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Gaining knowledge of the neoplastic side of the three main cells—B cells, Follicular Helper
T (Tfh) cells, and follicular dendritic cells (FDCs) —involved in the germinal center (GC)
reaction can shed light toward further understanding the microuniverse that is the GC,
opening the possibility of better treatments. This paper gives a review of the more complex
underlying mechanisms involved in the malignant transformations that take place in the
GC. Whilst our understanding of the biology of the GC-related B cell lymphomas has
increased—this is not reviewed in detail here—the dark side involving neoplasms of Tfh
cells and FDCs are poorly studied, in great part, due to their low incidence. The aggressive
behavior of Tfh lymphomas and the metastatic potential of FDCs sarcomas make them
clinically relevant, merit further attention and are the main focus of this review. Tfh cells and
FDCsmalignancies can often be misdiagnosed. The better understanding of these entities
linked to their molecular and genetic characterization will lead to prediction of high-risk
patients, better diagnosis, prognosis, and treatments based on molecular profiles.

Keywords: peripheral T-cell lymphomas, angioimmunoblastic T cell lymphoma, follicular T-cell lymphoma, follicular
dendritic cell sarcomas, follicular lymphoma, Burkitt lymphoma, diffuse large B cell lymphoma
INTRODUCTION

The germinal center (GC), a specialized microstructure with a high rate of cell division, is the site
where antigen-driven somatic hypermutation (SHM) occurs (1, 2), a process that ultimately will
produce high-affinity antibodies during adaptive immune responses (3). Over weeks, memory B
cells and high-affinity antibody producing plasma cells will generate from GCs, which are necessary
to protect against invading microorganisms (4). However, the more potent the immune response,
the greater the risk of autoreactivity or malignancy. This is particularly relevant for the GC, where B
cells may have an unfavorable outcome driving to lymphomagenesis. Importantly, most of B−cell
lymphomas originate from GC B cells (5–7).
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To succeed during GC reactions, B cells need the help of other
crucial cells, such as Follicular Helper T (Tfh) cells and follicular
dendritic cells (FDCs). Here, we focus on one dark side of GCs:
malignancies derived from their aforementioned three players,
B-cells, Tfh cells, and FDCs (Figure 1), with greater emphasis on
Tfh lymphomas and FDC sarcomas (Table 1).
THE GERMINAL CENTER

GCs arise from proliferating B cells in the follicles of peripheral
lymphoid tissues during T cell-dependent antibody responses.
Naïve B cells encountering their antigen migrate to the T-B
border, where they become fully activated during interaction
with cognate CD4+ T cells (3, 4, 8–12). The engagement of CD40
by CD40L (CD154) represents the major component of the T cell
help. Activated B cells can then either differentiate rapidly into
antibody-secreting plasma cells in specialized extra-follicular
niches or mature their affinity for the antigen into GC
reactions, a microstructure of B cells, in a high-rate of cell
division, Tfh cells and a network of FDCs (3, 13, 14). There, B
cells begin to proliferate rapidly giving rise to the distinctive
structure of the GC: a dark zone (DZ) of centroblast proliferating
B cells and a light zone (LZ) with higher frequencies of smaller,
Frontiers in Oncology | www.frontiersin.org 2
non-dividing centrocytes. GC DZ B cells undergo SHM, and
those cells that improved the affinity for the antigen are selected
in the LZ to eventually differentiate into memory B cells or
plasma cells (3, 4, 15, 16).
THE DARK SIDE OF GC B CELLS

The GC response, beneficial for the host during immune
responses against invading pathogens, may have a detrimental
role, the development of malignancies. B cells inside GC
reactions are mutating at much higher rates than in any other
site in the body (17), these mutations might turn B cells into a
dark side, B cell lymphomas. Except the relatively rare
lymphoblastic and mantle-cell lymphoma subtypes, B cell non-
Hodgkin lymphomas (B−NHLs)—including diffuse large B cell
lymphoma (DLBCL), follicular lymphoma (FL) and Burkitt
lymphoma (BL)—are derived from GC B cells. This can be
demonstrated by the presence of SHM in the immunoglobulin
genes, together with histological, immunophenotypic, and gene
expression characteristics (5, 18–23).

