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Abstract

The SARS–coronavirus (SARS–CoV) is the etiological agent of the severe acute respiratory syndrome (SARS). The SARS–CoV spike (S)
glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. The cytoplasmic portion of the S
glycoprotein contains four cysteine-rich amino acid clusters. Individual cysteine clusters were altered via cysteine-to-alanine amino acid
replacement and the modified S glycoproteins were tested for their transport to cell-surfaces and ability to cause cell fusion in transient transfection
assays. Mutagenesis of the cysteine cluster I, located immediately proximal to the predicted transmembrane, domain did not appreciably reduce
cell-surface expression, although S-mediated cell fusion was reduced by more than 50% in comparison to the wild-type S. Similarly, mutagenesis
of the cysteine cluster II located adjacent to cluster I reduced S-mediated cell fusion by more than 60% compared to the wild-type S, while cell-
surface expression was reduced by less than 20%. Mutagenesis of cysteine clusters III and IV did not appreciably affect S cell-surface expression
or S-mediated cell fusion. The wild-type S was palmitoylated as evidenced by the efficient incorporation of 3H-palmitic acid in wild-type S
molecules. S glycoprotein palmitoylation was significantly reduced for mutant glycoproteins having cluster I and II cysteine changes, but was
largely unaffected for cysteine cluster III and IV mutants. These results show that the S cytoplasmic domain is palmitoylated and that
palmitoylation of the membrane proximal cysteine clusters I and II may be important for S-mediated cell fusion.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

An outbreak of atypical pneumonia, termed severe acute
respiratory syndrome (SARS), appeared in the Guangdong
Province of southern China in November, 2002. The mortality
rates of the disease reached as high as 15% in some age groups
(Anand et al., 2003). The etiological agent was found to be a
novel coronavirus, which was named the SARS–coronavirus
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(SARS–CoV) (Drosten et al., 2003; Ksiazek et al., 2003; Peiris
et al., 2003). Analysis of the viral genome has demonstrated that
the SARS–CoV is phylogenetically divergent from the three
known antigenic groups of coronaviruses (Drosten et al., 2003;
Ksiazek et al., 2003). However, analysis of the polymerase gene
alone, indicated that the SARS–CoV may be an early offshoot
from the group 2 coronaviruses (Snijder et al., 2003).

The coronaviruses are the largest of the enveloped RNA
viruses with a positive-stranded RNA genome of 28 to 32 kb
(Holmes, 2003). Coronaviruses possess a wide host range,
capable of infecting mammalian and avian species. All
identified coronaviruses have a common group of indispensable
genes that encode nonstructural proteins including the RNA
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replicase gene open reading frame (ORF) 1ab and the structural
proteins nucleocapsid (N), membrane protein (M), envelope
protein (E), and spike glycoprotein (S), which are assembled
into virus particles. A hemagglutinin–esterase (HE) protein is
also encoded by some coronaviruses. Dispersed among the
major viral genes are a series of ORFs that are specific to the
different coronavirus groups. Functions of the majority of these
ORFs have not been determined.

The SARS spike glycoprotein, a 1255-amino-acid type I
membrane glycoprotein (Rota et al., 2003), is the major protein
present in the viral membrane forming the typical spike
structure found on all coronavirions. The S glycoprotein is
primarily responsible for entry of all coronaviruses into
susceptible cells through binding to specific receptors on cells
and facilitating subsequent virus–cell fusion (Cavanagh, 1995).
The S glycoprotein specified by mouse hepatitis virus (MHV) is
cleaved into S1 and S2 subunits, although cleavage is not
necessarily required for virus–cell fusion (Bos et al., 1997;
Gombold et al., 1993; Stauber et al., 1993). Similarly, the
SARS–CoV S glycoprotein may be cleaved into S1 and S2
subunits in Vero E6-infected cells (Wu et al., 2004), while it is
not known whether this cleavage affects S-mediated cell fusion.
The SARS–CoV receptor was identified as the angiotensin-
converting enzyme 2 (ACE2) (Li et al., 2003).

Although the exact mechanism by which the SARS–CoV
enters the host cell has not been elucidated, it is most likely
similar to mechanisms proposed for other coronaviruses.
Generally, upon receptor binding at the cell membrane, the S
glycoprotein is thought to undergo a dramatic conformational
change causing exposure of a hydrophobic fusion peptide,
which is subsequently inserted into cellular membranes. This
conformational change of the S glycoprotein causes close
apposition of viral and cellular membranes followed by
membrane fusion resulting in entry of the virion nucleocapsids
into cells (Eckert and Kim, 2001; Tsai et al., 2003; Zelus et al.,
2003). This series of S-mediated virus entry events is similar to
other class I virus fusion proteins (Baker et al., 1999; Melikyan
et al., 2000; Russell et al., 2001).

