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Abstract: Marine sponges commonly host a repertoire of bacterial-associated organisms, which
significantly contribute to their health and survival by producing several anti-predatory molecules.
Many of these compounds are produced by sponge-associated bacteria and represent an incredible
source of novel bioactive metabolites with biotechnological relevance. Although most investigations
are focused on tropical and temperate species, to date, few studies have described the composition
of microbiota hosted by Antarctic sponges and the secondary metabolites that they produce. The
investigation was conducted on four sponges collected from two different sites in the framework
of the XXXIV Italian National Antarctic Research Program (PNRA) in November–December 2018.
Collected species were characterized as Mycale (Oxymycale) acerata, Haliclona (Rhizoniera) dancoi,
Hemigellius pilosus and Microxina sarai by morphological analysis of spicules and amplification
of four molecular markers. Metataxonomic analysis of these four Antarctic sponges revealed a
considerable abundance of Amplicon Sequence Variants (ASVs) belonging to the phyla Proteobacteria,
Bacteroidetes, Actinobacteria and Verrucomicrobia. In particular, M. (Oxymycale) acerata, displayed
several genera of great interest, such as Endozoicomonas, Rubritalea, Ulvibacter, Fulvivirga and Colwellia.
On the other hand, the sponges H. pilosus and H. (Rhizoniera) dancoi hosted bacteria belonging to
the genera Pseudhongella, Roseobacter and Bdellovibrio, whereas M. sarai was the sole species showing
some strains affiliated to the genus Polaribacter. Considering that most of the bacteria identified in
the present study are known to produce valuable secondary metabolites, the four Antarctic sponges
could be proposed as potential tools for the discovery of novel pharmacologically active compounds.

Keywords: Antarctica; Demospongiae; marine biotechnology; metataxonomics; microbiota

1. Introduction

The Antarctic region comprises ice shelves, waters and all the island territories in
the Southern Ocean, covering about 10% of the total world ocean’s area. The Antarctic
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is characterized by low temperature and scarce availability of nutrients, together with a
high seasonality in terms of light conditions. Due to the extreme environmental conditions,
Antarctic fauna has developed several physiological and behavioural adaptations, leading
to the evolution of unique characteristics [1]. For instance, a longer period of larval develop-
ment or parental care has been observed in Antarctic invertebrates, including sponges [2–4].
Moreover, marine invertebrate communities living in this area have been subjected to a
wide temporal and biogeographic isolation [5,6] dating back to about 140 million years ago
when the Antarctic continent separated from Gondwana [7,8]. This event has promoted
the development of specific traits, which make Antarctic organisms extremely diverse from
those living in other southern hemisphere seas [9–11].

Sponges are sessile and filter-feeder organisms, belonging to the phylum Porifera,
which represent, in terms of abundance and biomass, the major component of the Antarctic
zoobenthos [12], with a total number of 400 known species [13]. Through their aquifer-
ous system, they are able to capture several microorganisms (including bacteria, yeasts,
microalgae) from surrounding water and harbour a huge microbial community within
their body [14–16]. Sponges normally establish a strong interaction with their bacterial
hosts due to several benefits that improve their fitness and survival, including nutritional
supply, transport of waste products, and molecules that confer chemical and mechanical
defence [17–19].

Although a good knowledge is available on sponge fauna, the Antarctic region covers
an extraordinarily wide area that makes some zones almost unknown to the scientific
community [20,21]. Until now, a few studies have investigated the composition of mi-
crobial communities living within Antarctic sponges [22–30]. Some of these studies have
demonstrated that Antarctic sponges are mostly dominated by Proteobacteria and Bac-
teroidetes [23,26,29,31]. Interestingly, species composition has been found to be strictly
specific, probably regulated by several bioactive molecules and quorum sensing [14,31–35].
Since several studies have revealed that symbiotic bacteria are able to produce bioactive
metabolites (reviewed by Brinkmann et al. [36]), studying the species composition of mi-
crobiomes could shed light on the possible biotechnological applications of sponges. This
scientific question becomes much more attractive when addressed to Antarctic species,
which are still largely unknown, and might reserve a great potential considering that
they have undergone incredible adaptations. Interactions between sponges and microor-
ganisms may occur in many forms, representing these microorganisms’ food sources,
pathogens/parasites, or mutualistic symbionts [37–40]. Microbial associates can represent
up to 40% of sponge tissue volume. Furthermore, the diversity in types of interactions may
be matched by the phylogenetic diversity of microbes that occur within host sponges.

