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Background: Prior studies showed that tumor glycolysis and tumor immune evasion are interdependent. How-
ever, a systematic investigation of the association between tumor glycolysis and tumor immunity in various
cancers remains lacking.
Methods:Using the Cancer Genome Atlas (TCGA) datasets, we explored the association between glycolytic activ-
ity and immune signatures in 14 cancer types. We also explored the associations between glycolytic activity and
tumor immunity associated genetic features, including PD-L1 expression, tumor mutation burden (TMB), and
tumor aneuploidy. Moreover, we performed in vitro experiments to verify some findings from bioinformatics
analysis. Furthermore, we explored the association between tumor glycolytic activity and immunotherapy
response.
Findings: Glycolytic activity was likely correlated with active immune signatures in various cancers and highly
glycolytic tumors presented an immune-stimulatory tumor microenvironment. Compared to TMB and aneu-
ploidy, glycolytic activitywas a stronger andmore consistent predictor for immune signatures in diverse cancers.
Both computational and experimental analyses showed that glycolysis could increase PD-L1 expression in tumor.
Glycolytic activity had a strong correlation with apoptosis which was a strong positive predictor for immune sig-
natures, suggesting that apoptosis could be an important medium connecting glycolytic activity with immune
activity in cancer. Finally, highly glycolytic tumors exhibited a better immunotherapy response and a favorable
survival in the immunotherapy setting.
Interpretation: Tumor glycolysis may increase tumor immunity in diverse cancers. Glycolytic activity enhances
PD-L1 expression on tumor cells and thus promotes anti-PD-1/PD-L1 immunotherapy response. Thus, the
tumor glycolytic activity could be a predictive biomarker for immunotherapy response in diverse cancers.
Fund: This work was supported by the China Pharmaceutical University (grant numbers 3150120001,
2632018YX01 to XW).
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Cancer immunotherapy has exhibited its effectiveness in treating
various cancers [1,2]. Notably, the immune checkpoint blockade, such
as targeting CTLA-4 (cytotoxic T-lymphocyte-associated protein 4),
PD-1 (programmed cell death protein 1), and PD-L1 (programmed
cell death 1 ligand), is being clinically used for therapy of diverse can-
cers [1]. Nevertheless, many cancer patients had limited or no response
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to current immunotherapeutic strategies [3]. To enhance antitumor im-
munotherapy response, the combination of immunotherapy with other
therapeutic approaches, such as chemotherapy [4], radiotherapy [5],
and targeted therapies [6,7], has been explored. Moreover, certain ge-
netic or genomic biomarkers, such as PD-L1 expression [8], tumor mu-
tation burden (TMB) [9], neoantigens [10], defective DNA mismatch
repair (dMMR) or microsatellite instability (MSI) [11], and tumor
aneuploidy [12], have been associated with cancer immunotherapy
response.

Dysregulated energy metabolism and immune evasion are two
hallmarks of cancer [13]. Cancer cells primarily utilize the glycoly-
sis pathway for energy metabolism and reprogramme their micro-
environment with enriched energy supply [14]. The weak
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Research in context section

Evidence before this study

Dysregulated energy metabolism and immune evasion are two
hallmarks of cancer. Prior studies showed that tumor glycoly-
sis and tumor immune evasion are interdependent. Increased
tumor glycolysis may impair immune elimination of tumor
cells.

Added value of this study

Our study revealed a significant positive correlation between
tumor glycolysis and tumor immunity in multiple cancer
types, a finding different from previous observations. We
found that tumor glycolysis could increase PD-L1 expression
on tumor cells.

Implications of all the available evidence

Our findings implicate that the tumor glycolytic activity could be a
predictive biomarker for immunotherapy response in diverse
cancers.

Table 1
The 14 cancer types analyzed.

Cancer
type

Full name Sample size

Total Highly
glycolytic
tumors

Lowly
glycolytic
tumors

BRCA Breast invasive carcinoma 1100 367 367
DLBC Lymphoid neoplasm difuse large B-cell

lymphoma
48 16 16

GBM Glioblastoma multiforme 166 55 55
KIRP Kidney renal papillary cell carcinoma 291 97 97
LAML Acute myeloid leukemia 173 57 57
LGG Brain lower-grade glioma 530 177 177
LIHC Liver hepatocellular carcinoma 373 124 124
LUAD Lung adenocarcinoma 517 172 172
OV Ovarian serous cystadenocarcinoma 307 102 102
PAAD Pancreatic adeno-carcinoma 179 60 60
PCPG Pheochromocytoma and paraganglioma 184 61 61
SARC Sarcoma 263 88 88
SKCM Skin cutaneous melanoma 472 157 157
UCEC Uterine corpus endometrial carcinoma 370 123 123
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expression of immunogenicity and the inhibition of cytotoxic T and
NK cell activation often result to tumor immune evasion [15]. A
number of studies have revealed that tumor metabolism and
tumor immune evasion are interdependent [15,16]. The metabolic
competition between immune cells and tumor cells may contribute
to tumor immunosuppression [15]. Increased tumor glycolysis im-
pairs immune elimination of tumor cells [16]. These prior studies
provided interesting insights into the interplay between tumor
metabolism and tumor immune evasion. However, a systematic ex-
ploration of the association between tumor metabolism and tumor
immunity in various different cancer types is lacking. Also, how
tumor metabolism affects tumor immunity and tumor immune mi-
croenvironment (TIM) remains incompletely understood.

