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Introduction

The Global Malaria Eradication Pro-

gram, launched in the middle of the last

century, over-promised and under-deliv-

ered [1]. Decades of pessimism followed,

during which malariologists were afraid to

even mention the goal of this program by

name [2]. The term eradication was often

nervously referred to as ‘‘the E-word’’ by a

disillusioned community that had learned

from bitter experience that optimistic

forecasts [3] had been based on an

oversimplified view of transmission ecolo-

gy [4]. Eradication of malaria remains

beyond our grasp today, but is neverthe-

less firmly back on the global health

agenda as a long-term target [5].

Ecological Obstacles to
Eradication with Existing
Interventions

By definition, eradication of human

malaria parasites globally [5] requires that

intervention options are available that can

eliminate transmission anywhere in the

world. Leading vector control technologies

such as insecticide-treated nets (ITNs) and

indoor residual spraying (IRS) can sup-

press transmission by one or even two

orders of magnitude [4,6] and dramatical-

ly alleviate disease burden [7,8]. Never-

theless, these measures alone are not

sufficient to eliminate transmission in large

tracts of tropical Africa where the ento-

mological inoculation rate (EIR), the most

direct measure of human exposure, can

exceed a thousand infectious bites per

person per year [9,10]. Expressed in terms

of the parasite’s reproductive number, this

means that if the local parasite population

were entirely eliminated by mass drug

administration, for example, a single

infected person moving into the area could

give rise to as many as ten thousand new

infections and readily re-establish stable

transmission [10]. Under such conditions,

simulations predict that even 100% cov-

erage of an entire population with ITNs

exhibiting near-ideal properties will fail to

push the EIR below the threshold required

for local elimination [11]. Although mas-

sive benefits of increasing ITN and IRS

coverage have been achieved in many

parts of equatorial Africa, elimination has

remained elusive except for regions on the

edge of stable transmission in Kenya,

Tanzania and The Gambia (e.g. [12–14]).

Evidence from the previous malaria erad-

ication drive [4,15] and contemporary

initiatives [8,16,17] indicate that transmis-

sion remains robust in areas where it has

been historically high. We argue here that
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Summary Points

N Existing front-line vector control measures, such as insecticide-treated nets and
residual sprays, cannot break the transmission cycle of Plasmodium falciparum
in the most intensely endemic parts of Africa and the Pacific

N The goal of malaria eradication will require urgent strategic investment into
understanding the ecology and evolution of the mosquito vectors that transmit
malaria

N Priority areas will include understanding aspects of the mosquito life
cycle beyond the blood feeding processes which directly mediate malaria
transmission

N Global commitment to malaria eradication necessitates a corresponding long-
term commitment to vector ecology
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a failure to appreciate the biological

complexities that allow vector populations

to resist or evade interventions has sub-

stantially impeded control efforts. In

particular, we identify seven ecologically

imposed obstacles that have limited the

effectiveness of vector control, and must be

tackled in order to move from control to

eradication (Box 1).

Thinking Outside the House

The ecological hurdles detailed in Box 1

imply that there exists a fundamental limit

to the degree of control that can be

achieved with ITNs or IRS. In most

settings, achieving elimination will require

interventions which target mosquitoes

outside of human habitations. Existing

and new interventions must be combined

into integrated packages [18,19] that

control mosquitoes at multiple points in

the continuum from egg to adult, by

targeting the key environmental resources

upon which they rely to complete their life

cycle: aquatic larval habitat, mates, sugar

sources, blood hosts, and resting sites

(Figure 1). With the exception of blood,

very little is known about how mosquitoes

use these resources or how to manipulate

them so that malaria transmission is

interrupted. We conclude that a better

understanding of all aspects of vector

ecology will inevitably yield numerous

new and mutually complementary targets

for integrated vector control. Ecology is

therefore a prerequisite to eradication or

elimination, and will be essential to

sustaining success in the long term.

Historically, vector biologists have fo-

cused primarily on evaluating specific

control interventions and less on funda-

mental studies of vector ecology. Now that

the gap between currently achievable

levels of control and the ultimate goal of

eradication is becoming clear, new inter-

vention options for integrated vector

management [18,19] are urgently needed.