Important structural elements of the S ectodomains required
for stabilization of conformational structures of S immediately
preceding membrane fusion are the heptad repeat (HR) amino
acid regions (Fig. 1). The HRs contain a sequence motif
characteristic of coiled-coils, which appear to be a common
motif in many viral and cellular fusion proteins (Skehel and
Wiley, 1998). These coiled-coil regions allow the protein to fold
back upon itself as a prerequisite step to initiating the membrane
fusion event. There are usually two HR regions: an N terminal
HR region adjacent to the fusion peptide and a C-terminal HR
region close to the transmembrane domain (TMD) of the protein
(Fig. 1).

Based on structural similarities, two classes of viral fusion
proteins have been established (Kielian, 2006; Lescar et al.,
2001). Class I viral fusion proteins, such as the SARS–CoV S
glycoprotein contain two heptad repeat regions and an N-
terminal or N-proximal fusion peptide (Fig. 1). Class II viral
fusion proteins lack heptad repeat regions and contain an
internal fusion peptide (Lescar et al., 2001). Typically, the
ectodomains of the S2 subunits of coronaviruses contain two
heptad regions, HR1 and HR2 located proximal to the
transmembrane region (de Groot et al., 1987) (Fig. 1). These
HRs form a six-helix bundle having three α-helices formed by
HR1 and three antiparallel HR2 α-helices. Formation of this
six-helix bundle brings the fusion peptide in close proximity to
the TMD of the S glycoprotein, a prerequisite step to membrane
fusion (Bosch et al., 2003). Although the structure of the HR1–
HR2 complex has been solved in peptide reconstitution
experiments (Ingallinella et al., 2004), the conformational
changes that result in the six-helix bundle are not known.
Presumably, S binding to cellular receptor and/or activation by
low-pH conditions initiates the cascade of conformational
events that result in the six-helix bundle, which is ultimately
stabilized by the HR affinities for each other. The fusion peptide
of the coronavirus S glycoprotein is predicted to be at the N-
terminus of S2 (Sainz et al., 2005).

The carboxyl termini of certain viral class I fusion proteins
have been shown to play regulatory roles in membrane fusion
(Bagai and Lamb, 1996; Gabuzda et al., 1992; Sergel and
Morrison, 1995; Seth et al., 2003; Tong et al., 2002; Yao and
Compans, 1995). Specifically for coronaviruses, the MHV S
glycoprotein carboxyl terminus was shown to contain cysteine-
rich regions, which were critical for fusion of infected cells (Bos
et al., 1995; Chang et al., 2000; Ye et al., 2004). The SARS–
CoV S glycoprotein has relatively high (3%) cysteine content
(39 residues). Nine of the cysteine resides are concentrated in a
region that spans the putative TMD and the cytoplasmic
domain, with six of these residues being well conserved among
different coronaviruses (Fig. 1). The precise boundaries of the S
TMD specified by different coronaviruses are not known, and
different predictions include or exclude part of the cysteine-rich
domain as part of the TMD (Broer et al., 2006; Chang et al.,
2000; Godeke et al., 2000; Ye et al., 2004). Inclusion of part of
the cysteine-rich motif produces a TMD of 34 amino acids,
which is longer than necessary to cross the membrane (Broer et
al., 2006).

Regardless of the native location of the cysteine residues in
either the TMD or the cytoplasmic portions of S, this unusual
concentration and conservation of cysteine among all corona-
viruses suggests that they play an important role in S
glycoprotein function. For MHV, studies have shown that the
cysteine rich domain is required for coronavirus-induced
membrane fusion. Specifically, substitution of the cytoplasmic
portion of the cysteine-rich region including the cytoplasmic tail
of MHV S with the cytoplasmic tail of the VSV-G protein
abolished MHV S glycoprotein-mediated cell–cell fusion (Bos
et al., 1995). Other studies showed that while the cysteine-rich
domain was not the sole functional domain of the transmem-
brane anchor required for fusion activity, it was apparently
necessary for fusion activity (Chang et al., 2000).

