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In the beginning of the twenty first century, the International Program on Chemical

Safety published a document entitled Global Assessment of the State-Of-The-Science

of Endocrine Disruptors. The work indicated only weak evidence of endocrine-related

effects in human populations, and in wild animal populations. This document was

revised in 2012 (State of the Science of Endocrine Disrupting Chemicals−2012) (1).

The new document and the extensive scientific evidence it provided showed clearly that

ED effects could be a risk to human and wildlife health. These works, however, were

focused in human health and related animal models, mainly vertebrates and particularly

mammals. It can be argued that invertebrates and many other taxa are important parts

of all ecosystems, and, in many instances, have been shown to be also vulnerable

to endocrine disruption. Thus, this work is aimed to show some observations on

important marine invertebrate taxa, from an ecological point of view. The most important

example of endocrine disruption in marine wild populations is the imposex response of

marine gastropods, known for more than 40 years, and worldwide used to evaluate

marine antifouling pollution. Among the mollusks, other important natural resources

are bivalve species, used as human food sources and cephalopods, free-living, highly

specialized mollusks, and also human food sources. Effects derived from endocrine

disruptors in these species indicate that consumption could bring these compounds

to human populations in an almost direct way, sometimes without any form of cooking

or preparation. While discussing these questions, this work is also aimed to stimulate

research on endocrine disruption among the invertebrate taxa that inhabited our oceans,

and on which these effects are poorly known today.

Keywords: endocrine disruption, marine invertebrates, ecological risk assessment, reproduction, environmental

pollution

INTRODUCTION

In the beginning of the twenty first century, the International Program on Chemical Safety
(IPCS, a joint program with WHO—World Health Organization and UNEP—United Nations
Environment Program and the International Labor Organization) published a document entitled
Global Assessment of the State-Of-The-Science of Endocrine Disruptors (2). This work reunited the
then available scientific information on endocrine disruption (ED). The results were indicative,
not conclusive: it showed that some effects observed in wildlife could be attributed to chemical
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compounds that can act as endocrine disruptor chemicals
(EDCs), but the causal links are weak and effects related
to highly polluted areas in most cases. Furthermore, the
results indicated only weak evidence of endocrine-related
effects in human populations. Among the studied compounds,
most are POPs such as polychlorinated biphenyls (PCBs),
dioxins and dichlorodiphenyltrichloroethane (DDT). The final
remark was the need for broad, collaborative and international
research efforts.

Against this background and putting forward a great sum
of results from new research UNEP and WHO published a
new document: State of the Science of Endocrine Disrupting
Chemicals−2012 (1). This document included three sections:
the first explains the basic concepts and facts on endocrine
disruption; the second discusses in detail the effects of endocrine
disruptors in humans and wildlife in 12 chapters, based in the fact
that endocrine systems are very similar among vertebrate species
and that endocrine effects manifest themselves independently of
species. This is an important remark for the further sections. The
third and final section discusses exposure of humans and wildlife
to EDCs and to potential EDCs. The key concerns derived from
this impressive study are briefly showed below, as the original
document is available at the WHO site (http://www.who.int/ceh/
publications/endocrine/en/).

- Human and wildlife are dependent on the ability to reproduce
and develop normally, what is not possible without a healthy
endocrine system.

- Three evidence lines indicate concern on endocrine disruption:
(i) high incidence and increasing trends of endocrine-related
disorders in humans; (ii) the observation of endocrine
disruption related effects in wildlife populations; (iii)
identification of EDCs related to disease outcomes in
laboratory studies.

- About 800 compounds are known or suspect to be able to
affect: (i) hormone receptors, (ii) hormone synthesis, or, (iii)
hormone conversion. Only a small fraction was thoroughly
investigated. The vast majority of chemicals in commercial use
have not been tested at all.

- Humans and wildlife are exposed to EDCs worldwide, and to
more compounds than those that are POPs. However, there
have been a failure in addressing the environmental causes to
the increase of EDCs effects.

- The speed of disease incidence increases rules out genetic
factors only as an explanation, indicating in the other
hand environmental and non-genetic factors, as nutrition,
exposition, and so on.

Abbreviations: CONAMA, National Environmental Council of Brazil;
DDT, Dichlorodiphenyltrichloroethane; DOC, Dissolved Organic Carbon;
ED, Endocrine Disruption; EDC, Endocrine Disrupting Compound(s);
EQS, Environmental Quality Standard; IPCS, International Program on
Chemical Safety; HPG, hypothalamic–pituitary–gonadal; Oct-GnRH, Octopus
Gonadotrophin-Releasing Hormone; PAH, Polycyclic Aromatic Hydrocarbon(s);
PCB, Polychlorinated biphenyls; POP, Persistent Organic Pollutant(s); POC,
Particulate Organic Carbon; RPLI, Relative Penis Length Index; RPSI, Relative
Penis Size Index; TBT, Tributyltin; TPT, Triphenyltin; UNEP, United Nations
Environment Program; VDSI, Vas Deferens Sequence Index; WHO, World
Health Organization.