Our understanding of the molecular mechanisms driving GC
lymphomas has increased due to next-generation sequencing
(24). Gene translocations targeting MYC, BCL2 and BCL6, as
FIGURE 1 | Germinal Center-derived malignancies’ players. The GC (1) is the site for B cell affinity maturation for the antigen through somatic hypermutation (in the
DZ) and for antigen-driven selection of B cells which have improved their affinity (in the LZ). To success the reaction, the help from Tfh cells is fundamental, as well
as, the presence of the antigen on iccosomes on FDCs. Eventually, GC B cells will differentiate to PCs or MBCs. However, the GC response may have a detrimental
role, the development of malignancies from their three main players: B-cells, Tfh cells and FDCs. Follicular lymphoma cells (2) derive from follicles partly resembling
normal GCs and depend on Tfh cells and FDCs to survive, while Tfh cells provide a high production of IL-4 and CD40L, FDCs provide a scaffold attracting FL cells
and Tfh cells around them. (3) Infiltration of different immune cells and the proliferation of FDCs and HEV in AITL are probably caused by a stimulatory niche,
secreting IL-21, IL-4 or/and IL-6, CXLC13 and VEGF, promoting a loop of Tfh cell generation and FDCs growth. (4) Tfh and Treg cells seem to be enriched in FDC
sarcomas with high levels of PD-1 and its ligands PD-L1 and PD-L2 and the B/T cells mixed with the neoplastic population, altogether supporting the neoplastic
niche and the evasion of effector immune cells. See text for further details.
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well as the disruption of the epigenome, predominantly driven by
somatic mutations within KMT2D, CREBBP, EZH2, and linker
histones, have been well-established (25–29). The molecular and
genetic characterization of these diseases will lead to prediction
of high-risk patients and treatments based on molecular
profiles (24).
Frontiers in Oncology | www.frontiersin.org 3
DIFFUSE LARGE B CELL LYMPHOMA

DLBCL and FL are the two most common forms of GC NHLs.
With a greater degree of genetic heterogeneity than FL, DLBCL
can be divided into at least two major subtypes: GC B cell (GCB)-
like and activated B cell (ABC)-like DLBCL (24, 25, 30). Whole
TABLE 1 | Lymphomas of Follicular Helper T (Tfh) cells and sarcomas of follicular dendritic cells (FDCs).

Incidence
and OS

Clinical features Morphology Immunophenotype Genetic profile Treatment

Malignancies of Tfh cells origin
AITL 15-30% of

non-
cutaneous T-
cell
lymphomas
and 1-2%
of all non-
Hodgkin
lymphomas.
Poor
prognosis
overall.
Median
survival < 3
years.

Systemic symptoms,
lymphadenopathy,
hepatosplenomegaly, polyclonal
hypergammaglobulinemia. Frequent
skin rash. Hemolytic anemia, pleural
effusion, arthritis, and ascites are
also common.

Polymorphous
infiltrate with small- to
medium-size
neoplastic cells.
-Pattern 1.
Neoplastic cells
surrounding follicles.
Pattern 2. Neoplastic
cells in the expanded
paracortex. Pattern
3. Diffuse with nearly
total LN architecture
altered.
Expanded FDCs
meshworks.
Prominent vascularity.

Pan-T cell markers (CD2,
CD3, and CD5) with Tfh cell
markers: CD4, CD10,
CXCL13, ICOS, BCL6, PD1
(60-100% of cases).

Trisomies of
chromosomes 3, 5, and
21; gain of X; and loss of
6q (90% cases).
Mutations of IDH2 (20-
30%), TET2 (50―80%),
and DNMT3A
(20―30%), RHOA
(60―70%).