In this study, cysteine-to-alanine mutagenesis was used to
elucidate which cysteine clusters were dispensable for protein
transport and SARS–CoV S-mediated cell–cell fusion.
Cysteine-rich domains that are immediately proximal to the
intramembrane sequence of S were found to be important for
S-mediated cell fusion. In addition, S was shown to be



Fig. 1. Alignment of the membrane spanning domain and endodomain of the spike glycoprotein from ten different coronaviruses. A schematic diagram of the SARS–
CoV S protein from amino acid 1 to amino acid 1255 is shown at the top of the figure. Avertical line demarcates the potential cleavage between the S1 and S2 subunits
of the protein. The carboxyl terminus (amino acids 1193 to 1255) of the SARS–CoV S glycoprotein is shown enlarged below aligned with the same region of the S
glycoprotein specified by other coronaviruses. Viruses from antigenic group I (feline infectious peritonitis virus [FIPV], transmissible gastroenteritis virus [TGEV′,
human coronavirus 229E [HCoV–229E]), antigenic group II (three different mouse hepatitis virus strains [A59, JHM, and MHV2], bovine coronavirus [BCoV], and
human coronavirus OC43 [HCoV–OC43]), and antigenic group III (infectious bronchitis virus [IBV]) are represented in the alignment. The membrane spanning
domain and the cytoplasmic tail are denoted with arrows above the alignment. Residues conserved in at least eight of the ten coronaviruses represented are indicated by
the shaded residues. Cysteines that are highly conserved throughout all of the S proteins are noted by asterisks (Abraham et al., 1990; Binns et al., 1985; Delmas et al.,
1992; Kunkel and Herrler, 1993; Luytjes et al., 1987; Marra et al., 2003; Mounir and Talbot, 1993; Parker et al., 1989; Raabe et al., 1990; Rasschaert and Laude, 1987).
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palmitoylated at these cysteine-rich domains suggesting that S
carboxyl terminal palmitoylation may be important for its
fusogenic properties. These results are in general agreement
with previous findings with other coronaviruses, most notably
MHV (Bos et al., 1995; Chang et al., 2000).

Results

Genetic analysis of the S glycoprotein cysteine-rich domain

The exact limits of the SARS S transmembrane region are not
known. Predictions cited in the literature for different corona-
viruses place part of the cysteine-rich carboxyl terminal motif
within the TMD(Broer et al., 2006). The Web-based algorithm
Prediction of Transmembrane Regions and Orientation
(TMPpred), predicts amino acid residues 1198–1215
(VWLGFIAGLIAIVMVTILL) as a strongly preferred model
TMD and the sequence 1199–1219 (LGFIAGLIAIVMV-
TILLCCM) as an alternative model TMD. In contrast, the
Classification and Secondary Structure Prediction of Membrane
Proteins (SOSUI)WEB-based algorithm (Hirokawa et al., 1998)
predicts the amino acid residues 1201–1223 (GFIAGLIAIVMV-
TILLCCMTSCC) as a potential TMD. For presentation and
discussion purposes as well as for reasons that will become
apparent in the discussion section of this paper, we have chosen
to represent the TMD as predicted by TMPpred, which places the
entire cysteine-rich motif as part of the S endodomain (Figs. 1
and 2). In a recent manuscript, we referred to the cysteine-rich
regions as cysteine clusters CRM1 andCRM2 (Petit et al., 2005).
In this work, we have further subdivided CRM1 into cysteine
clusters CL-I and CL-II, and CRM2 into cysteine clusters CL-III
and CL-IV (Fig. 2). To elucidate the role of the S carboxyl
terminal cysteine-rich domains inmembrane fusion, intracellular
transport, and cell surface expression, mutated S genes carrying
cysteine cluster-to-alanine mutations were constructed by
replacing all cysteine residues within the CL-I, CL-II, CL-III
or CL-IV positions generating S mutant genes mCL-I, mCL-II,
mCL-III and mCL-IV, respectively (Fig. 2).

Effects of mutations on S synthesis

Western immunoblot analysis was used to detect expression
of all constructed mutant glycoproteins as well as the wild-type
after transfection of Vero cells (Fig. 3). Cellular lysates prepared
from transfected cells at 48 h post-transfection were electro-
phoretically separated by SDS–PAGE and the S glycoproteins
were detected via chemiluminescence using a monoclonal
antibody specific for the S1 portion of the SARS–CoV S