- There are critical exposure windows in the organism’s
development, such as fetal development or puberty, in which
they are more susceptible to EDCs.

- Wildlife populations of different taxa have been affected by
EDCs. In some instances, these EDCs were recognized as
POPs, and bans on these compounds have led to population’s
recovery (a key remark for ecological risk evaluation).

- Internationally agreed and validated protocols to the
identification of EDCs still may detect only a part of the
known spectrum of ED effects. This increases the likelihood
of overlooking harmful effects in humans and wildlife. Thus,
disease risk (and ecological risk) related to EDCs may be
significantly underestimated.

Even considering that some of these findings have been contested
(3, 4), in this broad scenario the new document and the extensive
scientific evidence it provided showed clearly that ED effects
could be a risk to human and wildlife health, and that much
effort is still required to a better understanding of these effects
and to provide the measures required for avoiding this growing
treat. While this study is a basic reference for those working in
this field of research, this study was focused in human health and
vertebrate models. Some instances of EDCs effects in invertebrate
populations were indicated, and, in this case, with a focus in
interference mechanisms and populations responses. The aim of
this work is to advance a step further in the direction of the
ecological risk evaluation state and requirements for the marine
environments, from an ecotoxicological point of view. While
being important for environmental health, these aspects are out
of the scope of the original work.

ENDOCRINE DISRUPTION IN MARINE
INVERTEBRATES: GENERAL ASPECTS OF
THIS QUESTION

Invertebrates represent more than 95% of the known species
in the animal kingdom, and large groups of these species
are of ecological relevance in marine ecosystems (5–7). By
1999, compounds such as the common herbicides atrazine,
simazine and Diuron, metals and organometallic compounds
such as mercury, cadmium, or organotins, insecticides such as
Toxaphene, DDT, or Endrin, alkylphenols such as nonylphenol
or PCBs such as Aroclor 1242 or natural or synthetic vertebrate
steroids such as diethylstilbestrol or testosterone were implicated
in causing endocrine disruption in invertebrates (8). Evidence
mounted ever since, and this kind of problem is being reported
for several important groups of marine invertebrates, such as
amphipods (9, 10), copepods, crabs, and hermit crabs (11, 12),
barnacles (13), abalones (14), echinoderms (5), and polychaetes
(8). In some species, intersexuality may include a simultaneous
activity of both sexes gonads, in a true hermaphroditic condition
(15) or could be induced by pollutants (14). Among decapoda
and branchiopoda, intersexuality is fairly common, at typical
background incidences of <1%, and many common pollutants
have been shown to be capable to interfere with the hormonal
responses (7, 11). While it is widely known that endocrine
disruptors may play a key role in the conditions of marine
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invertebrate communities, it was often very difficult to make
extrapolations from the results of studies did at cellular and sub-
cellular levels to the individual and population levels for each
tested species (10). A small compilation of some studies done in
the last years with marine invertebrates can show the wide range
of endocrine disrupting compounds and the variety of associated
responses (Table 1, below). It should be noted that most of these
studies do not focused in combined effects, a critical point in
environmental monitoring.

Even as marked changes in marine invertebrate populations in
some instances where demonstrated to occur, mainly molluscan
populations, whole ecosystem, multitaxonomic environmental
monitoring is seldom possible due to technical and funding
questions. Only in some limited instances specific populations’
distributions data are available, and mostly related to monitoring
species, or those of great economic value (28). In many instances
of toxicity assessment, single invertebrate species are being
used to perform toxicity tests to evaluate potential responses of
organisms of many different phyla, as pointed out by Depledge
and Billinghurst (8). However, 20 years later this approach is still
being used in many, if not most, instances.

In regard of population dynamics, some very important
gaps in the available knowledge about environmental effects of
pollutants are still present, turning the integration of ecologic
and ecotoxicologic information even more difficult. Aspects such
as habitat loss due to growing human pressure (29), the lack
of specific knowledge of invertebrate endocrine systems, that
are very different from vertebrate ones (6, 13), the assimilation
pathways of pollutants such as water exposition, dietary
exposition, feeding habits (8, 29) and also the very important
questions of species responses at different development phases of
the reproductive cycle and to mixtures of pollutants which may
show similar/dissimilar effects (30). When the great variability of
natural processes in marine communities is taken in account, it
is not difficult to understand why seldom population’s declines
in marine invertebrates’ communities have been shown to be
derived from external forcing such as pollutant pressure. In the
particular case of endocrine disruptors, the relative potency of
each compound for the studied species is badly known, what
makes the evaluation of combined toxicities a still more uncertain
affair (6, 29).