Multiagent
chemotherapy
regimen,
CHOP.
Steroids.
Stem cell
transplantation.

FTCL Unknow
incidence,
accounts for <
1% of all T cell
neoplasms.
Aggressive
course. OS
not well
characterized.
50% patients
dye within 24
months of
diagnosis.

See AITL clinical symptoms. Reports
of few patients with localized disease
and/or no B cell- related symptoms.

Monotonous lymphoid
cells with abundant
pale cytoplasm and
round nuclei. Nodular/
follicular proliferation.
Pattern 1. GC-like
growth. Pattern 2.
nodular FL-like
growth. No expanded
FDCs meshworks nor
HEV proliferation.

Tfh cell markers. See above. t(5;9) (q33;q22) (ITK/SYK)
(20% cases). TET2, RHOA
and DNMT3A mutations
(75, 60 and 25% of
cases, respectively. Not
largely studied).

See AITL.

Nodal
PTCL with
Tfh cell
phenotype

————– Overlaps with AITL. Diffuse infiltration
without vascular
proliferation or
expansion of FDCs
meshwork.

CD4+ T cells with two
(preferred three) Tfh cell
markers.

Mutations shared with
AITL

See AITL.

Malignancies of FDCs
FDC
sarcoma

Unknow. Rare
disorder.
Constitutes
<0.4% of soft
tissue
sarcomas.
2-year survival
rates:
Early disease:
82%
Local
advanced
disease: 80%
Distant
metastatic:
42%

Systemic symptoms are uncommon.
Often large tumors (mean size of
7cm). Painless, slow-growing mass
lesion.

Spindled to ovoid
cells forming different
patterns (storiform
arrays, fascicles,
whorls, diffuse sheets,
or vague nodules).

One or more FDCs markers:
CD21, CD23, CD35.
CXCL13 and podoplanin (not
specific). Clusterin (strongly
positive). FDCSP, serglycin
(SRGN) and PD-L1.

Limited studies. BRAF
V600E mutation (0-19%
of cases). Alterations in
tumor suppressor genes.

Complete
surgical
excision. No
clear benefit of
radiotherapy
and
chemotherapy.
January 2021 | Volume 10
AITL, angioimmunoblastic T cell lymphoma; LN, Lymph node; FDCs, Follicular Dendritic cells; Tfh, T follicular helper; FTCL, Follicular T cell lymphoma; GC, germinal center; FL, Follicular
lymphoma; PTCL, peripheral T cell lymphoma. CHOP; cyclophosphamide, doxorubicin (or hydroxydaunorubicin), vincristine (also known as Oncovin®) and prednisolone.
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exome sequencing has allowed the study of recurrent mutations
and the characterization of new genetic DLBCL subtypes. A
recent study identified five genomic clusters based on the
enriched genetic feature of each group (31). MYD88 cluster
[with MYD88 (L265P), PIM1, CD79B and ETV6 mutations]
were strongly associated with ABC subtype. Three clusters were
associated to GCB subtype (BCL2, SOCS1/SGK1, and TET2/
SGK1). The BCL2 cluster showed mutations of EZH2, BCL2,
CREBBP, TNFRSF14, KMT2D, and MEF2B. The SOCS1/SGK1
cluster with mutations in SOCS1, CD83, SGK1, NFKBIA,
HIST1H1E, and STAT3; and the TET2/SGK1 cluster
characterized by mutations including TET2, SGK1, KLHL6,
ZFP36L1, BRAF, MAP2K1, and KRAS. A NOTCH2 cluster
with mutations on NOTCH2, BCL10, TNFAIP3, CCND3,
SPEN, TMEM30A FAS, and CD70 showed a mixture of ABC,
GCB and unclassified DLBCL. This study correlated with two
recent studies classifying the disease (32, 33). Importantly,
patient outcome was evaluated with the worst prognosis in the
MYD88 group (42% 5-year overall survival, OS). Patients within
the GCB-associated clusters had better 5-year OS (> 60%) while
NOTCH2 cluster had intermediate survival (53.6% 5-year OS).
Patient outcome correlated with previous studies (24, 34–38).
FOLLICULAR LYMPHOMA