Fig. 2. Schematic diagram of the SARS–CoV S glycoprotein endodomain and the cysteine cluster to alanine mutations. Amino acid sequences of the carboxyl termini
and the cysteine cluster-to-alanine mutations are shown for the wild-type as well as the mutant proteins. The cysteine clusters (CRM1 and CRM2) and the charged rich
regions of the S proteins are encompassed in brackets and labeled. The transmembrane portion of the endodomain is italicized and underlined. Amino acids mutated to
alanines for the mCL-I, mCL-II, mCL-III, and mCL-IV cluster mutations are in bold.
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glycoprotein as we have recently described (Petit et al., 2005).
Carbohydrate addition was shown to occur in at least four
different locations of the SARS–CoV S glycoprotein (Krokhin
et al., 2003; Ying et al., 2004). Furthermore, transiently
expressed S glycoprotein in Vero E6 cells can be proteolytically
cleaved into S1 and S2 components (Wu et al., 2004). The anti-
S monoclonal antibody SW-111 detected a protein species in
cellular extracts from transfected cells, which migrated with an
apparent molecular mass of approximately 180 kDa, as reported
previously (Song et al., 2004). All mutated S glycoproteins
produced similar S-related protein species in comparison with
the wild-type S indicating that none of the engineered mutations
adversely affected S synthesis and intracellular processing (Fig.
3). Similar results were obtained when the mCL-I and mCL-II
Fig. 3. Western blot analysis of the expressed mutant SARS–CoV mutant
glycoproteins. Immunoblots of wild-type [So–3xF(WT)] and cysteine to alanine
mutant S glycoproteins probed with monoclonal anti-SARS S antiserum. “Cells
only” represents a negative control in which mock-transfected Vero cells were
probed with the monoclonal antibody to the SARS–CoV S glycoprotein.
mutations were combined into the S mutant form mCL-I+ II
(not shown).

Ability of mutant S glycoproteins to be expressed on the cell
surface

Immunohistochemical analysis was used to label cell-surface
expressed S under live cell conditions, and to determine total S
expression after fixing and permeabilizing the cells prior to
reaction (Fig. 4). An ELISAwas used to quantitatively determine
the relative amounts of cell-surface and total cellular expressed S
glycoprotein. A ratio between the cell-surface localized S and
total cellular S expressed was then calculated and normalized to
the corresponding ratio obtained with the wild-type S glyco-
protein (see Materials and methods) (Fig. 5). All cysteine cluster
to alanine mutants were expressed on the cell surface at rate
comparable to that of the wild-type. Specifically, the levels of
each S mutant expression on the transfected cell surfaces in
comparison to the wild-type S were: mCL-I (91%), mCL-II
(87%), mCL-III (101%), and mCL-IV (110%). The S mutant
form mCL-I+ II expressed on transfected cell surfaces at
approximately 95% of the wild-type S (not shown).

Effects of mutations on the palmitoylation of the S glycoprotein

The carboxyl terminal cysteine residues of the MHV S have
been shown to be palmitoylated (Bos et al., 1995). To determine
if the SARS S was also palmitoylated , transiently expressed
wild-type S and mutant forms containing cysteine-to-alanine
substitutions were assayed for their ability to incorporate [3H]
palmitic acid. After labeling, the cellular lysates were electro-
phoretically separated by SDS–PAGE and visualized by
fluorography (see Materials and methods) (Fig. 6A). The wild-
type S produced a protein species at the expected apparent
molecular mass of 180 kDa, which indicates that the SARS–
CoV S is palmytoylated. Similarly, each S mutant produced an
S-related protein species with the expected molecular mass of
full-size S. However, only the mCL-IV mutant appeared to be
palmitoylated as well as the wild-type S (Fig. 6A). To determine
the relative level of S palmitoylation, all S protein species film



Fig. 4. Immunohistochemical detection of cell-surface and total expression of the SARS–CoV S wild-type and mutant proteins. Vero cells were transfected with the
wild-type SARS–CoVoptimized S (SARS So 3xF) (E1, E2), mCL-I (A1, A2), mCL-II (B1, B2), mCL-III (C1, C2), mCL-IV (D1, D2), and a wild-type SARS–CoV
optimized S labeled with a 3xFLAG carboxyl tag (F1, F2), which served as a negative control. At 48 h post-transfection, cells were immunohistochemically processed
under live conditions to detect cell-surface expression (A1, B1, C1, D1, E1, and F1), or permeabilized conditions to detect total expression (A2, B2, C2, D2, E2, and
F2) using the anti-FLAG antibody.
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images obtained by autoradiography were scanned, digitally
analyzed, and normalized to the total protein of the sample
obtained by spectrophotometry (not shown). The amount of
palmitoylation was then expressed as a ratio to the relative
amount of wild-type S (see Materials and methods). Palmitoyla-
tion of the mCL-I and mCL-II mutants was reduced by 56% and
49%, respectively. Palmitoylation of the mCL-III mutant was at
similar levels to the wild-type S while palmitoylation of the
mCL-IV mutant was reduced by approximately 5%. (Fig. 6B).