In the present work, we aimed to enlarge the yet scant knowledge on the bacte-
rial communities inhabiting Antarctic sponges. In particular, we collected four sponges
from two different sites of Tethys Bay (Victoria Land, Antarctica) in the framework of
the XXXIV Italian National Antarctic Research Program (PNRA) expedition. Victoria
Land (Tethys Bay) belongs to the Antarctic Specially Protected Area n. 161 [41] (ASPA
161; https://www.ats.aq/devAS/Meetings/Measure/688 accessed on 29 January 2021).
Sponge species were characterized by morphological and molecular analysis. Metage-
nomic DNA extraction and Illumina MiSeq analysis were applied in order to identify the
associated communities living within the analysed sponges. More than five hundred bacte-
rial isolates were phylogenetically identified to establish whether the associated bacterial
communities were host-specific. By relying on Amplicon Sequence Variants (ASVs) data,
the biotechnological potential of sponge specimens was also considered.

2. Results
2.1. Species Identification
2.1.1. Morphological Analysis

The four sponge specimens belonged to the class Demospongiae and the following two
orders: Haplosclerida with three species, Hemigellius pilosus (Kirkpatrick, 1907), Microxina
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sarai (Calcinai and Pansini, 2000), and Haliclona (Rhizoniera) dancoi (Topsent, 1901), and
Poecilosclerida with one species, Mycale (Oxymycale) acerata (Kirkpatrick, 1907) (Table 1).

Table 1. Sites, sample IDs, species identification, MNA code, geographic coordinates, sampling method in meters (m) and
depth.

Site Sample ID Sponge Taxonomy MNA code Sampling Method Sampling Depth (m) Coordinates

1 B4 Mycale (Oxymycale) acerata (Kirkpatrick, 1907) 13264 SCUBA 26 74◦42.067’S
164◦02.518’E

2 C6 Haliclona (Rhizoniera) dancoi (Topsent, 1901) 13265 SCUBA 28 74◦40.537’S
164◦04.169’E

2 D4 Hemigellius pilosus (Kirkpatrick, 1907) 13266 SCUBA 28 74◦40.537’S
164◦04.169’E

2 D6 Microxina sarai (Calcinai & Pansini, 2000) 13267 SCUBA 28 74◦40.537’S
164◦04.169’E

2.1.2. Molecular Analysis

BLAST similarity search totally agreed with the morphological identification obtained
for B4 and D4 samples. Molecular analysis confirmed B4 species as M. (Oxymycale) acerata,
with CO1 primers that were the most specific (98% of pairwise identity) in comparison to
18S, 28S and ITS molecular markers. Similarly, CO1 also appeared to be the best molecular
marker for the identification of the sponge D4, with a highest sequence similarity to
H. pilosus (98% sequence identity). Regarding sample C6, molecular markers identified
the genus corresponding to Haliclona, with the most striking result achieved using the 18S
marker (92% similarity to Haliclona sp.). Unfortunately, it was not possible to identify this
sponge at the species level, because there are no other available sequences on GenBank for
H. (Rhizoniera) dancoi. Similarly, the results achieved with sample D6 were partially unclear,
since several genera at low-sequence similarity were observed from BLAST outputs. In
fact, the sequences of M. sarai, identified by spicule observations, are still not uploaded in
GenBank (see Tables S1–S4; details on the alignments are reported in Figures S1–S3).

2.2. Metataxonomic Data Analysis

ASVs analysis was conducted considering those reporting a percentage of confidence
≥ 75%. The sponge M. (Oxymycale) acerata (B4) hosted the greatest abundance of bacterial
taxa (250 ASVs), while H. pilosus (D4), H. (Rhizoniera) dancoi (C6) and M. sarai (D6) showed
47, 55 and 120 ASVs, respectively (Tables S5–S8). Overall, concerning the taxonomic profil-
ing, sponge samples were all dominated by Gammaproteobacteria, Alphaproteobacteria
and Bacteroidia (Figure 1).

In addition, M. (Oxymycale) acerata, H. pilosus and H. (Rhizoniera) dancoi revealed
an abundance of both Deltaproteobacteria and Acidimicrobiia. Manhattan algorithm
indicated that M. sarai clustered separately in comparison to the others, with H. pilosus
and H. (Rhizoniera) dancoi resulting as the most similar in terms of species structure and
abundance (Figure 1).