FL is the most frequent indolent and incurable NHL. Over time FL
may progress to DLBCL, with a more aggressive clinical course
requiring more aggressive treatment (39, 40). Malignant cells
morphologically resemble the two B cell subsets found in reactive
GCs (centrocytes and centroblasts). Low-grade FL cases (grade 1–2)
contain <15 centroblasts per high-power microscopic field (40 x
objective, 0.159 mm2) while grade 3 contains >15 centroblasts,
evaluated in 10 different follicles. Grade 3 FL is further separated in
3A with a background of centrocytes present or grade 3B with
follicles composed entirely of centroblasts. A diffuse pattern of 3B
grade cells is compatible with DLBCL diagnosis (41, 42). The
molecular pathogenesis of FL includes the high recurrence of two
mutations: chromosomal translocations that lead to the ectopic
expression of BCL2 and somatic mutations in the histone
methyltransferase MLL2 (also known as KMT2D) (43). Also,
histone modifiers such as EZH2, CREBBP and EP300 are
frequently altered in FL (44–46). While BCL2 translocation is
thought to occur in B-cell precursors in the bone marrow, the
translocation is found also in healthy humans (40%) (47). This
supports the hypothesis that the translocation is necessary, but not
sufficient for FL and probably lymphomagenesis is consequence of
antigen stimulation (48, 49).

FL derives from follicles partly resembling normal GCs, with
the FL cells depending on Tfh cells and FDCs. While Tfh cells
provide a high production of IL-4 and CD40L as survival factors
of FL cells, FDCs provide a scaffold attracting FL cells and Tfh
cells around them. FDCs also contributes with a positive
feedback through the overexpression of stromal cell-derived
factors, supporting the abnormal production of IL-4 (50, 51).
Frontiers in Oncology | www.frontiersin.org 4
BURKITT LYMPHOMA

BL is a highly aggressive NHL associated with Epstein-Barr virus
(EBV), human immunodeficiency virus (HIV) or Plasmodium
infection. Three clinical variants of BL are recognized: endemic
BL, sporadic BL and immunodeficiency-associated BL. Whilst
EBV and Plasmodium are associated to endemic and sporadic
BL, HIV is associated to the immunodeficiency-related variant
(52, 53). BL derives from DZ GC B cells, as indicated by its
genetic profile (20, 23, 54). Although the potential pathological
role of EBV in BL it is still controversial, the virus is present in all
BL cases. Aberrant expression of MYC and the BCR-induced
PI3K signalling pathway activation are genetic alterations that
are common in BL (23, 55, 56).
FOLLICULAR HELPER T CELLS

Fundamental studies by Mitchison in the 1970’s established the
essential role of T helper cells in antibody responses. Hapten-
protein carrier conjugates revealed that carrier-specific T cells
were necessary for the maturation of hapten-specific B cells [(57)
and reviewed in Ref (10)]. Then, it was described that this help
from T cells consisted in co-stimulatory signals through CD40
ligand (CD40L) to B cells leading them to proliferate,
differentiate, and antibody class-switching (10, 58). T cells in
the T-B border that have undergone T-B interactions can
migrate inside the follicles as Tfh cells, afterwards making
cognate interactions with GC B cells within the GC reaction. T
cell help into GCs are needed to maintain the reaction (59–63).