With the rapid advances in next-generation sequencing (NGS)
technologies, many large-scale cancer genomics datasets have
been generated, e.g., the Cancer Genome Atlas (TCGA, https://
cancergenome.nih.gov) datasets, and numerous computational
methods have been developed for investigating these datasets. In
particular, many bioinformatics tools have been designed to explore
genome-wide mRNA expression data, e.g., GSEA [17] for gene-set
enrichment analysis, ESTIMATE [18] for evaluating the levels of
tumor immune cell infiltration, ssGSEA [19,20] for single-sample
gene-set enrichment analysis, and ABSOLUTE [21] for assessing
tumor aneuploidy. In this study, using these bioinformatics tools,
we explored the association between tumor glycolysis and immune
signatures across 14 cancer types by analyzing the TCGA datasets.
We also explored the association between tumor glycolysis and
tumor immunity-associated molecular features, including PD-L1 ex-
pression, TMB, tumor aneuploidy, and apoptosis. Furthermore, we
investigated the association between tumor glycolysis and tumor
immunotherapy response using two cancer immunotherapy re-
sponse datasets. Our study revealed a significant positive correlation
between tumor glycolysis and tumor immunity across multiple can-
cer types, a phenomenon in contrast with previous observations
[16]. Our findings implicate that the tumor glycolytic activity could
be a predictive biomarker for immunotherapy response in diverse
cancers.
2. Materials and methods

2.1. Materials

We downloaded the TCGA data from the genomic data commons
data portal (https://portal.gdc.cancer.gov/). These data included RNA-
Seq gene expression profiles, gene somatic mutations, somatic copy
number alterations, protein expression profiles, and clinical data for
14 cancer types (Table 1). We obtained the gene sets that represented
different immune signatures from several publications, including HLA
[22], tumor-infiltrating lymphocytes (TILs) [23], immune cytolytic ac-
tivity [24], and interferon (IFN) response [24]. The gene sets for glycol-
ysis and other pathwayswere obtained fromKEGG [25]. These gene sets
are presented in the Supplementary Table S1.We downloaded theHugo
cohort immunotherapy response dataset [26] from the NCBI gene ex-
pression omnibus (https://www.ncbi.nlm.nih.gov/geo/, GSE78220),
and the Nathanson cohort dataset [27] from the website http://www.
hammerlab.org/melanoma-reanalysis/.
2.2. Glycolysis score, immune score, signature enrichment, biological and
genomic features

2.2.1. Evaluation of tumor glycolysis score
We obtained the set of genes in the glycolysis pathway from KEGG

[25], and applied the single-sample gene-set enrichment analysis
(ssGSEA) [19,20] for the gene set to quantify the glycolytic activity (gly-
colysis score). We defined a tumor as highly glycolytic if its glycolysis
score was in the upper third of all glycolysis scores in the same cancer
type, and a tumor as lowly glycolytic if its glycolysis score was in the
bottom third.
2.2.2. Evaluation of immune activity or immune signature enrichment in
tumor

Weused ESTIMATE [18] to assess tumor immune activity. ESTIMATE
yields the immune score for each tumor sample that quantifies the im-
mune activity (immune infiltration level) in that tumor sample based
on its gene expression profiles. The single-sample gene-set enrichment
analysis (ssGSEA) score [19,20] was utilized to quantify the enrichment
levels of immune signatures in tumor. In evaluating the ratio between
two different immune signatures, we used the base-2 log transformed
value of the ratio between the mean expression levels of all marker
genes in each immune signatures.

https://cancergenome.nih.gov
https://cancergenome.nih.gov
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://www.hammerlab.org/melanoma-reanalysis/
http://www.hammerlab.org/melanoma-reanalysis/
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2.2.3. Gene-set enrichment analysis
We performed gene-set enrichment analysis of the gene expres-

sion profiles for each of the 14 cancer types by GSEA [17]. The
KEGG [25] pathways significantly upregulated in highly glycolytic
tumors and upregulated in lowly glycolytic tumors were identified
using a FDR cutoff b0.1.

