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Abstract. Rating and composite scales are commonly used to assess treatment efficacy.
The two main strategies for modelling such endpoints are to treat them as a continuous or an
ordered categorical variable (CV or OC). Both strategies have disadvantages, including
making assumptions that violate the integer nature of the data (CV) and requiring many
parameters for scales with many response categories (OC). We present a method, called the
bounded integer (BI) model, which utilises the probit function with fixed cut-offs to estimate
the probability of a certain score through a latent variable. This method was successfully
implemented to describe six data sets from four different therapeutic areas: Parkinson’s
disease, Alzheimer’s disease, schizophrenia, and neuropathic pain. Five scales were
investigated, ranging from 11 to 181 categories. The fit (likelihood) was better for the BI
model than for corresponding OC or CV models (ΔAIC range 11–1555) in all cases but one
(ΔAIC − 63), while the number of parameters was the same or lower. Markovian elements
were successfully implemented within the method. The performance in external validation,
assessed through cross-validation, was also in favour of the new model (ΔOFV range 22–
1694) except in one case (ΔOFV − 70). A residual for diagnostic purposes is discussed. This
study shows that the BI model respects the integer nature of data and is parsimonious in
terms of number of estimated parameters.

KEY WORDS: Bounded integer model; Categorical data; Composite scale; Nonlinear mixed-effects
modelling; Probit regression; Rating scale.

INTRODUCTION

Many clinical trial endpoints are measured with rating
scales or composite scales. Rating scales, such as the Likert
scale, are typically based on a single assessment or question
(e.g. BHow much pain do you feel?^) while composite scales
consist of several assessments or questions that generate a
total score. The nature of such scale-based data is complex,
and there is no fully satisfying modelling approach when the
number of possible categories is many.

The most common strategy is to treat the outcome as a
continuous variable (CV), while knowing that the underlying
data is of a categorical or integer nature. This poses a
problem especially at the scale boundaries, where the residual
error can give predictions outside the expected range.
Logistic transformation or beta regression can constrain the
variable, but then a model can only predict the extreme
values asymptotically (1). Also, the continuous variable needs

to be rounded and/or truncated to simulate real-life-like
examples (2).

Another approach is to treat the outcome as an ordered
categorical variable (OC), which instead requires as many
parameters, save one, as the number of categories only to
capture the baseline characteristics. More observations are
also required to estimate these parameters as the number of
categories increases. Another drawback of OC models is that
they cannot simulate outside the range of observations,
whether it be interpolation or extrapolation.

Latent variable models for categorical data have been
used for a long time (3). Previous work has mostly focused on
scales with only a few categories (< 10) (e.g. no-mild-
moderate-severe) but not on rating scales or composite scales
with a larger number of possible categories (4–7). New
methods have also been suggested to deal with ordinal data
within nonlinear mixed-effects modelling in a parsimonious
way (8). Probit regression for bounded outcome scores (BOS)
for composite scale data is a promising concept which has
been described for one data set previously (9).

Here, we present the bounded integer (BI) model for
modelling rating and composite scale data aiming for
parsimony, while respecting the integer nature of the data.
Using previously published data, we compare the bounded
integer model with OC and CV models for situations where
the number of categories is high (11 for rating scale and > 70
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for composite scales). We also show how Markovian elements
can be implemented in these models.

METHODS

The Bounded Integer Model

For a scale with n categories, the area under a standard
normal distribution with a mean of 0 and variance of 1
(N(0,1)) is divided into n equal-sized areas through n − 1 cut-
off values via the probit (quantile function of the standard
normal distribution): Z1/n to Z(1 − n)/n.