At present, a combination of markers is needed to identify
Tfh cells as a distinct population. Tfh cells differentiate from the
classical CD4+ T cell subpopulation and share plastic
characteristics with other CD4+ helper T cells until they
engaged in GC reactions. Inside GCs, the expression of
typically described Tfh cells associated-molecules—CXCR5,
PD-1, BCL6, BTLA4, ICOS (inducible T cell costimulator) and
SAP—is upregulated whilst CD127, PSGL1, and EBI2 are
downregulated (64–66). When these molecules are low-
intermediate expressed, particularly CXCR5, PD-1, ICOS and
SAP, define stage known as pre-GC Tfh cells (10, 66–69).
FOLLICULAR HELPER T CELLS IN
MALIGNANCY

Peripheral T-cell lymphomas (PTCLs) are generally described as
diverse and aggressive malignancies with unfavorable therapeutic
outcomes (70). Nodal T-cell lymphomas with Tfh-cell phenotype
are classified into three diseases: angioimmunoblastic T cell
lymphoma (AITL), follicular T-cell lymphoma (FTCL) and nodal
PTCL with Tfh cell phenotype. AITL is an aggressive rare tumor
with a 5-year survival of only 33%, first described as a distinct clinic-
pathologic entity in the 1970s and is the best well-established
subtype of mature PTCL (71, 72). The tumors contain neoplastic
January 2021 | Volume 10 | Article 587809
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Tfh cells expressing BCL-6, CD10, CXCL13, PD-1, ICOS, SAP, and
CXCR5 (10, 73–75). TET2, DNMT3A and IDH2 mutations have
been detected in about 80% (76–78), 20–30% (76, 79, 80), and 20–
30% of the cases (81), respectively. The mechanism of action
described for these molecules is by dysregulating DNA
methylation (70). A missense mutation in RHOA GTPase is
detected in 50–70% AITL patients (77, 78, 82, 83). It has been
described that some primary cutaneous T cell lymphomas also
originate from neoplastic cells that express Tfh cells markers, and
can also induce the typical rosettes found in AITL (84).

Representative clinical symptoms of AITL are generalized
lymphadenopathy, hepatosplenomegaly, fever, effusion/ascites
and skin rash. The incidence is low without sex predilection,
affecting advanced-age individuals (median age of diagnosis 65
years) (72). Characteristically, lymph nodes acquire an effaced
architecture, with only a few benign follicles been retained. A
typical feature is to find infiltration beyond the capsule of the
lymph node, with a preserved but enlarged subcapsular sinus;
also high endothelial venules (HEV) and FDCs proliferate (71).
Infiltration of other cells include: B cells, plasma cells,
eosinophils, histiocytes and epithelioid cells. Active EBV
infection can be found in most large B cells, whilst the
malignant Tfh cells do not (72).

Cytological diagnosis of AITL is usually difficult and both
reactive and lymphomatous processes need to be discarded.
Combination of conventional cytology, immunocytochemistry
and flow cytometry is needed to make an accurate diagnosis (85).

AITL, a lymphoma with poor prognosis, is often refractory to
chemotherapy or relapses. Due to the unfavorable outcomes for
PTCL patients treated with chemotherapy alone, autologous
stem cell transplantation (SCT), as a consolidation treatment
for first-line therapy or salvage therapy for relapse/refractory
PTCL patients, may be an option. On the other hand, some
relapse/refractory AITL patients may benefit from allogenic-
SCT, presumably because of graft-versus lymphoma effects (74).

FTCL presents clinical and immunophenotype features of
AITL but differs histologically. Two patterns have been
described, one shows a GC-like growth with IgD+ B cells
surrounding the neoplastic cells and the second resembles a
FL-like pattern with malignant cells forming nodules. Another
difference with AITL is the absence of proliferation of HEVs and
FDCs (86).

While TET2, RHOA and DNMT3A mutations have been
shown in both, AITL and FTCL, there is no evidence of IDH2
mutation in FTCL (87). Also, 20% of cases show a t(5;9) (q33;
q22) (ITK/SYK) translocation but studies are limited (88).