Strategic investment in vector ecology will

thus be an essential enabling step towards

malaria eradication. The ways in which

vectors utilize resources vary from one

environmental setting to another, so a

clear understanding of such ecological

processes is essential for identifying inter-

vention strategies which work within a

range of settings. Such demonstration of

ecological generalisability, as well as scal-

ability in the context of available human

resource capacities, will be essential for

ensuring the success of developing country

control programs. Furthermore, the long-

term effectiveness of any control strategy

will depend on whether vectors respond to

the evolutionary selection pressure created

by interventions. For example, mosquitoes

may respond by phenotypic plasticity, or

by evolving traits such as insecticide

resistance [20] or behavioural avoidance

[21,22]. Numerous examples of such

phenotypic and genetic changes have been

documented in response to previous con-

trol efforts (e.g., Box 1) and are likely to

influence the sustainability of future erad-

ication attempts. Consequently, under-

standing the likelihood of and rate at

which such evolutionary changes can

occur is vital for mitigating any detrimen-

tal epidemiological consequences they

may bring. Finally, the applicability of

any vector control strategy will depend on

the dynamic human component of vector

ecology, particularly the political, social,

and economic factors that determine land

and water use within afflicted communi-

ties. Knowledge of the quantitative rela-

tionship between these behaviours and

malaria hazard, vulnerability, and risk is

vital [23,24]. Ultimately both human and

vector populations will readjust their

distribution and behaviour in response to

changing patterns of ecological resources,

sometimes with catastrophic effects for the

maintenance of control efforts (e.g. [25]).

While vector control cannot and should

not come at the expense of impeding

economic development which could pro-

mote a wider strengthening of health care

and protective measures, all efforts should

be made to identify and mitigate any

potential conflicts between land use and

vector control before they arise.

So Where Do We Stand Right
Now?

Our understanding of the ecology of

mosquitoes that transmit malaria lags

decades behind that of agricultural pests,

endangered species, and model organisms.

The reasons are multifaceted [26,27], and

disincentives include the lack of ecological

representation and thus support on the

funding panels of biomedical donors,

limited training opportunities in funda-

mental ecology for medical entomologists,

and the necessary ethical restrictions upon

the types of experimental manipulations

that are widely used to gain valuable

insights into the population, community,

and ecosystem dynamics of other insects

[28] which do not transmit pathogens to

humans. Examples of procedures which

can yield crucial scientific information, but

which are increasingly difficult to justify

ethically include human landing catches

[21] (because of the exposure risks they

entail) and mark–recapture studies of

mosquito demography and dispersal (be-

cause of community concerns about the

re-release of potentially infectious mosqui-

toes that could instead have been killed).

Evaluation of the potential use of alterna-

tive animal hosts to divert mosquitoes

from biting humans also poses potential

risks; theoretical simulations indicate there

are plausible scenarios under which this

may increase transmission by increasing

blood availability and vector survival [29].

The paucity of national funding

schemes for ecological research within

impoverished malarious countries, and

limited access to relevant overseas fund-

ing, have restricted the conversion of

indigenous talent into an adequate exper-

tise base. Furthermore, the primary focus

of malaria control on developing countries

with limited infrastructure or research

capacity may deter the engagement of

ecologists from the developed world who

have a myriad of more convenient,

accessible, and tractable organisms at

their disposal. Until the inherent chal-

lenges of working in these more demand-

ing settings is recognized and valued by

mainstream ecology, researchers may

have little incentive to build their careers

in this area. Sponsors of fundamental

biological research have typically under-

supported vector ecology, on the basis of

the assumption that public health and

medical donors with often substantially

larger budgets will fill this gap. Unfortu-

nately this has rarely been the case in

practice because donors generally priori-

tize applied research focusing on the

development and delivery of interventions

which have more obvious and immediate

potential benefits [26].

Most funding for ecological studies of

malaria vectors in recent years has been

driven by the needs of specific biotechno-

logical interventions [30,31] rather than

by the pursuit of basic ecological knowl-

edge [26]. While this emphasis on applied

research is clearly justified and under-

standable, benefits accrued will be short-

lived unless such funding is matched by

investment in the fundamental science that

will provide new solutions to deal with

resistance to current interventions and go

beyond currently achievable levels of

control to bring elimination realistically

within reach.