2.2.4. Evaluation of TMB, tumor aneuploidy, and tumor purity
For each tumor sample, we determined its TMB as the total count of

somatic mutations (except silent mutations) detected in the tumor and
used ABSOLUTE [21] to calculate its ploidy score representing the tumor
aneuploidy, and evaluate its tumor purity.

2.3. In vitro experiments

2.3.1. Cell lines and cell culture
Human cancer cell lines MCF-7 (breast cancer), SJSA1 (osteosar-

coma), and SK-OV-3 (ovarian carcinoma), and natural killer cells NK-
92 were from the American Type Culture Collection (ATCC). MCF-7
and SJSA1 cells were incubated in Roswell Park Memorial Institute-
1640 (RPMI-1640, GIBCO, USA) supplemented with 10% fetal bovine
serum (FBS, GIBCO, USA). SK-OV-3 cells were cultured as a monolayer
in McCoy's 5a (GIBCO, USA) medium supplemented with 10% FBS. All
these cells were cultured in a humidified incubator at 37°C and a 5%
CO2 atmosphere, and were harvested in logarithmic growth phase.

2.3.2. Reverse transcription-quantitative polymerase chain reaction
(RT-qPCR) analysis

Tumor cells (MCF-7, SJSA1, and SK-OV-3)were harvested after treat-
ment with 2-DG (5 mM, 48 h). The total RNA was isolated by Trizol
(Invitrogen, USA) and was reversely transcribed into cDNA by the
RevertAid First Strand cDNA Synthesis Kit (Termo Fisher, USA). Primers
were diluted in nuclease-free water with the real-time PCR Master Mix
(SYBR Green, TOYOBO Co., LTD, JAPAN). Relative copy number was de-
termined as the fold-change of the gene of interest relative to β-actin.
The qPCR was performed on an ABI 7500 FAST and Applied Biosystems
StepOnePlus Real Time PCR machine. The PCR primer sequences were
presented in Supplementary Table S2.

2.3.3. Co-culture of tumor cells with immune cells
A co-culture system was constructed by inserting the transwell

chamber (Corning Inc., Corning, NY, USA) into a 6-well plate. Tumor
cells (MCF-7, SJSA1, and SK-OV-3) were seeded on the 6-well plate at
a density of 5 × 104 cells/well, and NK-92 cells were seeded on the
membrane (polyethylene terephthalate, pore size, 0.4 μm) of the
transwell chamber at a density of 5 × 104 cells/chamber. NK-92 and
tumor cells were co-cultured in a humidified incubator at 37°C and a
5% CO2 atmosphere for 48 h.

2.3.4. EdU proliferation assay
After the co-culture of tumor cells with immune cells for 48 h, an

EdU (5-ethynyl-2′-deoxyuridine, Invitrogen, CA, USA) proliferation
assay was performed to measure the proliferation ability of NK-92
cells. NK-92 cells were plated in 96-well plates at a density of 2 × 103

cells/well for 24 h. The cells were incubated with 10 μM EdU for 24 h
at 37 °C before fixation, permeabilization, and EdU staining. The cell nu-
clei were stained with DAPI (Sigma) at a concentration of 1 μg/ml for
20min. The proportion of the NK-92 cells incorporating EdUwas deter-
minedwith fluorescencemicroscopy. Each assaywas performed in trip-
licate wells.

2.3.5. Western blotting
Tumor cells (MCF-7, SJSA1, and SK-OV-3)were harvested after treat-

ment with 2-DG (5 mM, 48 h), and were washed twice with cold
PBS. Next, the tumor cells were lysed in SDS buffer (1% SDS, 0.1 M
Tris pH 7.4, 10% glycerol) supplemented with protease inhibitors.
The protein concentration was determined by Bradford Protein Assay
(Bio-rad). Samples were resolved by standard SDS-PAGE after normali-
zation of the total protein content. AfterWestern transfer, Nitrocellulose
membranes (Millipore) were incubated with antibodies HK-2
(ab209847, Abcam) and PD-L1 (ab213254, Abcam). After incubation
with the HRP-labeled secondary antibody (KGAA002–1, KeyGEN Bio-
tech, China), proteins were visualized by enhanced chemiluminescence
using a G: BOX chemiXR5 digital imaging system.

2.4. Statistical analysis, logistic regression and survival analysis

The experimental data were analyzed by Prism 5.0 software
(GraphPad) and their mean ± SD were presented. The t-test P b .05
was utilized to determine the statistical significance. We calculated
the correlation between two variables using the Spearman method.
These variables included glycolytic activity, immune signature score,
gene expression levels, TMB, aneuploidy, and pathway activity. The
threshold of P b .05 (Spearman's correlation test) indicates the signifi-
cance of correlation. To compare the contribution of different genomic
features in the prediction of immune signature scores, we used logistic
regression to construct a predictive model which contained three pre-
dictors, including glycolytic activity, TMB, and aneuploidy. The tumors
with high (upper third) versus low (bottom third) immune signature
scores were predicted.