A function of fixed effects (θ) and random effects for an
individual i (ηi), time and covariates (Xi), f(θ,ηi,f,t,Xi,f) with
variance function g(σ,ηi,g,t,Xi,g) is used together with the Z-
values to estimate the probability of each category. The two
functions define a normal distribution: N(f(θ,ηi,f,t,Xi,f),
g(σ,ηi,g,t,Xi,g)). Formally, the probability for the kth category
(Pi,j(k)) is defined in Eq. 1:
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where φ is the cumulative distribution function of the normal
distribution; in other words, the probability of each score is
defined as the area under the latent variable defined function
within the interval given by the cut-offs. For the first category
(k = 1), Eq. 1 collapses into Eq. 2:
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since this is the cumulative distribution in the interval
[−∞,Z1/n), and for the last category (k = n) into Eq. 3:
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since this is the cumulative distribution in the interval [Z(n-1)/

n,∞]. A formal definition of the likelihood under this model is
provided in the supplemental equations.

Data Sets

Several data sets were used in the investigation,
representing both rating scale data (Likert, where patients
were asked to rate their pain with an integer between 0 and
10) and composite scale data (all others). A visual represen-
tation of the data sets is shown in Fig. 1. The data sets varied
in disease area, number of categories, number of observed
categories and number of observations as shown in Table I.

Implementation of the Bounded Integer Model

The rating scale data from the 11-category Likert
neuropathic pain scale had previously been modelled with
both an OC (20) and a CV (19) approach. Both these models
had elements for serial correlat ion (Markov or
autoregressive). The BI model was thus implemented with a
Markov element. To achieve this, an additional Markov
model component was implemented as described in Eq. 4:

Pi; j kjYi; j−1 ¼ k
� � ¼ Pk;i; j þ PM

1þ PM
ð4Þ

where Yi,j-1 is the observation and Pk,i,j is the probability of a
score k for individual i at time j. If Yi,j and Yi,j-1 are different,
the expression is instead as in Eq. 5:

Pi; j kjYi; j−1≠k
� � ¼ Pk;i; j

1þ PM
ð5Þ

The parameter PM(θ,ηi,PM,t,Xi,PM), constrained to be
non-negative, provide when positive a higher probability that
an observation has the same value as the previous observa-
tion in time, compared with that of the predictions by f() and
g() alone. An exponentially distributed random effect was
used to implement interindividual variability in PM.

For the cases where a CV model was available, it was
used as a reference model. Full details on these models and
the data collection process can be found in the respective
publication. A BI model was then implemented with the same
structural components and covariates as the reference model.
The parameterization could not be identical, as the BI and
CV models have a different basic structure, but the number of
estimated parameters was made to be the same and the
implemented relations qualitatively similar.

In one case (MDS-UPDRS), no CV model was available
for the data in questions, and both BI and CV models were
constructed with baseline, linear disease progression and a
symptomatic drug effect, as indicated from the item response
model in the original analysis (10). Interindividual parameter
variability was introduced in all three structural model
parameters. The NONMEM model file for the final BI model
is provided in supplemental code 2.

Goodness-of-Fit Metrics

The Akaike information criterion (AIC) was used to
compare goodness of fit between models. For a model with m
parameters to estimate, AIC is computed via the objective
function value (OFV) as:

AIC ¼ OFVþ 2m ð6Þ

Thus, for models with the same number of parameters,
the difference in AIC or OFV is the same. This was the case
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for all comparisons, save the comparison between OC and BI
models for the Likert data.

Pearson Residual: a Probability Weighted Residual

For categorical data, residuals do not represent a direct
link between the model and the data, as it does for
continuous variable. Also, the choice of residual to use for
faci l i tat ing ident ificat ion of out l iers and model
misspecification is not as straightforward. For the BI model,
we use the Pearson residual for categorical data (PWRES)
(3) for model diagnostic purposes:

PPREDi; j ¼ Pi; j 1ð Þ � 1þ Pi; j 2ð Þ � 2þ…
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PWRESi; j ¼ DVi; j−PPREDi; j

SDPREDi; j
ð9Þ

Fig. 1. Score time course and 90% prediction intervals for the investigated data sets. MDS-UPDRS, Movement Disorder
Society-Unified Parkinson’s Disease Rating Scale; UPDRS, Unified Parkinson’s Disease Rating Scale; ADAS-Cog,
Alzheimer’s Disease Assessment Scale-Cognitive; PANSS, Positive and Negative Syndrome Scale