The study and characterization of normal Tfh cells
phenotyping led to the recognition and classification of
previously diagnosed PTCLs-NOS (Not otherwise specified) to
Nodal PTCLs with Tfh cell phenotype (84). While clinical,
phenotypic, pathological, and genetic features overlap with
AITL, further research is needed to include this neoplasm
within the spectrum of one entity. Differences with AITL
include the absence of expansion of HEVs and FDCs while
histological differences from FTCL are due to the diffuse pattern
of Nodal PTCLs with Tfh cell phenotype (86, 89).
Frontiers in Oncology | www.frontiersin.org 5
TFH LYMPHOMAS AND THE
INTERACTION WITH THEIR NICHES

The interaction of neoplastic Tfh cells and their niches has not
been extensively studied. The reported infiltration of different
immune cells and the proliferation of FDCs and HEV in AITL
are probably caused by a stimulatory niche but the underlying
mechanisms are still unknown. Some signals present in a normal
counterpart niche like IL-21, IL-4, or/and IL-6 are over-
expressed in AITL creating a loop of Tfh cell generation and
FDCs growth (84, 90, 91). Also, this microenvironment could
explain in part the depletion of Treg cells in AITL, an important
population for suppressing Tfh cells in immune responses (92).
Regulatory CAR T cells therapy might be a potential treatment to
re-establish a favorable microenvironment.

Although neoplastic cells in FTCL show a GC- or follicle-
growth pattern, the low incidence of this malignancy has made
difficult the in-depth study of their interaction with resident cells.
Understanding the crosstalk between neoplastic cells and their
niche would definitely potentiate the development of more
rationale treatments.
FOLLICULAR DENDRITIC CELLS:
ORIGIN AND FUNCTION

Originally discovered by Alexander Maximow and subsequently
termed FDCs by Steinman et al. in 1978, FDCs are critical
participants in the GC reaction (93–96).

FDCs are stromal cells residing exclusively in B cell follicles,
where they play a key role supporting B cell homeostasis and
maintaining the follicular architecture. They are essential
promoting robust humoral immune responses through the
retention of antigens within immune complexes (ICs) over
long periods. For this, FDCs express complement receptors
(CRs)-1 and -2 and can be induced to express Fc-gamma
receptor (FcyR) IIb (93, 97). Lymphoid organs lacking B cells
or tumor necrosis factor (TNF) or lymphotoxin (LT) are devoid
of FDCs (98–100). Mice lacking stromal CR1 and CR2 have
reduced T-dependent antibody responses (93, 98, 101). ICs are
released in FDCs-derived iccosomes, then cognate GC B cells can
acquire antigen and present it to Tfh cells. FDCs also support the
proliferation of GC B cells enhancing antibody production
(93, 98).

FDCs are a subset very different from conventional DCs (cDCs).
FDCs originate from stromal cells: it has been shown that in the
spleen, FDCs come from vascular mural cells but in the lymph
nodes, FDCs come frommarginal reticular cells (MRCs) (102, 103).
Nowadays, it is suggested that different stromal cells of secondary
lymphoid organs—including FDCs andMRCs—are generated from
one and the same precursor (93).

Functionally, whereas cDCs activate naïve T cells by presentation
of processed antigens via major histocompatibility complex
(MHC) molecules, FDCs show unprocessed antigens, trapped
in ICs, to GC B cells. In addition, FDCs secrete the signalling
molecule Mfge8 which has been shown to be essential in
January 2021 | Volume 10 | Article 587809
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controlling the removal of apoptotic GC B cells. It has been
suggested that FDC-mediated phagocytosis of apoptotic GC B
cells might play an important role in avoiding autoimmunity (93).
FOLLICULAR DENDRITIC CELLS
TURNING TO THE DARK SIDE:
FDC SARCOMA

Termed FDC sarcomas, the first reported cases of tumors derived
from FDCs occurred in cervical lymph nodes. FDC sarcoma is
classified as a distinct entity by the World Health Organization
(WHO) under histiocytic and DC neoplasms Classification of
Tumours. It is described as a neoplastic proliferation of spindled
to ovoid cells with morphologic and immunophenotypic
characteristics similar to those of normal FDCs. Despite the fact
that their histopathological, morphological and clinical features
have been described relatively in detail, their clinical course is
unpredictable and no specific treatment is available (95, 104).