Logistic regression was performed in R programming environment.
The R function “glm” was used to fit the binary model. We specified
the parameter “family” as “binomial” and other parameters as default
in “glm”. The standardized regression coefficients (β values) were cal-
culated using the function “lm.beta” in R package “QuantPsyc”.

We compared the survival (overall survival (OS) and disease-free
survival (DFS)) of cancer patients separated by the median glycolysis
score or the median expression level of specific genes. Kaplan-Meier
curves were used to compare the survival time differences. The log-
rank test P b .1 indicates the significance of survival time differences.
The survival analyses were performed in both TCGA and the immuno-
therapy response datasets by R programming function “survfit” in
“survival” package.

3. Results

3.1. Tumor glycolytic activity likely positively correlate with immune
signatures in various cancers

To explore the correlation between tumor glycolysis and tumor im-
munity, we analyzed cancer genomics data from 14 TCGA cancer types,
including BRCA, DLBC, GBM, KIRP, LAML, LGG, LIHC, LUAD, OV, PAAD,
PCPG, SARC, SKCM, and UCEC. Strikingly, we found a significant positive
correlation between glycolytic activity (glycolysis score, quantified by
the glycolysis pathway activity [25]) and immune activity (quantified
by immune score [18]) both in pan-cancer and in the 14 individual can-
cer types (Spearman's correlation test, P b .05) (Fig. 1A). Moreover,
tumor glycolysis positively correlated with diverse immune signatures
in pan-cancer and multiple cancer types, including HLA expression,
TILs infiltration, immune cytolytic activity, and IFN response (Fig. 1B).
For example, glycolytic activity positively correlated with HLA expres-
sion both in pan-cancer and in 12 individual cancer types, and positively
correlated with immune cytolytic activity both in pan-cancer and in 9
individual cancer types.

Besides the glycolysis pathway (gene set), we found a number of
glycolysis-related genes whose expression was positively associated
with immune signatures in pan-cancer and individual cancer types
(Fig. 1C). For example, the expression of ADPGK, AKR1A1, ALDH3B1,
GALM, and HK3 was positively correlated with immune score as well
as immune cytolytic activity both in pan-cancer and in at least 10 cancer
types; the expression of ADPGK, AKR1A1, ALDH3B1, GALM, HK3, FBP1,
and PCK2 was positively correlated with IFN response in at least 10
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Fig. 1. Tumor glycolytic activity tends to be positively correlatedwith immune signatures in diverse cancers. A. Glycolytic activity is positively correlatedwith immune score evaluated by
ESTIMATE [18] in pan-cancer and 14 cancer types. The Spearman's correlation test P values and correlation coefficients (R) are shown. B. Glycolytic activity is positively correlated with
diverse immune signatures in pan-cancer and 14 cancer types. TILs: tumor-infiltrating lymphocytes. IFN: interferon. CYT: immune cytolytic activity. R: Spearman's correlation
coefficient. C. The expression levels of multiple glycolysis pathway genes are positively associated with immune signatures in pan-cancer and 14 cancer types. D. The glycolytic protein
glucose-6-phosphate dehydrogenase (G6PD) has a significant positive expression correlation with immune score in pan-cancer and 9 cancer types. E. GSEA [17] identifies a number of
immune-associated pathways which are upregulated in highly versus lowly glycolytic tumors in diverse cancers (FDR b 0.05). FDR: false discovery rate. F. The ratios between the
expression levels of immune-stimulatory signatures and the expression levels of immune-inhibitory signatures are significantly higher in highly versus lowly glycolytic tumors in
diverse cancers. M1: M1 macrophages. M2: M2 macrophages. *, P b .05. **, P b .01. ***, P b .001. It also applies to following figures.
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cancer types. Moreover, on the basis of the TCGA protein expression
data, we found that the expression of glycolytic protein Glucose-6-
phosphate dehydrogenase (G6PD) had a significant positive correlation
with immune score in pan-cancer and in 9 cancer types (Fig. 1D).

We compared the gene expression profiles between highly glyco-
lytic tumors and lowly glycolytic tumors, and identified the KEGG [25]
pathways that were enriched in the respective groups in each of the
14 cancer types by GSEA [17]. Among the pathways upregulated in
highly glycolytic tumors in N5 cancer types were those most associated
with metabolism and immune signatures (Supplementary Table S3).
The immune signature-associated pathways included antigen process-
ing and presentation, autoimmune thyroid disease, intestinal immune
network for IgA production, hematopoietic cell lineage, chemokine
signaling, cytokine–cytokine receptor interaction, Toll-like receptor sig-
naling, natural killer cell–mediated cytotoxicity, Fc gamma receptor–
mediated phagocytosis, leukocyte transendothelial migration, B cell
receptor signaling, NOD–like receptor signaling, and primary immuno-
deficiency (Fig. 1E, Supplementary Table S3). This result confirmed the
elevated immune activity in highly glycolytic tumors.