As a concluding remark for this introducing section, I would
argue that in the case of invertebrates the most impacting
effects of pollutants, including endocrine disruptors, are those
that could be strongly related to the occurrence of known
pollutants affecting and, in some instances, eradicating or
seriously compromising natural populations, and thus, affecting
the marine ecosystems from an ecological point of view, or, also,
compromising biological productivity. The most striking study
cases are those related to molluscan species, and these will be the
focus of the next sections.

Population decline, local extinctions or reduced reproductive
capacity have been demonstrated to be directly related to
endocrine disruption in three different conditions: the worldwide
development of imposex in marine gastropod species (31), the
occurrence of intersexuality in the abalone in Japan, which
also led to some documented population reduction caused by

reproductive failure (14) and the case of the Basin d’Arcachon,
where bivalve commercial production collapsed during the peak
of organotins application as biocides in marine antifouling paints
and subsequently recovered as this application was restricted,
France being the first country to exert this control (32, 33). As
marine bivalves and cephalopods are also part of human diet in
coastal areas (34), they are further discussed.

ENDOCRINE DISRUPTION: DETECTION
AND EVALUATION OF EFFECTS IN
MARINE GASTROPOD POPULATIONS IN A
LOW ORGANOTINS EXPOSITION
SCENARIO

In respect to ED in wildlife marine invertebrate populations, the
most characteristic phenomena in organotins polluted areas is
a syndrome that is called “imposex” in female gastropods. This
syndrome consists in the imposition of male sexual characters,
such as penis and/or vas deferens in female individuals. Smith
(35), introduced this term after reports of a “penis like” growth
of tissue behind the right tentacle of female gastropods, in
the location of the male penis. Further research indicated
the antifouling biocide tributyltin (TBT), then in intensive
application in any kind of vessel as the main cause, and intensive
boat and shipping activities areas as the most affected ones
(36–39). By 1991, this problem had been reported in 132
gastropod species, this number rising to 192 by 2005 (40). The
last extensive report raised again this figure to 268 species by
2009 (41). In the other hand, these last authors indicated some
42 gastropod species that does not develop masculinization
when exposed to this compound. Species differential sensitivity,
phylogeny—mesogastropods are remarkably less sensitive than
neogastropods—and feeding habits are possible causes for these
observations. There are many theories to explain the occurrence
of this kind of DE syndrome, but the complete mechanism has
not yet been totally explained (6, 41, 42).

However, as reports mounted in the literature, the problem
of TBT antifoulings pollution was perceived to be global, as
first indicated by Ellis and Pattisina (31). Many techniques were
developed for imposex evaluation when field and laboratorial
studies showed that the relative development of masculine
characters on the females was dose-dependent for TBT and
in some species also to TPT (triphenyltin, an alternative
for TBT as biocide in the paints formulation). Development
of these techniques resulted in the application of imposex
development indexes, other than the simpler evaluation of
the percentage of affected females in each given sampled
population. These indexes were based on two approaches:
those that compared the penis development in males and
affected females, and those that followed the development of
the vas deferens in affected females. In the first case, these
indexes are the Relative Penis Length Index (RPLI) or the
Relative Penis Size Index (RPSI) [(43), for a full description of
measurements and application]. In the second case, the index
is the Vas Deferens Sequence Index or VDSI [please refer
to (40, 43–45) for particular applications of this approach].
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TABLE 1 | Some examples of endocrine disrupting compounds and their range of effects in marine invertebrate species.