As a result of these various funding

deficiencies, huge knowledge gaps exist in

relation to most components of the

mosquito life cycle that occur outside of

houses, including larval growth and sugar

feeding, oviposition, and adult dispersal

(Figure 1) [26,31]. Even the development

of delivery systems for the historically
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Box 1. Ecological Obstacles to Vector Control

(1) Variation in mosquito behaviour All front-line vector control methods used in Africa today (e.g., ITNs, IRS) are based on
the stereotyped view that vectors bite and rest primarily inside houses. This assumption is based on the early characterization
of Anopheles gambiae and An. funestus behaviours of feeding and resting almost exclusively indoors [49]. However, even these
endophilic species feed outside to some degree, and may do so increasingly in response to domestic interventions [21,22].
Crucially, many other primary vectors do not conform to this traditional model and often bite outdoors [49] (e.g., An. arabiensis,
which dominates transmission in much of Africa [50]). Variation in feeding behaviour within vector species may have a genetic
basis [51], which raises the possibility that vector control measures could select for genotypes which are least likely to
encounter the intervention. Even when vectors are highly endophilic [6,29], the application of insecticides in and around houses
has fundamental limitations, because exhaustive coverage of all resting sites with IRS [22], or all humans with ITNs [6] is not
possible in practice.

(2) Insecticide resistance The ability of vectors to evolve diverse resistance mechanisms to insecticides has been well
documented [20]. Resistance to all major classes of insecticides used against malaria vectors has now been recorded in Africa
[52]. Recent evidence from dengue mosquito vectors indicates that permethrin resistance can increase by more than 100-fold in
vector populations within just 7–8 y [53]. The capacity of vectors to develop resistance so rapidly will undoubtedly pose a major
obstacle to malaria control based exclusively on insecticides.

(3) Behavioural avoidance The emergence of new vector behavioural phenotypes is a less-recognized phenomenon than
insecticide resistance, but it has the potential to similarly diminish the effectiveness of current interventions. Documented
examples of adaptable vector behaviours that could impact interventions such as ITNs and IRS include changes in host-species
preferences [27], and feeding outdoors or in the early evening when people are not protected by their houses or bed nets
[21,22]. During the last malaria eradication drive, several accounts of mosquitoes shifting from feeding inside to outside, and
from humans to animals, were reported in response to insecticide use indoors [54]. Whether these behavioural shifts were a
consequence of phenotypic plasticity or evolutionary change within vector populations is unknown. Regardless of the
mechanism, such behavioural plasticity limits contact between vectors and insecticides, thus diminishing the effectiveness of
the interventions that use them [21].

(4) Vector biodiversity Over 30 different primary vectors dominate transmission in various parts of the world [55]. Many of
these are part of species complexes and are represented by several genetically distinct chromosomal and molecular forms
within a species that have distinct ecological and behavioural niches [51]. In addition to this complexity within primary vectors,
low levels of transmission are frequently maintained by a myriad of behaviourally and ecologically diverse secondary vectors.
Although these species are routinely ignored, even the small fraction of transmission they generate may be sufficient to sustain
Plasmodium spp. in human populations [56]. The diversity of vector species increases outside of Africa, and presents a huge
challenge to conventional methods of vector control [57]. Furthermore, vectors currently viewed as ‘‘secondary’’ may expand to
dominate residual transmission and act as de facto primary vectors following the successful implementation of interventions
aimed at current priority vector species [58].

(5) Competitive and food web interactions Mosquito vectors are embedded within ecological communities where they
act as predators, prey, and competitors. Consequently the reduction of one target vector may trigger a cascade of ecological
effects that could impede or enhance transmission by another. Studies have reported that suppression of one vector species
through habitat change or control was followed by an increase in another. Notable examples include the apparent replacement
of An. funestus by An. rivolurum [59], and An. parensis [60] in areas of east Africa following house spraying. These changes were
attributed to a reduction in interspecific competition caused by the intervention that allowed these secondary vectors to move
into the niche formerly occupied by An. funestus.