Moreover, we observed a significant increase of the ratio between
immune-stimulatory cells (CD8+ T cells, marker gene CD8A) and
immune-inhibitory cells (CD4+ regulatory T cells, marker genes
GPR1, FOXP3, CTLA4, IL32, C15orf53, and IL4) in highly versus lowly
glycolytic tumors in 7 cancer types (Mann-Whitney U test, P b .05)
(Fig. 1F). We also found a significant increase in the ratio between
pro-inflammatory cytokines (marker genes IFNG, IL-1A, IL-1B, and
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Fig. 2. In vitro experiments demonstrate that tumor glycolytic activity may promote tumor immune activity. A. The expression levels of MHC Class I genes are altered when tumor
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IL-2) and anti-inflammatory cytokines (IL-4, IL-10, IL-11, and TGFB1)
in 9 cancer types (Fig. 1F). A significant increase was also observed
in the ratio between inflammation-inducing M1 macrophages
(CD64, IDO, SOCS1, and CXCL10) and inflammation-inhibiting M2
macrophages (MRC1, TGM2, CD23, and CCL22) in 5 cancer types
(Fig. 1F). These results suggest that highly glycolytic tumors tend
to present an immune-stimulatory tumor microenvironment in
diverse cancers.

To experimentally verify the findings from bioinformatics anal-
ysis, we used the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) to
treat three cancer cell lines, including MCF-7 (breast cancer),
SJSA1 (osteosarcoma), and SK-OV-3 (ovarian carcinoma), and com-
pared the expression levels of MHC class I genes (HLA-A, HLA\\B,
HLA\\C, B2M, and TAP1) between the pre- and post-treated cell
lines. We observed a significant reduction of the HLA-A, B2M, and
TAP1 expression levels in post-treated SK-OV-3 (Student's t-test,
P b .05) and the HLA-B and HLA-C expression levels also decreased
in post-treated SK-OV-3 although the differences were not statisti-
cally significant (P N .05) (Fig. 2A). The HLA-B and HLA-C expres-
sion levels were significantly lower in post-treated SJSA1,
whereas B2M had higher expression levels in post-treated SJSA1
(Fig. 2A). For MCF7, we observed a significant decrease of B2M ex-
pression and a significant increase of HLA-A, HLA\\B, and HLA-C ex-
pression in post-treated cells (Fig. 2A). These results suggest that
inhibition of glycolysis tends to downregulate HLA expression in
cancer although this action is cellular context dependent. Further-
more, we used the EdU proliferation assay to compare the prolifer-
ation potential between NK92 cells co-cultured with the cancer cell
lines and those co-cultured with the cancer cell lines treated with
2-DG for 24 h. We observed a significant reduction of the prolifer-
ation potential of the NK92 cells co-cultured with the post-treated
cancer cells, and this result was consistent across all three cell lines
(Fig. 2B). This experimental result suggests that elevated glycolytic
activity may result in increased tumor immunity, and therefore
verified the finding from bioinformatics analysis.
Collectively, these computational and experimental analyses dem-
onstrated that glycolytic activity tended to be positively associated
with immune activity in diverse cancers.

3.2. Using tumor glycolytic activity to predict immune signatures in cancers

To explore the predictability of tumor glycolytic activity for tumor
immunity, we used logistic regression to evaluate the contribution of
tumor glycolytic activity in predicting two immune signatures (immune
score and immune cytolytic activity). We defined two groups of cancer
samples based on immune signature scores (upper third versus bottom
third) in the logistic regression model, and explored the relative contri-
bution of glycolytic activity, TMB, and aneuploidy in predicting immune
signatures, considering that both TMB [9] and tumor aneuploidy [12]
have been demonstrated to be significantly associated with immune
signatures.