Compounds Tested species Effects References

TBT, DBT Mya arenaria Lower progesterone levels, sexual maturation delay, “F” (16)

TBT Mya arenaria Skewed sex ratio, vitellin reduction, oestradiol-17β production in gonad reduced “F” (17)

TBT Ruditapes decussata Increase in testosterone, oestradiol decrease “F” (18)

TBT Haliotis madaka Intersexuality, ovary spermatogenesis, “F” populations reduction (14)

North Sea Oil (NSO) Mytilus edulis Ovarian follicle development, normal spermatogenesis (19)

NSO + PAH + Alkylphenols Mytilus edulis Male gonadal melanomacrophage centers, degeneration ovary follicles (19)

Bisphenol A Mytilus edulis Spawning induction for both sexes, ovocyte atresia (20)

2,2′,4,4′-tetrabromodiphenyl ether Mytilus edulis Ovocyte atresia, male spawning induction (20)

Diallyl phthalate Mytilus edulis Follicle and ovocyte reduction, male spawning induction (20)

PAHs, TBT Mytilus galloprovincialis Intersexuality, oocite atresia “F” (21)

Benzo(a)pyrene Portunus trituberculatus Reduced ovarian growth, testosterone, progesterone and 17βestradiol secretion

reduction

(22)

Benzo(a)pyrene Chlamys farreri Reduced testosterone and 17βestradiol production, progesterone disruption in

ovary, ovarian impairment, development delay

(23)

Bisphenol A, 17βestradiol Mytilus galloprovincialis Gene transcription (24)

Testosterone Brachionus calyciflorus Increased swimming, fertilization rate and recognition ability in males (25)

Progesterone, flutamide

(non-steroidal anti-androgen)

Brachionus calyciflorus Inhibited swimming speed, suppression of fertilization and reduced recognition

ability in males

(25)

Dibutyl phthalate Galeolaria caespitosa Sperm dysfunction, impaired embryogenesis (26)

Propylparaben Tigriopus japonicus Sex ratio alteration toward females (27)

Most were laboratory studies, while those including field studies are indicated by the letter “F.” Bold letters, population reduction observed.

These techniques provided the researchers with means to
evaluate the relative intensity of the pollution and the extension
of the affected areas with a very simple and cost effective
monitoring tool.

Obviously, the ideal case is to have parallel chemical analysis
for this monitoring, being these analyses of water (44), of
sediments (46), or of the animals tissues (47). In the most ideal
case, the intensity of imposex in gastropod populations or the
organotin body burden of the animals could have provided
a proxy of mean TBT water concentrations (44), but the
environmental variability is such that these approaches were
never thoroughly developed. Another combined monitoring
approach, using imposex in gastropods populations to guide
sediments sampling to the more critical areas is of easier
application. Persistence of organotin pollution in conditions such
as fine-grained, organic-rich, mostly anoxic coastal sediments
(48, 49) has made TBT and other organotins legacy pollutants,
being considered as POPs by WHO-UNEP (1). As a matter
of fact, this is probably the most important reason that would
explain why imposex is still being reported in European waters
(50–53), even when clear instances of improvement are being
reported (54). The same occurs in other areas were organotins
uses were banned, such as Korea, for instance (55, 56). In the
other hand, unregulated use of these compounds have been
already demonstrated in some areas, for instance, Latin America
(57–59) or North Africa (60–62).

From an ecotoxicological point of view, the work of Stroben
et al. (44), being multispecific, clearly demonstrated that species
sensitivity could be different even in the same genus, and
thus, indicated that antifouling pollution could affect marine

communities as a selective pressure. In Figure 1, below, some
results of this study are presented and discussed.

As we can see from the original data, the species Nucella
lapillus and Ocenebra erinacea are much more sensible,
presenting a much more developed vas deferens than Trivia
species or Hinia species at a given TBT concentration. Thus,
exposed to similar conditions, the pollution effects on individuals
and populations will differ greatly among the different species
present at each site. Surely, not all species sampled occurred at
all places at the same time. In any case, at the UK environmental
target concentration of 2 ng(Sn). L−1 (vertical line 1), for
instance, the four most sensitive species will present imposex,
while both less sensitive Hinia species will not. All tested species
that present imposex in this concentration range will have
females presenting a small penis and/or a partially developed vas
deferens, but no sterile individuals in the populations that reach
these VDSI values (please refer to the original work for the details
of each species VDSI development evaluation). However, at the
10 ng(Sn). L−1 concentration level, vertical line 2, that was then
fairly common in coastal waters, the more sensitive species VDSI
values would be above stage 4, indicating that populations began
to show sterile females and thus were in danger by recruitment
reduction. Local extinction of the most sensitive species was
observed all around the world, sometimes eradicating part of the
previous species population’s distributions. For instance, some
two thirds of the Stramonita brasiliensis populations area in
Guanabara Bay, a highly polluted harbor area in Brazil, were lost
between the sixties and the nineties (46). About half of this area
was recovered by this species by 2012 [(45); see the details in
Figure 2 below for the area extension].
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FIGURE 1 | Imposex development is different marine gastropod species at increasing water TBT concentrations. Imposex intensity: values of VDSI index measured

for each species; TBT water concentrations in ng(Sn). L−1. Ecological risk indicated by light gray bars indicating population damage by lack of recruitment due to

female sterility. Vertical concentration lines: A: TBT EQS of the UK; B: Brazilian limit for sea waters, Class 1, CONAMA Resolution 357. Modified from Stroben et al.

