parents as well as biospecimens (e.g. pubertal hormone levels) and environmental toxin exposure. 57,58 A 
fuller description of phenotypic assessments and variables that we analyzed may be inspected in 
Supplementary Table 1.  
 
ABCD is a longitudinal study where the cohort contains ~800 twin pairs and non-twin siblings may be enrolled.  
General inclusion criteria for the present study were a) participants enrolled in the study at baseline (9-10 yrs) 
who were still enrolled in the ABCD study through 13-14 yrs (n=10,093) who were b) youth participants 
unrelated to any other youth participant in the study (n=8,363). If a youth had sibling(s) present in the cohort, 
we selected the oldest sibling for inclusion.  Resultant data were randomly partitioned into a baseline training 
dataset (n=5,854) and test dataset (n=2,509). The pre-processing pipeline described below was then 
performed separately for these training and test data partitions.  
 
The baseline feature set comprised the majority of phenotypic variables available from the ABCD study, 
including data collection site, a proxy for geographic location. Variables related to mental health symptoms 
were not included as features to avoid bias and redundancy. For continuous features, subscale or total scores 
were used. Nominal or ordinal variables were one-hot encoded to transform them into discrete variables. 
Features with >35% missing values were discarded, where prior research shows that good results may be 
obtained with ML methods with imputation up to 50% missing data. 59 Continuous variables were trimmed to 
[mean +/- 3] standard deviations to remove outliers and scaled in the interval [0,1] with MinMaxScaler. Missing 
values were imputed within each time period of data using non-negative matrix factorization, an imputation 
method that is particularly suitable for large-scale multimodal data since it performs well regardless of the 
underlying pattern of missingness. 60-62 Subsequently, phenotypic variables lacking summary scores were 
reduced to a summary metric using feature agglomeration. Given the longitudinal nature of the data, it is 
possible that a participant is still enrolled in the study at 13-14 years of age but did not participate in 
assessment at certain ex ante timepoints. Such participants were identified and excluded after preprocessing, 
resulting in an average 4% and 5% of eliminations from training and test sets, respectively, across individual 
predictive targets. In total, feature sets included 767, 322, 572 and 403 features at timepoints 1 (enrollment); 2; 
3 and 4 respectively.  
 
Predictive targets were formed from participant scores in the ASEBA Child Behavior Checklist (CBCL), a 
standardized assessment of mental health in widespread clinical and research use. 63 Parents rate their child 
on a 0-1-2 scale on 118 specific problem items which are then used to form continuous subscale scores in 
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clinical dimensions of interest such as Anxiety or Depression. To form binary classification targets, we 
thresholded and discretized CBCL subscale T scores using cutpoints established by ASEBA for clinical 
practice by deeming every individual with a T score ≥ 65 as a ‘case’ or [1] and every individual with a score 
<65 as a ‘not case’ or [0] for Anxiety, Attention, Depression and a score ≥60 for Total Problems. Disruptive 
Behavior cases are established by meeting these case criteria for either Aggression or Rulebreaking, 
corresponding to the clinical definition of Disruptive Behavior Disorder. These cases were matched for age and 
gender with participants with the lowest possible scores in the subscale and for Total MI Problems to form a 
balanced case-control sample for each disorder. Age was separated into two categories for matching purposes 
(9-10 and 11-12) due to unevenly distributed ages in participants.  
 
CHS Data 
The CHS data that we used in this study come from NIH’s BioLINCC open science repository. The CHS study 
(https://chs-nhlbi.org/) was launched in 1987 to identify risk factors for cardiovascular disease related to 
coronary heart disease in adults aged 65 or older and the investigation of pulmonary disorders, diabetes, 
kidney disease, vascular dementia, and frailty. CHS collected data annually from 1989-1999 via extensive annual 
clinical examinations. Measurements included traditional risk factors such as blood pressure and lipids as well as 
measures of subclinical disease, including echocardiography of the heart, carotid ultrasound, and cranial magnetic-
resonance imaging (MRI). This is an observational cohort. Further descriptions of the overall design as well as 
recruitment procedures and the participant sample may be found in Fried et al. 64 Participants were contacted by 
phone to ascertain their health status every 6 months. Clinical outcomes were recorded in a binary fashion and 
included coronary heart disease, angina, heart failure, stroke, transient ischemic attack, claudication, diabetes and 
hypertension. Here, we utilize variables collected from patients spanning laboratory assays (e.g. thyroid hormone, 
glucost and lipid levels), health, medication and mental health history, behavioral, diet, exercise and health habits 
and clinical testing (e.g. blood pressure, heart auscultation, brain imaging). The number (>4,000) of variables 
collected by CHS preclude enumeration variables used in this study may be viewed via the CHS data dictionary at 
https://biolincc.nhlbi.nih.gov/media/studies/chs/data_dictionary/CHS_v2019a.pdf. In total, resultant baseline 
feature sets included 1523; 581; 589; 734; 841; 639; 589; 710; 598; and 891 features at timepoints 1 through 
10 respectively. 
 