In the pan-cancer analysis, both glycolytic activity (β coefficient: β
= 0.86, P b 2 × 10−16) and TMB (β= 0.33, P = .004) significantly pre-
dicted the immune score and aneuploidy is not significant in predicting
the immune score (β=−0.03, P= .77). For the immune cytolytic activ-
ity, glycolytic activity (β=0.57, P= 1.19 × 10−9), TMB (β=1.35, P=
4.05 × 10−9) and aneuploidy (β = 0.20, P = .04) all represented posi-
tive predictors (Fig. 3). In the analysis of 14 individual cancer types, gly-
colytic activity was a positive predictor of the immune score in 11
cancer types, and TMB represented a positive predictor in 3 cancer
types and aneuploidy a negative predictor in 3 cancer types. Moreover,
glycolytic activity represented a positive predictor of the immune cyto-
lytic activity in 8 cancer types, as compared to TMB being a positive pre-
dictor in 3 cancer types and aneuploidy a negative predictor in 2 cancer
types (Fig. 3). These results suggest that glycolytic activity is a stronger
predictor than TMB and aneuploidy for immune signatures.

In fact, with immune score, tumor glycolysis had a significant
positive correlation in all 14 cancer types, TMB exhibited a positive
correlation in 2 cancer types and a negative correlation in 3 cancer
types, and aneuploidy had a negative correlation in 4 cancer types



Fig. 4.Associations among tumor glycolysis, apoptosis, and tumor immune activity. A. The apoptosis pathway ismore enriched in highly versus lowly glycolytic tumors in pan-cancer and
diverse individual cancer types (Mann-WhitneyU test, P b .05). B. Apoptosis activity is positively associated immune signatures in all 14 cancer types. R: Spearman's correlation coefficient.
C. Logistic regression analysis shows that apoptosis activity is a strong positive predictor for immune signatures in all 14 cancer types. D. Glycolytic activity is a significant positive predictor
for apoptosis activity in pan-cancer and most of the 14 cancer types. β coefficients (β value) for each predictor in pan-cancer or individual cancer types are shown.
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and a positive correlation in 1 cancer type (Spearman's correlation
test, P b .05) (Supplementary Table S4). In addition, with the im-
mune cytolytic activity, tumor glycolysis had a significant positive
correlation in 9 cancer types, TMB had a positive correlation in 4
caner types, and aneuploidy had a negative correlation in 5 caner
types (Supplementary Table S4). These results again suggest that
tumor glycolytic activity may contribute to the alterations of tumor
immune activity in a stronger and more consistent manner com-
pared to TMB and aneuploidy.

Besides plentiful metabolism and immune-associated pathways
(Supplementary Table S3), the apoptosis pathway was more enriched
in highly versus lowly glycolytic tumors in 11 cancer types (Mann-
Whitney U test, P b .05) (Fig. 4A). Interestingly, the activity of apoptosis
was significantly associated with immune score and immune cytolytic
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activity in all 14 cancer types consistently in a positive direction
(Fig. 4B). When we added apoptosis activity into the logistic regression
model to predict the immune signatures (immune score and immune
cytolytic activity), we observed a significant reduction of the contribu-
tion (β value) from glycolytic activity in predicting the immune signa-
tures in pan-cancer and many individual cancer types (Fig. 4C).
Moreover, glycolytic activity was significant as a positive predictor in
predicting apoptosis activity in pan-cancer and most individual cancer
types (Fig. 4D), and apoptosis activity was a significant positive predic-
tor for immune signatures in pan-cancer and 14 individual cancers
(Fig. 4C). Altogether, these data suggest that apoptosis may play a
key role in connecting tumor glycolysis with tumor immunity in
these cancers.

3.3. Tumor glycolytic activity positively correlates with PD-L1 expression
and with immunotherapy response

We examined the correlation of PD-L1 expressionwith glycolytic ac-
tivity in the 14 cancer types, and found that the expression levels of PD-
L1 significantly positively correlated with glycolytic activity in 8 cancer
types (DLBC, GBM, LGG, OV, KIRP, SARC, SKCM, and UCEC) (Spearman's
correlation test, P b .05) (Fig. 5A).Moreover, PD-L1 expression showed a
significant positive correlation with the expression of numerous
glycolysis-related genes in pan-cancer and many individual cancers,
e.g., HK3, LDHA, and PGM2 (Fig. 5B). Furthermore, in vitro experiments
confirmed that PD-L1 expression was significantly decreased when
tumor glycolysis was inhibited in all three cell lines (MCF-7, SJSA-1,
and SK-OV-3) tested (Fig. 5C). This finding suggests that the PD-1/PD-
L1 blockade therapy could bemore effective against highly glycolytic tu-
mors, since the PD-L1 expression is a biomarker for the active response
to PD-1/PD-L1 pathway inhibition [8]. Interestingly, a previous study
showed that PD-L1 could promote tumor glycolysis [15]. Collectively,
these findings suggest a mutual positive regulation relationship be-
tween tumor PD-L1 expression and tumor glycolysis.