More specifically, a high relative frequency of Gammaproteobacteria and Bacteroidia
were found in M. (Oxymycale) acerata (61.5% and 19%, respectively) and M. sarai (71% and
14%, respectively) (Figure 2; see also Figure S4).

On the contrary, a lower percentage (5–7%) of Alphaproteobacteria was detected in
both species. In addition, M. (Oxymycale) acerata revealed 2–7% of bacteria belonging
to Acidimicrobiia and Verrucomicrobiae classes, while lower percentages (~1%) of other
bacterial phyla (Proteobacteria, Epsilonbacteraeota, Planctomycetes) together with 7% of
an unknown phylum were recorded in M. sarai (Figure S4).
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Figure 1. Heatmap of taxon relative abundance using taxonomic profiling, showing that sponge
samples were all dominated by Gammaproteobacteria, Alphaproteobacteria and Bacteroidia. Sample
code: B4 = M. (Oxymycale) acerata; D4 = H. pilosus, D6 = M. sarai, C6 = H. (Rhizoniera) dancoi. Scaling
was done by column and clustering was performed using average linkage method and Manhattan
distance measurement. Values were normalized as Log10.

Figure 2. Krona Plot at the class level. Gammaproteobacteria of the genus Endozoicomonas were
identified from M. (Oxymycale) acerata as well as Gammaproteobacteria belonging to the genus
Colwellia and some bacterial strains classified as Fulvivirga and Ulvibacter, two genera included into
Bacteroidetes. Bacteria of the family Rhodobacteraceae (class Alphaproteobacteria) were identified in
H. (Rhizoniera) dancoi and H. pilosus. M. sarai was the only species showing a relative abundance of
Polaribacter, an additional species grouped into the Bacteroidetes phylum. Sample code: B4 = M.
(Oxymycale) acerata; D4 = H. pilosus, D6 = M. sarai, C6 = H. (Rhizoniera) dancoi. “1 more” corresponds
to Acidicrodobiia group, which is present in trace levels.
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As reported above (Figure 1), the sponges H. (Rhizoniera) dancoi and H. pilosus re-
vealed a similar composition in bacterial species distribution. In fact, a high abundance of
Alphaproteobacteria (44% in H. (Rhizoniera) dancoi and 33.2% in H. pilosus) and Gammapro-
teobacteria (37% in H. (Rhizoniera) dancoi and 24% H. pilosus) was observed in both species.
Moreover, lower percentages (0.5–5%) of additional taxa were recorded, including the
Nitrospinia, Nitrososphaeria, Acidimicrobiia and Deltaproteobacteria groups. A huge
difference was detected for bacteria belonging to the class Bacteroidia, since a higher rela-
tive abundance was found in H. pilosus (14%) in comparison to H. (Rhizoniera) dancoi (2%)
(Figure S4).

3. Discussion

In the present study, we analyzed the species composition and abundance of the associ-
ated microbiota from four Antarctic sponges, M. (Oxymycale) acerata, H. (Rhizoniera) dancoi, H.
pilosus and M. sarai, collected from Tethys Bay (Victoria Land, Antarctica). In particular, the
associated community of M. (Oxymycale) acerata, collected from site 1 (Table 1), was similar to
H. (Rhizoniera) dancoi and H. pilosus (Figure 1), retrieved from site 2 (Table 1). Interestingly,
at this latter site, we collected the sponge M. sarai, whose species abundance was found
statistically different by Manhattan clustering analysis (Figure 1).