Inclusion criteria for the present study are participants who were enrolled and remained alive in the CHS study 
for 10 years. This comprised a total of 3,215 participants. Resultant data were randomly partitioned into a 
baseline training dataset (n=2,250) and test dataset (n=965). Of these, 1000 participants in the training set and 
776 in the test set were matched for age and natal sex. The same pre-processing pipeline described for ABCD 
above was then performed separately for these training and test data partitions. Participants who were still 
enrolled in the study in the tenth year but who did not participate in assessment at certain ex ante timepoints 
were identified and excluded after preprocessing, resulting in an average 4% and 5.6% of eliminations from 
training and test sets, respectively.  
 
The predictive target in CHS is supplied in the original data as a clinical variable where original data had 
1=Normal; 2=Borderline; 3=Hypertension. We omitted Borderline subjects and then relabeled subjects that had 
Hypertension as 1 and Normal subjects as 0. 
 
RiskPath: Tunable linear and nonlinear feature selection to constrain feature set sizes 
 
A basic filtering process was first performed for each target where features with <5% variance with each target 
were discarded. Subsequently, feature selection was performed within RiskPath, which currently offers the 
options of the LASSO CV (linear) or Boruta (nonlinear) techniques and a combination of both methods (union 
of linear + nonlinear).  RiskPath implements the scikit-learn LASSO CV and BorutaPy packages within Python 
wrappers to a) adapt these methods for timeseries data and b) give users explicit control of settings that 
constrain the number of features obtained by each technique. This provides principled linear and nonlinear 
method for feature selection in timeseries data determined by feature importance to control the size of the 
feature set and obtain the parsimony often required in biomedical prediction. In the present study, linear, 
nonlinear and linear+nonlinear feature sets were generated for each experiment and performance compared 
across these feature sets.  
 
The LASSO CV is a gold standard linear feature selection technique for ML that identifies a set of linear 
coefficients minimizing the Mean Squared Error (MSE) of the prediction under L1-regularization. The key 
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hyperparameter in the LASSO algorithm is the alpha, which controls the amount of L1 penalization. LASSO CV 
has built-in cross-validation capability that supports choosing a setting for the alpha using a grid search along 
the regularization path computed from the input data. In RiskPath, the LASSO CV subroutine is adapted for 
timeseries data to separately perform feature selection at each timepoint and the union of features across 
timepoints is then obtained to determine an overall linear feature set for each target and experiment.  RiskPath 
users are offered the additional option of thresholding coefficients output by the LASSO CV to further constrain 
the size of feature sets as may be required in translational or clinical use cases. In this study we provide 
examples of these options. Our baseline analyses left results unthresholded where linear models reported 
accepted all features with a non-zero coefficient and results from these larger feature sets may be seen in 
Supplementary Table 2.  However, a user is also offered the option of imposing a non-zero threshold on 
coefficients to futher reduce the number of features selected.  
 
The Boruta65 is an ensemble-based technique that is a gold standard nonlinear method for predictive feature 
selection. Constructed around a random forest algorithm, it compares real features with their ‘shadow copies’ 
(real features with values shuffled) such that a feature is important only when it has an importance score higher 
than the maximal importance score in the set of shadow features i.e. if it has a significantly higher importance 
over N random forest runs than the expected value 0.5N (as defined by a binomial distribution with p = 0.5). 
Significance is measured by multiple hypothesis testing. The RiskPath implementation of the Boruta offers 
several adaptations tailored for analysis of timeseries data. Firstly, the RiskPath Boruta subroutine is 
separately performed at each timepoint to generate timepoint-specific feature sets and then the union of 
features across timepoints is obtained to determine an overall nonlinear feature set for the experiment. 
Secondly,  RiskPath offers users the ability to control two tunable hyperparameters that determine whether a 
feature is deemed important in practice and thereby control the size of the feature set obtained. The first 
tunable hyperparamter, level of significance (alpha_b), can be adjusted to expand or shrink the rejection region 
and concomitantly the size of the feature set. The second tunable hyperparameter, the percentile (perc), may 
be controlled such that each real feature is compared to a specific percentile of the importance scores of the 
shadow feature set (instead of the maximal case where perc=100). Intuitively, setting a higher alpha_b or a 
lower perc will return a larger number of important features at a higher risk of type-1 error.  In the present 
study, we implemented Boruta nonlinear selection with default hyperparameter settings and a maximum tree 
depth of 7. The results of this selection may be seen in Supplementary Table 3.  
 