Virtually nothing is known about the role of vectors in regulating, or being regulated by, their prey or predators. Consequently
the potential use of biological control to manage vector populations is vastly underexplored. Perhaps the best-described
biological regulator of vector populations is themselves. Several studies have shown that traits such as the larval development,
fecundity, survival, and population growth rates of mosquito vectors is negatively correlated with their population size [61–63].
This density dependence means that as vector populations fall in response to interventions, the individual vectorial capacity of
the remaining survivors may be significantly greater than that of the average mosquito pre-intervention. Consequently vector
populations may become increasingly difficult to suppress as their abundance moves towards zero. Complementary
approaches may therefore be required to eliminate residual transmission by vector populations which have been reduced far
below their carrying capacity by interventions.

(6) Dispersal and mating behaviour Knowledge of mosquito dispersal range is essential for accurate predictions of the
optimal spatial implementation of more conventional control methods such as ITNs, IRS, and larviciding [64–66], and of the rate
of spread of resistance genes. Unfortunately, direct observations of the dispersal ability of malaria vectors have been made in
only a limited subset of vector species, environments, and experimental conditions, and few generalities can be made for this
behaviour. Additionally, the control of vector populations and/or their disease transmission ability through the release of
genetically modified or sterile males will depend on both the dispersal ability of released individuals and their ability to
successfully compete for wild females. Efforts to ensure the reproductive success of such males are hampered by large
knowledge gaps in our understanding of the environmental, genetic, and phenotypic determinants of male mating
competitiveness, survival, and dispersal ability under natural conditions [30].
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(7) Environmental change Climate and environmental change are driving the expansion of numerous vector species and the
intensification of pathogen transmission in many locations [67]. Specific examples include deforestation, which has prompted
an increase in the human-biting rate of formerly zoophilic vectors in several parts of the tropics and the instigation of new
malaria epidemics [68,69]. Historical and forecasted rises in temperature have also been implicated in the spread of malaria into
new habitats and regions [70]. Mitigating against the detrimental impacts of environmental change on malaria transmission will
be particularly difficult when public health goals conflict with economic development. For example, following the elimination
of malaria in the Demerara River Estuary of Guiana (by DDT spraying), the human population grew rapidly and land use
activities switched from livestock herding to more profitable rice farming [25]. The removal of livestock from the landscape,
however, caused the formerly zoophilic An. aquasalis to switch its feeding from livestock to humans. This change initiated the
return of transmission into the area after 16 years of absence [25]. Irrigation and dam construction have also been linked to an
increase in malaria risk, although the nature of the effect varies substantially between epidemiological, entomological, and
socioeconomic settings [71]. While environmental changes to enable poverty reduction are essential to economic development
and infectious disease control, sustaining malaria eradication will require a clearer mechanistic understanding of the impacts of
both vector control and concurrent changes in natural resource management and land use activities.

Figure 1. Life cycle components of malaria vector mosquitoes and corresponding examples of targets for novel intervention
strategies. (1) Environmental management [39] and larvicide application by direct means [32,33] or by autodissemination via adults [37]; (2)
insecticide application to natural sugar sources [35], toxic sugar baits [36], and paratransgenic bacteria [40]; (3) pheromone trapping [41] and release
of genetically modified or sterile males [30,42]; (4) spatial and contact repellents [43] that work both indoors and outdoors and physical barriers to
prevent mosquito entry into houses [44]; (5) zooprophylaxis [29], insecticide-treated cattle [45], and odour-baited traps [46]; (6) adult contamination
with biological [47] and chemical [37] agents which may be autodisseminated; and (7) environmental management of water resources for adult
vector control through increased mortality cost of foraging for oviposition sites [48].
doi:10.1371/journal.pmed.1000303.g001
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successful and recently rejuvenated strat-

egy of physically eliminating or applying

insecticides to larval habitats [32,33] is

severely limited by a paucity of suitable

field survey methods and large-scale

studies of aquatic-stage ecology [34]. An

excellent example of what is possible with

solid ecological observation and a little

imagination comes from the deserts of

Israel where dramatic reductions of

malaria vector density around oases and

cisterns, which may be comparable with

dry-season refugia in Africa, were

achieved using low-technology toxic sug-

ar baits which are as lethal to mosquitoes

as contact with an ITN [35,36]. Similar-

ly, results of a recent study of the

effectiveness of exploiting resting and

oviposition behaviours in Aedes aegypti,

the primary vector of Dengue, to distrib-

ute insecticides to their own larval

habitats [37] are encouraging. Neverthe-

less, the fact that no field estimates were

available for any of the parameters of the

coverage amplification model used to

explain this success [37] highlights the

knowledge gaps that may impede the use

of this method against malaria vectors.