As reported in most investigations focusing on sponge-associated bacteria [42–47], taxo-
nomic profiling showed that Proteobacteria and Bacteroidetes dominated the four Antarctic
sponges (Figure 2; Tables S5–S8). Previous studies identified these bacterial groups from M.
(Oxymycale) acerata and other Antarctic species by metagenomic approaches [23,27,28,30–32,48].
These bacteria were frequently found to be the dominant bacterial phyla in marine ecosys-
tems [49]. In particular, Proteobacteria showed different functions in host, including
nitrogen fixation, and were involved in host defense mechanisms [50]. Furthermore,
some bacteria were described as highly specialized hydrocarbon degrading microorgan-
isms [51,52] and their wide distribution may be due to a strong positive interaction in
environments where bacteria represent a fundamental source of nutrients, such as the case
of Antarctica. This finding could be corroborated by results revealing that these bacteria are
able to adapt to extreme environments, including polar habitats [53–56]. Concerning their
biotechnological potential, genome-mining approaches reported several biosynthetic gene
clusters (BGCs) encoding for bioactive molecules from marine Proteobacteria (reviewed by
Buijs et al. [57]). However, there is no direct 100% correlation between the presence of a
certain BGC, a bacterial genus and a bioactive metabolite. BGCs can be silent in certain
conditions and, hence, methods should be developed to unlock their silent potential [58],
to observe the production of a particular compound and induce the desired bioactivity.
The most common approach known to discover new metabolites is the “OSMAC” (one
strain many compounds) approach. The term OSMAC was coined for the first time by
Zeeck and co-workers [59], indicating the ability of single strains to produce different
metabolites when cultivated under different conditions. Examples are the use of different
culturing strategies to trigger the production of secondary metabolites such as changing
culturing conditions (e.g., nutrients or light exposure), mimicking environmental stressors
and co-culturing with other species.

On the whole, several species belonging to Gammaproteobacteria and Alphapro-
teobacteria isolated from sponges and soils showed antibacterial, antiviral, antifungal
and antiprotozoal activities that make them suitable tools in drug discovery research
fields [36,43,60–63]. In particular, the Gammaproteobacteria of the genus Endozoicomonas,
identified from M. (Oxymycale) acerata in the present work (Figure 2; Table S5), was found
to induce antimicrobial activities [64,65].

Always M. (Oxymycale) acerata showed a relative abundance of a Gammaproteobacte-
ria belonging to the genus Colwellia (Figure 2; Table S5), which is extremely interesting since
it was recently proposed as a useful tool for the bioremediation of nitrogen pollutants [66].
Previous investigations also demonstrated that a sponge-associated Colwellia sp. produces
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several extracellular polymeric substances (EPSs) with potential use in the production of
cosmeceutical and nutraceutical ingredients [35,67].

M. (Oxymycale) acerata also revealed some bacterial strains classified as Fulvivirga and
Ulvibacter, two genera included into Bacteroidetes, the second most abundant phylum
found in the samples under analysis (Figure 2; Table S5). Genome-mining approaches
coupled to chemical analyses revealed the presence of some amine acylated desferrioxamine
siderophores from Fulvivirga sp. with anticancer properties [68]. Similarly, Ulvibacter
species, already observed in Antarctic habitats [69], belong to the family Flavobacteriaceae,
whose biotechnological applications are well-documented. In fact, several polysaccharide-
digesting enzymes together with antibiotics and other bioactive compounds, such as
quercetin (known for its antioxidant, anti-inflammatory, chemopreventive properties),
were isolated [70,71].

The sequencing of 16S regions revealed that M. (Oxymycale) acerata was the sole species
hosting a certain abundance of Rubritalea strains (phylum Verrucomicrobia) (Figure 2;
Table S5). This bacterial group was already observed in other sponge species, from which
some BGCs encoding for PKSs (polyketide synthases) were identified [42,72–77]. Verru-
comicrobia, coupled with Planctomycetes and Chlamydiae, was classified in the PVC
(Planctomycetes, Verrucomicrobia, and Chlamydiae) superphylum, which is known to
include a wide number of species with biotechnological potential [78–80]. The finding
of these bacteria within the symbiotic community of M. (Oxymycale) acerata may be ex-
tremely attractive since several bioactive molecules, such as carotenoids and squalene, were
found in several bacteria belonging to the genus Rubritalea [72–74,81–84]. The potential
capability to produce biotechnologically relevant compounds was also demonstrated by
genomic analyses, revealing some genes involved in defense mechanisms mediated by
toxin-antitoxin systems from sponge-associated verrucomicrobial strains [77].

ASV’s data showed bacteria of the family Rhodobacteraceae (class Alphaproteobacte-
ria) in H. (Rhizoniera) dancoi and H. pilosus (Figure 2; Tables S6 and S7). Several genera were
recognized as a huge source of novel bioactives, especially Pseudovibrio species living in
seawater and through symbiotic relationships with sponges, tunicates and corals [85,86].
For example, H. pilosus specifically hosted the genus Roseobacter, which was also studied
for its antimicrobial properties [87,88]. The hydrocarbon-degrading Gammaproteobacteria
of the genus Pseudohongiella, with potential use in the bioremediation of anthropogenic
contaminants [89,90], were also revealed in H. (Rhizoniera) dancoi and H. pilosus (Figure 2;
Tables S6 and S7).