To further assess the contribution of the mCL-I and mCL-II
mutations in the observed inhibition of S palmitoylation, a mutant
S form was constructed carrying both the mCL-I and mCL-II
mutations. Palmitoylation experiments revealed that palmitoyla-
tion of the mCL-I+II S mutant form was reduced by appro-
ximately 80% in comparison to the wild-type S (Figs. 7A, B).

Effects of mutations on S-mediated cell-to-cell fusion

Transiently expressed wild-type S causes extensive cell-to-
cell fusion (syncytial formation), especially in the presence of
the SARS–CoV ACE2 receptor (Li et al., 2003; Petit et al.,
2005) To determine the ability of each cysteine cluster to
alanine mutant S glycoprotein to cause cell-to-cell fusion and
the formation of syncytia, fused cells were labeled by
immunohistochemistry using the anti-FLAG antibody. The
extent of cell-to-cell fusion caused by each mutant glycoprotein
was then calculated by obtaining the average size of
approximately 300 syncytia (Fig. 8). Typically, all transfections
produced a similar number of syncytia (not shown). The
average syncytium size for each mutant was then normalized to
that found in wild-type S transfected cells as outlined in the
Materials and methods and detailed previously (Petit et al.,
2005). The mCL-I (54%), mCL-II (62%), mCL-III (15%), and
mCL-IV (14%) mutants inhibited the formation of syncytia by
the percentages indicated (Fig. 8).

Discussion

Previous studies have shown that the intracytoplasmic
endodomains of class I membrane proteins play an important
role in intracellular transport and virus-induced cell-to-cell
fusion (Bagai and Lamb, 1996; Bos et al., 1995; Chang et al.,



Fig. 5. Ratios of cell-surface to total cellular expression of mutant SARS–CoV S
glycoproteins. Detection of cell surface and total glycoprotein distribution was
determined by immunohistochemistry and ELISA (see Materials and methods).
Cell-surface and total cell expression of the S glycoprotein was measured by
immunohistochemistry. For cell-surface expression the transfected cell mono-
layers were reacted with anti-FLAG antibody at room temperature under live
conditions. For total S glycoprotein detection, cells were fixed and
permeabilized prior to reaction with the anti-FLAG antibody. A ratio between
the amount of S detected on cell-surfaces to total cellular expression of S was
calculated and normalized to the wild-type protein, and expressed as a
percentage ratio of the wild-type S. The error bars represent the maximum and
minimum surface to total ratios obtained from three independent experiments,
and the bar height represents the average surface to total ratio as a percentage of
the wild-type.

Fig. 6. Incorporation of [3H] palmitic acid into wild-type and single cysteine
mutant forms mCL-I, mCL-II, mCL-III and mCL-IV of the SARS–CoV S
glycoprotein. (A) Autoradiographic images of immunoprecipitates resolved by
SDS–PAGE electrophoresis of cellular extracts obtained from transfected Vero
cells labeled with [3H] palmitic acid. Apparent molecular mass controls are as
shown. Sample from mock-transfected Vero cells was used as a negative protein
control (protein control). The samples from transfected Vero cells with the wild-
type {So–3xF (WT)} and each of the four mutated S genes are shown. (B) An
estimation of the relative concentration of the palmitoylated S species in
comparison to the wild-type S is shown. To determine the relative level of S
palmitoylation, all S protein species film images obtained by autoradiography
were scanned, digitally analyzed, and normalized to the total protein of the
sample obtained by spectrophotometry (not shown). The amount of palmitoyla-
tion was then expressed as a ratio to the relative amount of wild-type S.
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2000; Lontok et al., 2004; Petit et al., 2005; Schwegmann-
Wessels et al., 2004; Sergel and Morrison, 1995; Tong et al.,
2002; Waning et al., 2004; Yao and Compans, 1995). Recently,
we reported that the endodomain of the SARS S glycoprotein
contains distinct domains that function in intracellular transport,
cell-surface expression and cell fusion (Petit et al., 2005). These
results suggested the involvement of cysteine-rich motifs
located in the carboxyl terminus of the SARS S in S-mediated
cell fusion. In this study, we have analyzed via site-directed
mutagenesis the relative contribution of each sub-cluster of
cysteine residues in S synthesis, cell surface expression and
S-mediated cell fusion. The salient features of our findings are:
1) Cysteine residues that are proximal to the TMD play crucial
roles in S-mediated cell fusion; 2) The SARS-S is palmitoy-
lated, most likely, at the two TMD-proximal cysteine sub-
clusters. This work suggests that palmitoylation of the
cytoplasmic terminus of the SARS S is important in S-mediated
cell fusion.