Table I. A summary of data set characteristics and references

Disease Scale Categories Observed range
(theoretical)

No. of
patients

No. of
Obs

Reference
data

Reference
models

Parkinson’s disease MDS-UPDRS motor
(10)

133 1–77 (0–132) 428 2720 (11) (12)

Parkinson’s disease UPDRS motor (13) 109 16–80 (0–108) 19 946 (12) (12)
Alzheimer’s disease ADAS-Cog (14) 71 0–70 (0–70) 817 3594 (15) (15)
Schizophrenia PANSS (16) 181 30–176 (30–210) 1323 7728 (17) (17)
Schizophrenia PANSS (16) 181 30–167 (30–210) 1292 8520 (18) (18)
Neuropathic pain Likerta 11 0–10 (0–10) 231 22,492 (19) (19,20)

MDS-UPDRS, Movement Disorder Society-Unified Parkinson’s Disease Rating Scale; UPDRS, Unified Parkinson’s Disease Rating Scale;
ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive; PANSS, Positive and Negative Syndrome Scale
a Rating scale
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where the ith individual’s jth observation has response DVi,j,
weighted prediction PPREDi,j, standard deviation SDPREDi,j

and weighted residual PWRESi,j. The expected mean and
variance of PWRES are approximately 0 and 1.

Cross-validation

The performance in external validation of the models
was investigated through cross-validation (21–25), where the
data was split into five equal-size sets. Model parameters
were estimated on four-fifth (80%) of the sets, and the
resulting parameters, without re-estimation, were used in
evaluating the goodness of fit, using OFV as metric, to the
fifth (20%), test data, set. This process was repeated five
times, one for each set left out. The OFVs for these five sets
were then added and used as a measure of performance to
data which was not used in the parameter estimation—the
lower the cross-validated OFV, the better the performance.
Such a metric is a global one and captures the likelihood with
which a model can predict data which was not used for the
parameter estimation. As no parameters are estimated based
on the new data, there is no need to take into account the size
of the model when comparing such out-of-sample OFVs.

Software

Nonlinear mixed-effects modelling was performed with
NONMEM version 7.3 (26), executed through PsN version
7.4 (27). Graphics were made with R (28). The Laplace
estimation method, with interaction for the CV models, was
used for all model evaluations.

RESULTS

The BI model had fewer parameters compared with the
published implementation of an ordered categorical model
for the Likert data set (13 and 18, respectively). The ΔAIC
was 1555 in favour of the BI model. When ΔOFV was
calculated from cross-validated analyses of the two models,
the difference was 1694 in favour of the BI model. When the
analysis was performed without Markov elements in either
the BI or CV model, the ΔAIC was 810 in favour of the BI
model.

The fit to the Likert data for the previously published
CV model displayed an AIC value which was 1945 higher
than the corresponding BI model with the same number of
parameters. Pearson residuals for the BI model are illustrated
in Fig. 2. NONMEM control stream for the BI model is found
in supplemental code 2.

The goodness of fit of the BI and corresponding CV
model to different data sets with composite scale data is
shown in Table II. The BI and CV models in these examples
had the same number of estimated parameters. The param-
eter estimates of the BI models are shown in supplemental
table 1. For all the seven BI models, the incorporation of
interindividual variability in the g() function improved the
goodness of fit, with decreases in the OFV ranging from 57 to
4446 (not shown).

Figure 2 displays residual analyses for composite score
data. For all the data sets, it has a mean value close to 0 and a
variance close to 1. There is a slight trend in some residuals,

such as for the UPDRS BI model, indicating that the model
structure could be improved.