Less abundant members living within H. pilosus and H. (Rhizoniera) dancoi belonged
to the classes Nitrospinia (phylum Nitrospinae) and Nitrosophaeria (phylum Thaumar-
chaeota) (Figure 2; Tables S6 and S7). Recent investigations already reported low percent-
ages of Nitrospinia from H. pilosus, H. (Rhizoniera) dancoi and other Antarctic species [26,29].
Concerning the capability to produce molecules with biotechnological potential, very little
information is available so far. In a recent study, BLASTp search against the Integrated Mi-
crobial Genomes (IMG) database identified a Pseudoalteromonas luteoviolacea gene encoding
for a L-amino acid oxidase (LAAO) with antimicrobial properties in the genome of a strain
belonging to the phylum Nitrospinae [91].

The sponges under analysis had low percentages of Acidimicrobiia (phylum Acti-
nobacteria), except for M. sarai (Tables S5–S8). According to our results, this bacterial class
was recently reported from H. (Rhizoniera) dancoi, H. pilosus and other Antarctic sponges by
metagenomic analysis [27,28]. Acidimicrobiia were widely observed in marine sponges,
particularly from tropical species [63,92–97]. Similar to Proteobacteria, several studies
demonstrated the great biotechnological potential of Actinobacteria, especially those be-
longing to the Streptomyces genus. In fact, several bioactive compounds with antimicrobial,
antiviral, antiparasitic, antiprotozoal and antitumor effects have been described [98–107].
Moreover, genomic analyses revealed some BGCs encoding for secondary metabolites,
such as PKS I and III, NRPS (nonribosomal peptides), terpene and bacteriocin gene clusters
from a sponge-derived Actinobacteria showing antimicrobial activities [108–112].
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ASV’s analysis of the three sponges, M. (Oxymycale) acerata, H. pilosus and H. (Rhi-
zoniera) dancoi, displayed Deltaproteobacteria (Figure 2; Tables S5–S7) belonging to the
phylum Proteobacteria, that, as mentioned above, produce interesting bioactive metabo-
lites [57]. For instance, H. pilosus exhibited some strains included into the genus Bdellovibrio
(Figure 3; Table S7), which is an obligate predator of other Gram-negative bacteria that was
proposed for possible biotechnological applications toward medicinal, agricultural and
industrial fields [113–115].

Figure 3. Map of Tethys Bay (Victoria Land, Antarctica). The collection sites were reported as blue
(site 1) and yellow (site 2) icons. Scale bar = 1 km.

M. sarai was the only species showing a relative abundance of Polaribacter, an ad-
ditional species grouped into the Bacteroidetes phylum (Figure 2; Table S8). Some data
demonstrated that these cold-adapted bacteria produced interesting EPSs molecules with
protective effects on human skin and anti-aging properties [116,117].

4. Materials and Methods
4.1. Sponge Collection

Four sponge samples, reported as B4, C6, D4 and D6, were collected by scuba divers
in November–December 2018 at two sites of Tethys Bay: 1) B4 at 26 metres of depth
(74◦42.067′ S, 164◦02.518′ E) and 2) C6, D4 and D6 at 28 metres of depth (74◦40.537′ S,
164◦04.169′ E) (Figure 3). Samples were immediately washed at least three times with
filter-sterilized natural seawater to remove transient and loosely attached bacteria and/or
debris [14,27]. Firstly, a small fragment of each sponge was preserved in 70% ethanol for
taxonomic identification. Specimens were then placed into individual sterile tubes and
kept in RNAlater© at −20◦ C until transported to the Stazione Zoologica Anton Dohrn
(Naples, Italy).

Sponge slides of spicules are deposited at the Italian National Antarctic Museum
(MNA, Section of Genoa, Italy). The MNA voucher codes of the sponges investigated in
the present work are reported in Table 1.

4.2. Morphological Analysis of Spicules

The taxonomic identification was conducted at the species level. Small fragments
of each sponge were heat-dissolved in nitric acid, rinsed in water and dehydrated in
ethanol. Then, spicules were mounted on slides for microscopic analyses, following
standard methods [118]. The skeletal architecture was examined under light microscope
and hand-cut sections of sponge portions were made as described in Hooper [119].
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The taxonomic classification follows the updated nomenclature reported in the World
Porifera Database (WPD) [120].