Contribution of carboxyl terminal cysteine residues in
S synthesis and S-mediated cell fusion

The mCL-I and mCL-II mutations are cysteine-to-alanine
cluster mutations that target the two cysteine rich clusters most
proximal to the transmembrane region of the S glycoprotein.
Both of these S mutants were expressed on the cell surface at
levels comparable to that of the wild-type (91% and 87%,
respectively). However, S-mediated cell fusion was drastically
reduced in comparison to the wild-type S. Specifically, cell
fusion produced by the mCL-I and mCL-II cluster S mutants
was reduced by 55% and 60%, respectively. Similar modifica-
tions of cysteine residues within the carboxyl terminus of the
MHV S that correspond to the SARS S cysteine residues
reduced MHV S-mediated cell fusion by 56% and 94%,
respectively (Chang et al., 2000), indicating that these cysteine
residues play important roles in both SARS–CoV and MHV
S-mediated cell fusion.



Fig. 7. Incorporation of [3H] palmitic acid into wild-type and double cysteine
mutant forms mCL-I+II of the SARS–CoV S glycoprotein. (A) Autoradio-
grams of immunoprecipitates as in Fig. 6A for the double-mutant mCL-I+ II. (B)
An estimation of the relative concentration of the palmitoylated S species in
comparison to the wild-type S is shown as in Fig. 6B.

Fig. 8. Quantitation of the extent of S-mediated cell fusion. The average size of
syncytia for each mutant was determined by digitally analyzing the area of
approximately 300 syncytia stained by immunohistochemistry for S glycopro-
tein expression using the Image Pro Plus 5.0 software package (see Materials
and methods). Error bars shown represent the standard deviation calculated
through comparison of the data from each of three experiments.
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S-palmitoylation and S-mediated cell fusion

Wild-type S as well as mutant S glycoproteins were
efficiently labeled with 3H-palmitic acid indicating that the
SARS–CoV S is palmitoylated. Analysis of the different S
mutants revealed that the two cysteine clusters proximal to the
TMD are major sites for S palmitoylation, since 3H-palmitic
acid incorporation was significantly reduced in the mCL-I and
mCL-II cluster mutations. This conclusion is further supported
by the fact that combination of the mCL-I and mCL-II
mutations into S mutant form mCL-I+ II reduced palmitoylation
by more than 80% in comparison to the wild-type S. In contrast,
the mCL-III and mCL-IV mutations did not drastically affect
3H-palmitic acid incorporation into these S mutant glycopro-
teins indicating that these cysteine residues are probably not
efficiently palmitoylated. The residual palmitoylation observed
in the S mutant form mCL-I+ II indicates that some of these
other cysteine residues within the carboxyl terminus of the S
glycoprotein may be inefficiently palmitoylated.

The mCL-I and mCL-II mutations drastically affected S-
mediated cell fusion, while the mCL-III and mCL-IV mutations
caused an approximate 15% reduction in cell fusion. The mCL-
I+ II mutation reduced S-mediated cell fusion to approximately
the same level as the mCL-I and mCL-II mutations alone (not
shown) indicating that palmitoylation of the S carboxyl
terminus at the membrane proximal cysteine residues enhances
S-mediated cell fusion, but it is not absolutely necessary for S-
mediated cell fusion. Furthermore, none of the mutations
including the double mutant mCL-I+ II significantly affected
the levels of S cell-surface expression. These results strongly
suggest that palmitoylation of cysteine residues within the
carboxyl terminus of S is important for S mediated cell fusion
with the proximal to the TMD cysteines being primary sites for
palmitoylation. Based on the low levels of reduction of S-
mediated cell fusion by the S-mutant forms mCL-III and mCL-
IV, as well as the low level of palmytoylation of the S-mutant
form mCL-I+ II, it is possible that the cysteine residues altered
in the mCL-III and mCL-IV mutations are also inefficiently
palmitoylated. This inefficient palmytoylation may help sustain
basal fusogenic functions of S.