DISCUSSION

Bounded Integer Versus Ordered Categorical Model

The BI model described the Likert pain scale data better
than the model treating the data as OC, both in fit (ΔAIC =
1555) and external validation (cross-validated ΔOFV= 1694).
This is the only comparison where there is a difference in the
number of parameters between the BI model and the model
used for comparison. In this case, there were 5 fewer
parameters in the BI model. Thus, a disadvantage of the
OC model is that it requires many parameters which make it
less suitable for scales with many categories. As the number
of categories increases, the OC model will also require more
observations to support these parameters. A related problem
is that with the OC model, the probability of categories that
are not present in the data cannot be estimated. Either the
probability of such scores needs to be fixed to zero or
individual categories need to be merged into groups. The BI
approach handles these probabilities implicitly, making it
possible to predict and simulate scores not present in a given
data set. The BI model assumes that all scores that make up a
scale are possible and also that the probability of a non-
extreme score is larger than at least one of the nearest
adjacent scores, so that Pi, j(k) > min(Pi, j(k − 1),Pi, j(k + 1)).
This inherent assumption could pose a problem if the
distribution of scores is for some reason not unimodal, e.g.
if 5 and 7 are much more common than 4, 6 and 8. Such data
have been observed when pain intensity has been captured
using pictures with different face expressions (29). While
similar problems may occur when rating scales use verbal
expressions to identify categories, one can assume that there
is less risk when, as in the present case, pain intensity
response is solicited directly using a numerical scale, where
patients identify the numerical category they associate with
their present pain intensity.

At the boundaries of the scale, responses may be
different, containing different types of information. For the
Likert pain rating scale, there are numbers from 0 to 10,
where 0 represents Bno pain^ and 10 Bthe worst pain
imaginable^. It is reasonable that patients rate the step size
between 1 and 2 as equal to that between 6 and 7. In this
example, there could be an aversion to responding 10, and in
many other studies, the extreme values have deviant proba-
bilities. For OC models, this is not a problem, as each
category is modelled independently of the others. However,
as discussed previously, the latent variable distribution
assumes a continuous underlying function to estimate the
probabilities. For the same reason as above, this type of data
may need further parameters or a different latent variable
distribution to fit well with the BI model.

The BI model is similar to the BOS model described by
Hu et al. (9) in the parsimonious approach and the use of
probit regression. In their work, they additionally investigated
different link functions, or transformations of the outcome,
although only for one scale and with one example. Their
suggestion is to transform one or either side of the distribu-
tion to achieve a normal-appearing distribution. Flexible
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transformations such as the discretized beta distribution
suggested by Ursino and Gasparini (8) are also possible.
However, this was outside the scope of this work.

The reason that the BI model described the Likert pain
data better than the OC model appeared to be related to the
presence of a random effect in g(), the BI model variability
function. The effect was generally well described (30)
(relative standard error < 30%, see supplemental table 1).
Without such a random effect, the fit for the BI model was no
longer superior to that of the OC model. This interindividual
variability in g() was formulated as an exponential

distribution. It predicts that individuals differ in the consis-
tency with which they report the daily pain scores. A similar
type of variability cannot be introduced into the OC model
with a single random effect. Rather, it would require a
random effect per category, hence increasing the model size
considerably.

Markov Modelling

The implementation of first-order Markovian elements
used in the OC model here assumes a higher probability of

Fig. 2. PWRES vs. time. MDS-UPDRS, Movement Disorder Society-Unified Parkinson’s Disease Rating Scale; UPDRS,
Unified Parkinson’s Disease Rating Scale; ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive; PANSS, Positive
and Negative Syndrome Scale

Table II. Fit to different composite scale data sets for bounded integer and continuous variable models

Disease Scale No. of parameters
CV = BI

CVAIC ΔAIC
CV-BI

ΔCross-validated OFV
CV-BI

Parkinson’s disease MDS-UPDRS motor 14 18,539 74 61
Parkinson’s disease UPDRS motor 16 5631 62 84
Alzheimer’s disease ADAS-Cog 11 20,358 729 729
Schizophrenia PANSSa 17 56,178 − 63 − 70
Schizophrenia PANSSb 15 61,575 11 22
Neuropathic pain Likertc 18d vs. 13e 48,938 1555 1694