While FDC sarcomas do not have gender predilection, it mainly
occurs during adulthood (median age in the fifth decade). Interestingly,
a very rare and distinct variant of FDC sarcoma consistently associated
with the EBV, termed inflammatory pseudotumor-like variant of FDC
sarcoma, is more prevalent in females. Approximately 10–20% of FDC
sarcoma cases have presented or concur with Castleman disease, a rare
and non-malignant lymphoproliferative disorder, typically the hyaline
vascular variant (104).

We now know also that FDC sarcomas can involve any
anatomical area besides nodal sites. FDC sarcomas generally
appear as a slow growing mass, an asymptomatic and painless
cervical lymphadenopathy (95, 104, 105). Nearly a third of FDC
sarcoma cases arise in extranodal sites: tonsils, skin, mediastinum,
gastrointestinal tract and soft tissue (104, 106, 107). Furthermore, it
seems there is an association between FDC sarcoma and the
autoimmune diseases, paraneoplastic pemphigus and myasthenia
gravis (104, 108–111).

Histopathology and cytomorphology of FDC sarcomas are
characteristic, however their identification may be difficult and
additional confirmation with immunohistochemical studies is
frequently necessary. FDC sarcomas generally present the
immunophenotype of normal FDCs, being positive for: CD21
(CR2), CD23 (Fc epsilon RII) and CD35 (CR1) (104, 112, 113).
Clusterin and podoplanin are other molecules shown to have high
sensitivity for FDC sarcomas (114–116). Clusterin shows strong
positivity with weak to no expression in other DC tumors (114).

Especially when arising from extranodal sites, FDC sarcoma
can often be misdiagnosed (106, 117). Then, differential
diagnosis is needed, including interdigitating DC sarcoma,
thymoma, spindle cell carcinoma, metastatic undifferentiated
carcinomas, malignant melanoma and gastrointestinal stromal
tumor (GIST) (104).

Clinical courses of FDC sarcomas are not consistent and
consequently, treatment schemes are variable. Complete surgical
resection seems to be the treatment of choice for both primary
and recurrent lesions, with unclear benefits from radiation and
chemical therapies (111, 118).
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FDC SARCOMA AND ITS INTERACTION
WITH LYMPHOCYTES

Being a very uncommon neoplasm, the in-depth study of FDC
sarcomas have been difficult and almost neglected. Although it has
been described an enrichment of Tfh and Treg cells in FDC
sarcomas compared to other mesenchymal tumors (119), the
interaction of malignant FDCs with other lymphocytes and other
resident cells has not yet been studied. High levels of PD-1 and its
ligands PD-L1 and PD-L2 (119) and the B/T cells mixed with the
neoplastic population (120, 121) could point to a feedback from
these lymphocytes to support the neoplastic niche and the evasion
of effector immune cells.

CONCLUDING REMARKS

As discussed in this review, although lymphomas from GC B
cells are explored in more detail and better understood, Tfh
lymphomas and FDCs sarcomas need more attention.

Tfh lymphomas diagnosis is challenging, requiring multimodality
methods including conventional cytology, immunohistochemistry,
and flow cytometry. Usually with a poor prognosis, treatments need
to be combined, frequently with unfavorable outcomes.

On the other hand, FDC sarcomas can often be misdiagnosed
and differential diagnoses are needed. With variable clinical
courses and unspecific and heterogeneous treatment at present,
surgical resection is the treatment of choice.

Greater knowledge of the normal GC microuniverse will
undoubtedly provide insights on its neoplastic side, allowing us
better diagnosis, treatment, prognosis, and monitoring, the better
to improve the quality of life of patients.

IN MEMORIAM

Dedicated to the memory of LF-R, a brilliant Mexican
immunologist who inspired many generations of scientists
through his passion. His legacy will last forever.
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