The carboxyl terminal cysteine residues of viral membrane
glycoproteins have been reported to serve as potential
palmitoylation sites (Ponimaskin and Schmidt, 1995; Rose et
al., 1984; Schlesinger et al., 1993; Schmidt, 1989; Sefton and
Buss, 1987). Palmitoylation of viral glycoproteins involved in
cell fusion have been shown to affect the ability to fuse cellular
membranes, virus infection of cells, and virus assembly (Glick
and Rothman, 1987; Jin et al., 1996; Melikyan et al., 2000;
Naim et al., 1992; Schroth-Diez et al., 1998; Zurcher et al.,
1994). Specifically for coronaviruses, it has been shown that the
S2 fragment of the MHV and the human coronavirus A59 S
glycoprotein is palmitoylated on its carboxyl-terminal region
(Niemann and Klenk, 1981; Sturman et al., 1980; van Berlo et
al., 1987). Furthermore, the MHV S C1217 and C1223 amino
acid residues have been shown to be potential acylation sites
(Bos et al., 1995).
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In general, cysteines proximal to the inner leaflet of the
plasma membrane in viral proteins often undergo palmitic acid
attachment through a thioester bond onto cysteine residues
(Ponimaskin and Schmidt, 1995; Rose et al., 1984; Schlesinger
et al., 1993; Schmidt, 1989; Sefton and Buss, 1987). The
findings that the carboxyl terminus portion of the SARS–CoV S
glycoprotein is palmitoylated substantially strengthen our
transmembrane prediction model that places the palmitoylated
cysteine residues proximal, but not within the TMD. Appar-
ently, palmitoylation of these cysteine residues is not necessary
for plasma membrane transport and anchoring, since none of the
mutations seemed to drastically affect intracellular transport and
cell-surface expression. However, palmitoylation may provide
additional anchoring during extracellular receptor binding and
S-mediated cell fusion, which must produce substantial stresses
on TMD anchoring. Alternatively, it is possible that cytoplasmic
conformational changes mediated by palmitoylation and other
modifications alter the ability of the extracellular portion of S to
assume the proper conformation required for optimum cell
fusion, implying a signal transduction mechanism between the
intracellular and extracellular domains.

Materials and methods

Cells and S monoclonal antibody

African green monkey kidney (Vero) cells were obtained
from the American Type Culture Collection (Rockville, MD).
Cells were propagated and maintained in Dulbecco's modified
Eagle medium (Sigma Chemical Co., St. Louis, MO) containing
sodium bicarbonate and 15 mM HEPES supplemented with
10% heat-inactivated fetal bovine serum. The monoclonal
antibodies SW-111 was raised against the Spike envelope
glycoprotein of the SARS–CoV virus as described in detail
previously (Petit et al., 2005).

Plasmids

The parental plasmid used in the present study, SARS-S-
Optimized, has been previously described (Li et al., 2003). The
Spike–3XFLAG–N gene construct was generated by cloning
the codon-optimized S gene, without the DNA sequence
coding for the signal peptide, into the p3XFLAG–CMV-9
plasmid vector (Sigma). PCR overlap extension (Aiyar et al.,
1996) was used to construct the cluster to alanine mutants as
described previously (Petit et al., 2005). Restriction endonu-
clease sites BamHI and PmlI were then used to clone the gene
construct into the Spike–3XFLAG–N plasmid. The con-
structed cluster mutants targeting the S cysteine-rich region
changed the following sets of amino acids to alanine residues:
mCL-I: C(1217), C(1218);mCL-II: C(1223), C (1224),C(1226);
mCL-III:C(1230),C(1232);mCL-IV:C(1235),C(1236) (Fig. 2).

Western blot analysis

Vero cell monolayers in six-well plates were transfected with
the indicated plasmids utilizing the Lipofectamine 2000 reagent
(Invitrogen) according to the manufacturer's directions. At 48 h
post-transfection, cells were collected by low-speed centrifuga-
tion, washed with Tris-buffered saline (TBS), and lysed on ice
for 15 min in mammalian protein extraction reagent supple-
mented with a cocktail of protease inhibitors (Invitrogen/Life
Technologies). Insoluble cell debris was pelleted, samples were
electrophoretically separated by SDS–PAGE, transferred to
nitrocellulose membranes, and probed with anti-SARS–CoV
monoclonal antibody at a 1:10 dilution as described in detail
previously (Petit et al., 2005).

Cell surface immunohistochemistry

Vero cell monolayers in six-well plates were transfected with
the indicated plasmids utilizing the Lipofectamine 2000 reagent
(Invitrogen) according to the manufacturer's directions. At 48 h
post-transfection, the cells were washed with TBS-Ca/Mg and
either fixed with iced cold methanol or left unfixed (live).
Immunohistochemistry was performed by utilizing the Vector
Laboratories Vectastain Elite ABC kit (Vector Laboratories,
Burlingame, CA) essentially as described in the manufacturer's
directions and described in detail previously (Petit et al., 2005).