ΔAIC, difference in Akaike information criterion; CV, continuous variable; BI, bounded integer; Δcross-validated OFV, difference in cross-
validated objective function value; MDS-UPDRS, Movement Disorder Society-Unified Parkinson’s Disease Rating Scale; UPDRS, Unified
Parkinson’s Disease Rating Scale; ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive; PANSS, Positive and Negative Syndrome Scale
a Reference 17
b Reference 18
c Rating scale
dOrdered categorical model
e Bounded integer model
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the same score as the one previously observed. Indeed, it
predicts that, if two observations were made in very close
proximity in time, the second would have the same score as
the first. For the BI model, there are two components to the
probability, one given by f() and g() and the second by the
score of the previous observation. The parameter PM
estimates the balance between these two. Hence, this BI
model implementation can elevate the probability of subse-
quent same-score observations without making very different
scores of two adjacent observations having very low proba-
bility. Data with strong Markovian properties often display a
small portion of data that makes large jumps between scores
of adjacent observations. This feature in the BI model
appears to better handle such observations, and the improve-
ment in fit was larger for the BI model than the OC model
when Markov elements were included. In both models, the
Markovian feature attenuates with time; that is adjacent
same-score observations become more probable as the time
from study start increases.

Bounded Integer Versus Continuous Variable Models

The BI model described the Likert pain scale data better
than the corresponding CV model with the same number of
estimated parameters. All scores from 0 to 10 were present in
the data, and as described previously, the error in the CV
model is not optimal towards the extreme scores of the scale.
A CV model might predict values outside the scale bound-
aries or, if, e.g. logistic transformation or beta regression is
used, will only predict the boundaries asymptotically. This
model misspecification and the fact that CV models are not
treating the data as integers are potential explanations to why
the BI model was superior. On the other hand, the CV
models can be estimated using the first-order conditional
estimation methods which are often both faster and more
robust than the Laplacian method.

The models were optimized for CV analysis. Improving
the g() function, corresponding to the residual model
structure in a CV model, could benefit the BI approach even
further, which was tested for all models. In all cases, there was
a significant drop in AIC when adding a more complex
residual structure, for example different variability magnitude
at different time points (results not shown).

When investigating the parameter estimates and their
uncertainty of the BI models (see supplemental table 1),
some parameters with high uncertainty seemed superfluous,
e.g. hospitalization for the PANSS 1 data. Upon removal of
this parameter, the fit was not significantly worse (results not
shown). For all BI models except the Likert and UPDRS, the
model could be simplified by removing some parameter or
correlation without significant penalty to the fit. This further
supports the idea that the CV model structures are not
optimized for BI analysis. Further development with a
significantly better fit with additional components or model
reduction with a comparable fit can be achieved.

Scale Range and Variance

For both Parkinson’s disease data sets (UPDRS and
MDS-UPDRS), the motor scores were well below the
maximum value, and the minimum value observed was not

0. For the two PANSS data sets, the maximal observed scores
were well below the maximum scale value. The BI model was
implemented with as many categories as possible scores, as
this would theoretically allow extrapolation beyond the
observed score range, while still restrict values to those
possible. While this is an attractive feature, it could be
hypothesised that a scale restricted to the observed range
may provide a better fit to the data. However, when
maximally restricted BI models were used to analyse the
data, the quality of the fit was similar to using the full range.
As we see no benefit of restricting possible scores to the
observed range, we recommended to implement the BI
model with the full range of the scale in question.

The variance function, g(), is of high interest and its
interpretation is not straightforward. For a given number of
categories, a smaller value would indicate a more predictive
model. We would typically expect values of g() that are
considerably below one; as with a g() equal to one, all scores
are equally likely, given a f() of zero. However, for scales
where most observations are at extremes, values higher than
one may be anticipated. We have not encountered such
scales, and such a scale feature is likely to be avoided in the
design of a rating or composite scale. A factor that will play a
role in the value of g() is the scale range. If the observed
range of scores only occupy a fraction of the theoretical scale
range used, the g() value will be higher than if a restricted
range is used, as discussed above. In order to compare the
different g() values, we make an approximative correction by
scaling the value with the fraction of the scale range observed.
For example, the UPDRS data only covered 60% of the
theoretical range and the MDS-UPDRS data covered 58%.
On further inspection of the SD estimates after such
adjustment, as seen in supplemental table 1, they range from
0.067 to 0.23. To take an example, the reason the MDS-
UPDRS SD estimate is higher than the UPDRS estimate
could be because the new questions added to the UPDRS
questionnaire might have poorer separating properties than
the established questions, especially for the de novo cohort
that was being studied. The population studied in the UPDRS
data was also further progressed and located in the middle of
the scale, where the UPDRS scale was designed to be best at
describing and separating patients.