We investigated the correlation between tumor glycolytic activity
and tumor immunotherapy response (PD-1/PD-L1 or CTLA-4 inhibi-
tion) using two cancer (melanoma) immunotherapy response-
associated datasets (Hugo cohort [26] and Nathanson cohort [27]).
First, on the basis of the glycolysis pathway activity, we found that the
immunotherapy response rate was higher in higher versus lower gly-
colysis pathway activity tumors in both cohorts (Fig. 6A). Second,
based on the expression of PKLR, a key gene instructing for producing
pyruvate kinase involved in the final step of the glycolytic pathway
[28], we found that the immunotherapy response rate was higher in tu-
mors more highly expressing PKLR than those more lowly expressing
PKLR in Nathanson cohort (Fisher's exact test, P = .21, OR = 3.94)
(Fig. 6A). Moreover, we found 9 of the 12 tumors highly expressing
PKLR being the tumors with higher glycolysis pathway activity, and 9
of the 12 tumors lowly expressing PKLR being the tumors with lower
glycolysis pathway activity. It indicates that the PKLR expression levels
significantly correlate with the glycolysis score in a positive direction,
and thusmay reflect the glycolysis pathway activity. In the same cohort,
the expression of two glycolysis-associated genesDLAT and GALM had a
significant positive correlation with the immunotherapy response
(Fisher's exact test, P = .036 and OR = 8.91 for both genes) (Fig. 6A).
These results indicate that tumor glycolytic activity tends to be posi-
tively associated with immunotherapy response.

Furthermore,we found that the glycolysis score had a positive corre-
lation with survival prognosis in both cohorts (Fig. 6B). Moreover, the
higher expression levels of numerous glycolysis-associated genes
Fig. 5. Tumor glycolysis promotes PD-L1 expression on tumor cells in diverse cancers. A. The P
types. Spearman's correlation test P values and correlation coefficients are shown. B. The PD
glycolysis-related genes in pan-cancer and various cancer types. R: Spearman's correlation
reduced in MCF-7 (breast cancer), SJSA1 (osteosarcoma), and SK-OV-3 (ovarian carcinoma) w
byWestern blotting.
were significantly associated with a better survival in the immunother-
apeutic cohorts (Fig. 6B and Supplementary Fig. S1A). These genes in-
cluded G6PC3, PGM1, DLAT, GALM, HK3, FBP1, ALDH3B1, and ACSS2.
However, when we analyzed the TCGA datasets in which the tumor pa-
tients were not treated with immunotherapy, we found that the
glycolysis score had a significant negative correlation with survival
prognosis in GBM and LGG (Fig. 6C). Moreover, the upregulation of
these glycolysis-associated geneswere associatedwith a poor prognosis
inmultiple cancer types includingmelanoma (Supplementary Fig. S1B).
The discrepant correlations of glycolytic activity with survival between
the patients treated with immunotherapy and the patients in the ab-
sence of such therapy could be attributed to the higher immunotherapy
response rate in highly glycolytic tumors relative to lowly glycolytic tu-
mors. This can be justified by that the expression ofDLAT andGALMwas
significantly positively correlated with immunotherapy response and
with survival in Nathanson cohort.

4. Discussion

In this study, we explored the correlation between tumor glycolytic
activity and tumor immune activity in 14 cancer types. Our data showed
that tumor glycolytic activity tended to be positively associatedwith di-
verse immune signatures in these cancers. Interestingly, among the
three cancer types in which glycolytic activity and immune score had
the highest correlation (correlation coefficient ≥ 0.5), two were brain-
associated tumors (GBM and LGG). This suggests a particularly signifi-
cant positive correlation between glycolysis and immune/inflammation
activity in brain tumors. This outstanding correlationmay be associated
with the high glycolysis energy metabolism in brain astrocytes [29]
which has a correlation with both GBM and LGG, whereas the related
mechanism remains to be elucidated.

It should be noted that the tumor glycolysis score may not thor-
oughly reflect the tumor itself glycolytic activity considering the possi-
bly incomplete tumor purity. However, when we analyzed high-purity
tumors and low-purity tumors, we observed similar results that glyco-
lytic activity positively correlated with diverse immune signatures in
pan-cancer and multiple cancer types (Supplementary Table S5). Fur-
thermore, we added the tumor purity as a predictor into the logistic
regression model with the glycolytic activity, TMB, and aneuploidy pre-
dictors for predicting immune signatures. We obtained similar results
that glycolytic activity was a positive predictor for immune signatures
in multiple individual cancer types (Supplementary Fig. S2). As ex-
pected, tumor purity is a strong negative predictor for immune signa-
tures in pan-cancer and multiple individual cancer types.