Determination of cell-surface to total cell S glycoprotein
expression

Vero cell monolayers in six-well plates were transfected with
the indicated plasmids and processed for immunohistochem-
istry as described above with the exception that the ABTS
Substrate Kit, 2, 2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic
acid) (Vector Laboratories) was used instead of the NovaRed
substrate. After the substrate was allowed to develop for 30 min,
100 μl of the developed substrate was transferred, in triplicate,
to a 96-well plate. The samples were then analyzed for color
change at a wavelength of 405 nm. The absorbance reading
from cell-surface labeling experiments obtained from live cells
were divided by the total labeled absorbance readings obtained
from fixed cells which was then normalized to the wild-type
protein values. The measurements were then converted to
percentages reflecting the ratio of S present on cell-surfaces
versus the total S expressed in the transfected cells.

Quantitation of the extent of S-mediated cell fusion

Vero cell monolayers in six-well plates were transfected in
triplicate with the indicated plasmids utilizing the Lipofecta-
mine 2000 reagent (Invitrogen) according to the manufacturer's
directions. Concurrently, Vero cell monolayers in six-well plates
were transfected with the plasmid encoding the ACE2 receptor
protein utilizing the Lipofectamine 2000 reagent (Invitrogen)
according to the manufacturer's directions. At 24 h post-
transfection, cells containing the mutant plasmids, the ACE2
receptor, and normal untransfected cells were washed with
TBS-Ca/Mg, trypsinized, and overlayed in a single well of a
six-well plate at a ratio of 2 ml (cells transfected with the ACE2
receptor) : 0.5 ml (cells transfected with the mutant) :1.5 ml
(untransfected cells). All of the cells transfected with ACE2
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were pooled to ensure that every well had an equal amount of
cells with receptor expressed on their surface. After incubation
for 24 h, the cells were washed with TBS-Ca/Mg and fixed with
ice cold methanol. Immunohistochemistry was performed by
utilizing the Vector Laboratories Vectastain Elite ABC kit
essentially as described in the manufacturer's directions.
Briefly, cells were washed with TBS-Ca/Mg and incubated in
TBS blocking buffer supplemented with normal horse serum at
room temperature for 1 h. After blocking, cells were reacted
with anti-FLAG antibody (1:500) in TBS blocking buffer for
3 h, washed four times with TBS-Ca/Mg, and incubated with
biotinylated horse anti-mouse antibody. Excess antibody was
removed by four washes with TBS-Ca/Mg and subsequently
incubated with Vectastain Elite ABC reagent for 30 min.
Finally, cells were washed three times with TBS-Ca/Mg, and
reactions were developed with NovaRed substrate (Vector
Laboratories) according to the manufacturer's directions. The
average size of syncytia for each mutant was determined by
analyzing the area of approximately 300 syncytia, from digital
images, using the Image Pro Plus 5.0 software package. The
averages were then converted to percentages of the average
syncytia size of the wild-type SARS–CoV S. Error bars
represent the standard deviations calculated through compar-
ison of the data from each of three experiments.

Incorporation of [3H] palmitic acid into wild-type and mutant
forms of the SARS–CoV S glycoproteins

To detect palmitoylation of the S glycoprotein, VERO cells
were transfected with the wild-type SARS–CoV optimized S
(SARS So 3xF), mCL-I, mCL-II, mCL-III, mCL-IV, and a
protein control labeled with a 3xFLAG carboxyl tag , which
served as a negative control. At 48 h post-transfection, the
proteins were metabolically labeled with [3H] palmitic acid
(400 μCi/T25 plate) for 2 h at 37 °C. The labeled cells were
washed three times with cold PBS and solubilized in 1 ml of
lysis buffer, TES (20 mM Tris–HCl [pH 7.5], 100 mM NaCl,
1 mM EDTA) containing 1% Triton X-100 and 2 mM
phenylmethylsulfonyl fluoride. Nuclei were removed from the
lysates by centrifugation at 16,100×g for 10 min at 4 °C.
Immunoprecipitation was then performed on the lysates using
EZview Red ANTI-FLAG M2 Affinity Gel (Sigma) by
following the manufacturer's protocol. The samples were then
electrophoretically separated by SDS–PAGE. The gel was then
treated with Amplify Fluorographic Reagent (Amersham
Biosciences) according to protocol, dried, and visualized by
exposing X-ray film for a period of 3 days. The exposed film
was then scanned and digitally processed using the Image Pro
Plus 5.0 software package.
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