4.3. DNA Extraction and PCR Amplification

About 10 mg of tissue were used for DNA extraction by using QIAamp® DNA Micro
kit (QIAGEN), according to the manufacturer’s instructions. DNA quantity (ng/µL) was
evaluated by NanoDrop spectrophotometer. PCR reactions were performed on the C1000
Touch Thermal Cycler (BioRad) in a 30 µL reaction mixture final volume including about
50–100 ng of genomic DNA, 6 µL of 5X Buffer GL (GeneSpin Srl, Milan, Italy), 3 µL of
dNTPs (2 mM each), 2 µL of each forward and reverse primer (25 pmol/µL, Table 1), 0.2 µL
of Xtra Taq Polymerase (5 U/µL, GeneSpin Srl, Milan, Italy), using different PCR programs
for 18S and 28S, ITS and CO1 as follows:

(i) for 18S and 28S, a denaturation step at 95 ◦C for 2 min, [35 cycles denaturation
step at 95 ◦C for 1 min, annealing step at 60 ◦C (A/B, [121]), 57 ◦C (C2/D2, [122]), 55 ◦C
(18S-AF/18S-BR, NL4F/NL4R, [123]) for 1 min and 72 ◦C of primer extension for 2 min], a
final extension step at 72 ◦C for 10 min;

(ii) ITS primers (RA2/ITS2.2, [121]), a first denaturation at 95 ◦C for 2 min, [35 cycles
denaturation step at 95 ◦C for 1 min, annealing step at 67 ◦C for 1 min and 72 ◦C of primer
extension for 2 min], a final extension step at 72 ◦C for 10 min.

(iii) CO1 primers (dgLCO1490/dgHCO2198, [124]), a first denaturation at 94 ◦C for 3
min, [35 cycles of denaturation at 94 ◦C for 30 sec, annealing at 45 ◦C for 30 sec and primer
extension at 72 ◦C for 1 min].

Sequences of PCR primers are reported in Supporting Information (Table S9). PCR
products were run on 1.5% agarose gel and the fragment length was evaluated by us-
ing 100 bp DNA ladder (GeneSpin Srl, Milan, Italy). PCR products were purified us-
ing QIAquick Gel Extraction Kit (Qiagen), according to the manufacturer’s instructions.
PCR amplicons were then sequenced in both strands through Applied Biosystems (Life
Technologies) 3730 Analyzer (48 capillaries). Sequences produced were ~300–650 bases
long in average with more than 97.5% accuracy, starting from PCR fragments. The total
18S, 28S, ITS and CO1 region were submitted to GenBank using Basic Local Alignment
Search Tool (BLAST) [125] and then aligned with highly similar sequences using MultiAlin
(http://multalin.toulouse.inra.fr/multalin/ accessed on 29 January 2021) [126].

4.4. Metagenomic DNA Extraction and Illumina MiSeq Sequencing

Genomic DNA for 16S rRNA sequencing was performed from about 250 mg of
tissue by using DNeasy® PowerSoil® Pro Kit (QIAGEN), according to the manufacturer’s
instructions. Extractions were performed using both internal and external sponge tissue
in order to obtain the whole bacterial community. DNA quantity (ng/µL) and quality
(A260/280, A260/230) were evaluated by NanoDrop spectrophotometer, whereas DNA
integrity was checked on 0.8% agarose gel electrophoresis in TAE buffer (40 mM Tris-
acetate, 1 mM EDTA, pH 8.0). 20 µL of samples (30 ng/µL final concentration) were
subjected to 16S V3-V4 rRNA gene library preparation and sequencing (Bio-Fab Research,
Rome, Italy). Illumina adapters overhang nucleotide sequences were added to the gene
specific primer sequences targeting the V3-V4 region [127]. After 16S amplification, a
PCR clean-up was done to purify the V3-V4 amplicon from free primers and primer-
dimer species. A subsequent limited cycle amplification step was performed to add
multiplexing indices and Illumina sequencing adapters by using a Nextera XT Index Kit.
Finally, libraries were normalized and pooled by denoising processes (Table S10), and
sequenced on Illumina MiSeq Platform with 2x300 bp paired-end reads. Taxonomy was
assigned using “home made” Naive Bayesian Classifier trained on V3-V4 16S sequences
of SILVA 132 database [128]. QIIME 2 (Quantitative Insights Into Microbial Ecology)
platform [129] was used for microbiome analysis from raw DNA sequencing data. QIIME
analysis workflow was performed by demultiplexing, quality filtering, chimera removal

http://multalin.toulouse.inra.fr/multalin/
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and taxonomic assignment. The full dataset of raw data has been deposited in the SRA
database (submission ID: SUB8701897; BioProject ID: PRJNA687362).