In addition, we compared the expression levels of the 67 glycolysis
pathway genes between highly glycolytic tumors and lowly glycolytic
tumors. We found that 43 (64%) genes were significantly upregulated
in highly glycolytic tumors in at least half of the 14 cancer types
(Student's t-test, FDR b 0.1) (Supplementary Table S6). Notably, many
key genes for glycolytic reactions were upregulated in highly glycolytic
tumors in diverse cancers. For example,HK3, which encodes hexokinase
that catalyzes the first reaction in glycolysis (conversion of D-glucose
into glucose-6-phosphate), had significantly higher expression levels
in highly glycolytic tumors than in lowly glycolytic tumors in all 14
cancer types. GPI, which encodes the enzyme phosphoglucose isomer-
ase involved in the second reaction in glycolysis (conversion of
glucose-6-phosphate to fructose-6-phosphate), had significantly higher
expression levels in highly glycolytic tumors in 12 cancer types. PKM,
which encodes a pyruvate kinase involved in the final step of glycolysis
(conversion of phosphoenolpyruvate into pyruvate), was upregulated
D-L1 expression levels are positively correlated with glycolytic activity in various cancer
-L1 expression levels are positively correlated with the expression levels of numerous
coefficient. C. In vitro experiments demonstrate that PD-L1 expression is significantly
hen tumor glycolysis is inhibited in these cell lines by 2-deoxy-D-glucose (2-DG), evident
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Fig. 6. Tumor glycolytic activity is correlated with immunotherapy response. A. High glycolytic activity is associated with increased immunotherapy response rate in two melanoma
cohorts (Hugo cohort [26] and Nathanson cohort [27]). B. Kaplan-Meier survival curves show that the glycolysis score and the expression of the glycolysis-associated genes are
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in highly glycolytic tumors in 12 cancer types. These data suggest that
our classification of highly and lowly glycolytic tumors using the gene-
set score is reasonable.

Moreover, in comparisonwith TMB and aneuploidy, glycolytic activ-
ity exhibited a stronger and more consistent correlation with immune
signatures in these cancers. Prior studies have revealed that certain ge-
nomic features, such as TMB and neoantigens [30], are associated with
active antitumor immune signatures. We examined the correlation be-
tween glycolytic activity and TMB in the 14 cancer types, and found
that glycolytic activity had a significant positive correlation with TMB
in 2 cancer types (UCEC and KIRP) and had a significant negative corre-
lationwith TMB in 2 cancer types (LUAD and LAML) (Spearman's corre-
lation test, P b .05) (Supplementary Table S7). This suggests that TMB
may not be the key factor explaining the significant correlation between
glycolytic activity and immune signatures in these cancers. In addition,
we examined the correlation between glycolytic activity and tumor an-
euploidy which correlates with reduced antitumor immune signatures
[12]. A significant negative correlation was observed between them in
4 cancer types (LIHC, OV, LUAD, and GBM) (Supplementary Table S7).
This data suggests that aneuploidy is not a necessary factor explaining
the relationship between glycolytic activity and immune signatures, al-
though it may be connectedwith the relationship in a few cancer types.

We found that numerous HLA genes were upregulated in highly gly-
colytic tumors compared to lowly glycolytic tumors via bioinformatics
analysis (Supplementary Fig. S3). This result was verified by in vitro ex-
periments to a certain degree (Fig. 2A). It suggests that tumor glycolysis
may promote tumor immunogenicity in diverse cancers. PD-L1 expres-
sion on tumor cells indicates an antitumor immunosuppressionmecha-
nism in tumor [31]. Our computational and experimental results
showed that tumor glycolysis increased PD-L1 expression in diverse
cancers, suggesting that highly glycolytic tumors are more likely to in-
hibit antitumor immunity compared to lowly glycolytic tumors. This is
consistent with a recent study showing that increased tumor glycolysis
suppressed antitumor immunity [16]. This finding could explain why
highly glycolytic tumor patients showed no a significantly better prog-
nosis than lowly glycolytic tumor patients in these cancer types ana-
lyzed, even though the former had higher levels of antitumor immune
cell infiltration than the latter. However, in the anti-PD-1/PD-L1 immu-
notherapy setting, highly glycolytic tumors tended to exhibit better sur-
vival than lowly glycolytic tumors. This suggests that highly glycolytic
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tumors are more likely to respond to anti-PD-1/PD-L1 therapy than
lowly glycolytic tumors. The more active response to anti-PD-1/PD-L1
therapy in highly glycolytic tumors may be due to the elevated PD-L1
expression on these tumors. Of course, the association between tumor
glycolysis and immunotherapy response revealed in this study needs
to be validated in larger cohorts.

There are several limitations in the present study. First, only three
tumor cell lines were used for in vitro experiments. Second, all experi-
ments were in vitro that would overlook the effect of tumor microenvi-
ronment on tumor immunity. To overcome these limitations, more cell
lines for in vitro experiments and further in vivo experiments are neces-
sary for confirming the presentfindings. Thatwould be a priority for our
future study.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.03.068.
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