Although further research into the be-

haviours that predispose vectors to such

novel interventions is obviously attrac-

tive, a more integrated and holistic

approach [26] is also required to maxi-

mize the value of ecological research as a

means to identify additional strategies for

controlling, eliminating, and eradicating

malaria transmission.

Making It Happen

The overarching strategic priority for

increased investment should therefore be to

improve the quantitative understanding of

mosquito life history, fitness, genetics, and

behavioural processes as determinants of

their population stability and malaria

transmission intensity. Support should be

directed towards delivering key outcomes,

without which malaria eradication is diffi-

cult to envisage (Box 2). As such, ecology

should—like other basic disciplines such as

molecular biology and bioinformatics—be

considered an enabling science essential for

defining the target product profiles of

completely new control technologies and

delivery systems. To achieve these out-

comes and make malaria eradication a

realistic ambition, we propose key areas for

specific strategic investment (Box 3).

Direct research investment will be re-

quired to develop new field measurement

tools, establish a network of longitudinal

population monitoring sites with comple-

mentary semi-field facilities [38], apply

advanced modelling approaches, and pro-

mote career and skills development of

endemic-country scientists in both public

health and vector ecology. Beyond these

obvious needs, additional incentives are

required to engage expert ecologists from

more knowledge-rich fields into malaria

vector ecology. While ecology-oriented

funding agencies have a vital role in

facilitating the reinvigoration of vector

biology, the bulk of the required financing

will ultimately have to come from the

health sector funders and policy makers

who have prioritized malaria eradication

and committed themselves to the long, hard

road towards this worthy but distant goal.
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Box 3. Key Areas for Specific Strategic Investment in Ecological
Research to Enable Malaria Eradication

(1) Development of new field measurement tools for surveying diverse primary
and secondary vector populations and the environmental conditions and
resources they rely upon through all phases of their life cycles

(2) Establishment of comprehensive, long-term data collection systems spanning
individual to landscape scales from diverse and representative field sites

(3) Creation and maintenance of public data repositories with standardized,
simplified data storage formats for mosquito ecology data combined with policies
and incentive systems that facilitate data sharing and synergy between
laboratory- and field-based investigators

(4) Application of cutting-edge mathematical modelling approaches to under-
stand vector populations dynamics, pathogen transmission, and optimal
intervention strategies

(5) Development and application of enclosed, pathogen-free, semi-field
mesocosms in which vector populations can be experimentally manipulated [38]

6) Exploitation of the perturbations of vector populations and parasite
transmission processes resulting from ongoing scale-up of existing intervention
measures so that the population dynamics, behavioural specialization, and
competitive relationships between mosquito species can be lucidly understood

(7) Engagement and recruitment of leading theoretical and empirical ecologists
into malaria vector research, control, and capacity strengthening

Box 2. Key Outcomes of Enhanced Investment in Malaria Vector
and Transmission Ecology

(1) Identification of specific vulnerabilities of vector and sporogonic-stage parasite
populations that can be prioritized for intervention development and delivery

(2) Estimation of threshold values of vector population parameters required to
achieve pathogen elimination

(3) Quantification of the strength of selection pressures imposed on vectors by
particular interventions so that the likelihood and rate at which physiological and
behavioural resistance traits emerge can be predicted and managed

(4) Avoidance of the mistakes of the previous eradication drive through
biologically realistic understanding of the scale of the challenge

(5) Estimation of achievable endpoints for single and multiple interventions and
synergies and redundancies associated with particular combinations

(6) Stimulation of creative, ‘‘blue skies’’ scientific investigation resulting in
identification of unforeseen novel intervention targets and strategies
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