4.5. Statistical Analysis

ASVs distribution and frequency in the whole dataset and for each sample are reported
in the Supporting Information (Figures S5 and S6).

Heatmap was generated by using Heatmapper Software available at http://www.
heatmapper.ca/ accessed on 29 January 2021 [130]. The number of features observed for
each identified taxa were normalized as Log10 and scaled by column. Hierarchical cluster-
ing was applied on both rows and columns by average linkage method. For computing
distance between rows and columns, Manhattan distance measurement algorithm was
performed.

5. Conclusions

Our metataxonomic analysis highlights the occurrence of dominant and locally en-
riched microbes in the Antarctic sponges M. (Oxymycale) acerata, H. (Rhizoniera) dancoi,
H. pilosus and M. sarai, characterized by morphological and molecular approaches. This
can be considered a starting point in the understanding of the global Antarctic micro-
biome in a more complete perspective, given the scarce information in the literature for
extreme environments such as the Antarctica. According to the microbial community
identified, the biotechnological value should not be underestimated. In fact, our findings
open new perspectives concerning the possible role of these Antarctic sponges and their
symbiotic bacteria as a source of bioactive compounds. Further studies will be devoted to
bioassay-guided fractionations for identifying new potential drugs useful in pharmaceuti-
cal, nutraceutical and cosmeceutical fields.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-339
7/19/3/173/s1, Figure S1. Alignments of CO1 (PorCOI2fwd/PorCOI2rev) sequence from B4 sponge
with (a) the first BLAST hit Asbestopluma lycopodium and (b) the sequence of M. acerata displaying
low query cover, Figure S2: Alignment of CO1 (dgLCO1490/dgHCO2198) sequence from B4 sponge
with the first BLAST hit (M. acerata), Figure S3: Alignment of CO1 (dgLCO1490/dgHCO2198)
sequence from D4 sponge with the first BLAST hit (H. pilosus), Figure S4. Krona plot at increasing
complexity levels. Regnum (a), phylum (b), class (c), order (d), family (e), genus (f) and species
(g) were reported. Figure S5. Distribution of ASV’s frequencies, Figure S6. Distribution of ASV’s
frequencies for each sample (reported as a blue bar), Table S1. BLAST results from B4 sponge (Mycale
(Oxymycale) acerata). The primer names, sequence length in base pairs (bp), first hits (highlighted in
bold), hits at low significance displaying the correct species (where present), query cover and identity
percentages (%) were reported, Table S2. BLAST results from C6 sponge (Haliclona (Rhizoniera) dancoi).
The primer names, sequence length in base pairs (bp), first hits (highlighted in bold), hits at low
significance displaying the correct species (where present), query cover and identity percentages
(%) were reported, Table S3. BLAST results from D4 sponge (Hemigellius pilosus). The primer names,
sequence length in base pairs (bp), first hits (highlighted in bold), hits at low significance displaying
the correct species (where present), query cover and identity percentages (%) were reported, Table S4.
BLAST results from D6 sponge (Microxina sarai). The primer names, sequence length in base pairs
(bp), first hits (highlighted in bold), query cover and identity percentages (%) were reported, Table
S5. ASVs found from M. (Oxymycale) acerata with percentage of confidence ≥ 75%, Table S6. ASVs
found from H. (Rhizoniera) dancoi with percentage of confidence ≥ 75%, Table S7. ASVs found from
H. pilosus with percentage of confidence ≥ 75%, Table S8. ASVs found from M. sarai with percentage
of confidence ≥ 75%, Table S9. Targeted region, forward and reverse names, sequences (5’→ 3’) and
reference of primers pairs used for molecular characterization, Table S10. Denoising process.

http://www.heatmapper.ca/
http://www.heatmapper.ca/
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