Baseline feature sets produced by combining the results of linear+nonlinear feature selection with the LASSO 
CV and Boruta may be seen in Supplementary Table 4.  
 
 
RiskPath: Multistep deep learning with topologic optimization 
 
LSTMs in RiskPath are trained with two bidirectional layers and the tanh activation function followed by a 
softmax function. Input hidden weights are initialized with the Xavier uniform distribution and hidden-hidden 
weights with orthogonal matrices. In the present study the AdamW optimizer is used with weight decay=0.1, 
learning rate=1*10-5 and models were trained for a maximum of 150 epochs with early stopping (patience=5 
and metric=validation loss). RiskPath allows these settings to be modified by the practitioner for local heuristics 
or experimental preferences.  
 
RiskPath offers practitioners an automated option to optimize over the number of hidden units (network width) 
where this refers to the units per individual layer (forward layer and backward layer) in each bidirectional layer. 
Users may specify a minimum and maximum number of hidden units where RiskPath’s default behavior is to 
subsequently present a series of corresponding model fits that increment hidden units by 5 in the range [5,100] 
and increments of 20 in the range [100, h] hidden units. This allows the practitioner to explore performance-
complexity tradeoffs or to constrain complexity for runtime speed or infrastructural limitations. In the present 
study, all experiments were performed with h in the range [5, 1200] and results compared. In each experiment, 
the best-performing model in terms of accuracy was selected for reporting.  
 
The LSTM algorithm in RiskPath is modified in a number of ways to render it suitable for analyzing longitudinal 
biomedical data and delineating cumulative risk pathways. Firstly, SHAP is embedded within the algorithm to 
render the LSTMs translationally explainable using the GradientShap function for 3D data. In RiskPath, SHAP-
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based feature importances are computed in the validation sets of the k-fold process with the training set used 
as background for every permutation of participant, time period and feature. Three types of importances are 
thereby computed and returned: mean importance over the participant sample; per time period importance 
score for each feature and an overall feature importance for each feature averaged over time periods. This 
enables users to compute and examine not only the mean SHAP value over the participant sample that is 
conventionally reported in the machine learning literature, but also to expose relative feature importance within 
and across timepoints. Secondly, LSTMs expect square data in a 3D matrix. However, it is common in 
biomedical protocols or datasets that a particular feature was only collected in a subset of timepoints, or that it 
was not selected during the feature selection process at a particular timepoint. The latter can reflect the 
scientifically important condition where a predictor is selectively important at different points in a disease 
course or lifestage. RiskPath users may select all timepoints in longitudinal data or specific timepoints and in 
the present analysis, we used all available timepoints in the ABCD dataset.  To ensure that square data enters 
the timeseries prediction, RiskPath automatically completes the 3D matrix for the user, filling values that are 
not available with a 1. Thirdly, the user may want to compare 2D vs 3D data within the algorithm as we have 
done in the present study and RiskPath gives the option to use either timeseries or flattened data.  Lastly, the 
practitioner may select the number of GPUs to run the program: RiskPath parallelizes over unit sizes. RiskPath 
is developed in PyTorch and Python.  
 
Deep learning with Feedforwards 
We trained standard feedforwards with 3 layers and the Relu activation function. The last output layer 
contained a softmax function. AdamW was used as the optimizer with weight decay 0.1, learning rate 1 * 10-5, 
training for a maximum of 150 epochs with early stopping (patience=5 and metric=validation loss). All models 
were trained with k fold cross-validation where k = 10.  To recapitulate the topologic optimization offered in 
RiskPath and ensure head-to-head comparisons, feedforward models in each experiment were re-trained and 
tested with the number of hidden units (width) varying in the interval [5,1200]. Feedforwards were encoded with 
PyTorch. 
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