Pearson Residual: a Probability Weighted Residual

As seen in Fig. 2, the Pearson residuals seem to have a
mean of 0 and a variance of approximately 1. The bias is low,
and overall there are only small trends in the residuals, but
especially the UPDRS model could be improved according to
the results. However, it was not the purpose of this exercise to
further develop the existing models but rather to make a fair
comparison between model types. The model building could
have resulted in a different final model if the BI approach had
been used from the start. This is however a topic outside the
scope of this work.

General Discussion

In the present work, we have used cut-offs for the probit
function driven by the standard normal distribution, and a
normal distribution was also the choice for the mean-variance
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(f() − g()) function. One could imagine other ways of
determining the cut-offs as well as choosing other distribution
functions. For the former, it is possible to estimate the cut-off
values at the expense of parsimony. This can also result in
over-fitting with poor predictive performance. For the latter,
other probability density functions than the standard normal
could also be implemented, for example a t-distribution to
allow for heavier tails. A Box-Cox transformed distribution
might provide a better fit if the data distribution is skewed, as
indicated by Hu et al. (9). In this paper, we focused on the
normal distribution due to its simplicity and few assumptions
regarding the data. This implementation showed an improve-
ment in fit over OC and CV models in all investigated cases,
save one, but this fact does not exclude that further
refinements to the BI model implementation can be done.

For the one case where the BI model performed worse
than the CV model, PANSS 1 data, further testing via residual
modelling (not shown) indicated that the BI model could
have been improved upon more than the corresponding CV
model by adding a more flexible residual structure. Impor-
tance sampling with the expectation step only also gave a
better fit than the CV model (not shown).

The main difference from the work by Ursino and
Gasparini (8) and especially Hu et al. (9) is the implementa-
tion on several data sets, both rating and composite scale
data, comparisons with more standard models, allowing
random effects directly on the variability parameter and the
implementation of Markov elements.

While rating scales with few categories often express the
choice in words (no, mild, moderate, severe), a rating scale
like the Likert already provide the integer numbers as guide
for patients to guide their choice between no pain and worst
possible pain. For this reason, it is likely that a scale like the
Likert data is well described by the BI approach.

For a scale with a few numbers of scores, the gain of the
BI approach is likely smaller. There is no general rule for
when to switch to a CV model from an OC model, as
demonstrated by the fact that the 11-category Likert data was
modelled in both ways. Likewise, the gain of switching to a BI
model cannot be stated by a definite rule. However, the
number of scores (n) is one important aspect, where the
advantages (parsimony, run times, parameter uncertainty)
over OC models are expected to be larger as n increases. The
advantage over CV models could depend on if there are
many observations at the scale boundaries, but as exemplified
with UPDRS and MDS-UPDRS, an advantage may be
identified even when no data are close to scale limits.

In many cases, there are competing scales for assessing
the same disease, e.g. Parkinson’s disease. The latent variable
could serve as a link between such scales so that translation
between scales is made possible. This could be helpful when
pooling data for combined analysis. One example of such a
translation is a recent model for nicotine craving data where
both a 4-category scale and a visual analogue scale with 101
categories were measured (31).

CONCLUSIONS

The bounded integer model provides a good description
of rating and composite scale data, both in terms of fit and
performance in external validation. It has shown better fit and

performance in external validation to multiple data sets than
models treating the same data as either ordered categorical or
a continuous variable. Simulations from the model will
provide real-life-like data that does not need rounding/
truncation and/or transformation. Also, Markov elements
can easily be added to the model.
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