(44) by the author.

The recovery of affected populations after the controls on TBT
application as biocide and further banning has being considered
as a sure indication of pollution reduction (54). If only marine
gastropods were affected by TBT, this would have been serious
enough, but lack of knowledge of the response of other marine
species to this compound makes the hypothesis of ecosystem
recovery somewhat less consistent (63). Even in the case of
gastropods, recent research indicated that resistance to TBT
effects could control the distribution of two species with different
organotin sensitivity of Leucozonia genus, at least in a heavily
polluted, big harbor area (64).

Other important recent observations on imposex
development are related to aphallic imposex expression, thus
separating the two classic ways of imposex intensity evaluation
(by females’ penis lengths or by vas deferens development).
Aphally in marine gastropods was first showed to occur in
Nucella lapillusmales, in a specific location in England, Dumpton
Gap. This syndrome was reported as a genetic problem that

caused male specimens to have undeveloped sexual characters,
malformations or even to lack their penises. In the other hand,
the syndrome caused a reduction in imposex development in
the females, thus permitting an isolated population to survive
in a heavily polluted coast. This particular condition was called
“Dumpton syndrome” because it was discovered at Dumpton
Gap (65, 66). By the late nineties, this syndrome has been
described in Brittany (67, 68) and in the northwest coast of Spain
(69). These last authors proposed a modified VDSI evaluation
scheme, as sterile females Nucella lapillus were observed for
the first time lacking penises. This observation made clear that
penis development in imposex females may be independent
of vas deferens development. Because of this observation, the
authors pointed that in DS conditions, or, for instance, at lower
ambient organotins concentrations, the VDSI so modified would
be a better indicator of TBT pollution that indexes such as the
RPLI or RPSI that would be meaningless for aphallic females.
More recently, and under different experimental conditions,
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FIGURE 2 | Evolution of the marine gastropod Stramonita brasiliensis populations at Guanabara Bay, Brazil, between 1960 and 2013. Organotin sources and

expression of imposex development are also shown. Modified from Toste et al. (45).

it was demonstrated that TPT (triphenyltin), a tri-substituted
organotin used as biocide as substitute for TBT when this
compound began to be controlled, mainly in Japan (70, 71) could
induce aphallic imposex development in the same species (72).
While these studies were related toN. lapillus, aphally is recorded
in other gastropod species.

In the previously quoted work by Stroben et al. (44), the
species N. lapillus, Trivia arctica, T. monacha, and Hinia
reticulata were showed to present complete vas deferens
development from near the base of the right tentacle, where
the penis is located in the males, to the vulva opening,
without penis development. In Cantharus cecillei, this same
general development pattern was observed to occur, while
presenting some specific differences [see (40), for the complete
observations]. In these species, however, no observation was
made about male aphally, what would indicate that these
ways of imposex development were not related to DS. In
another series of works with Stramonita brasiliensis in the
Brazilian coast, female aphally was frequently observed (73,
74). The proportional incidence of female aphallic imposex
development was showed to be related to the distance from
the organotins sources at Guanabara Bay, along a sensible
distance from the main sources area (to some 60 km distance
of the organotins sources centroid, Spearman test R =

0.6959, p < 0.05), with no male aphally being observed
(45). Thus, it became clear that at least for S. brasiliensis
vas deferens development is independent of that of the
penis and penis development occurred only closer to the

organotin sources inside Guanabara Bay, and thus, at higher
environmental concentrations.

What is more important, it was observed that imposex
females could even be sterilized without the development
of a penis, a very important observation for environmental
monitoring using imposex response that was first demonstrated
by Barreiro et al. (69) in N. lapillus. Based in these observations,
a new imposex development scheme for VDSI in Stramonita
brasiliensis was proposed, with low and high exposition
routes, that is shown in Figure 3, modified from Toste et al.
(45), below. These observations could be important for
other imposex monitoring studies, as aphally in imposex
females have been reported in some gastropod species, such
as Hexaplex trunculus, Lahbib et al. (75); Stramonita rustica,
Artifon et al. (76); Thais brevidentata, Thais bisserialis, Thais
kiosquiformis, Thais melones, Plicopurpura pansa, Plicopurpura
columellaris, Grimón et al. (77). These observations with
other species confirmed that VDSI could be the only adequate
approach for imposex intensity evaluation. With the global
reduction of TBT pollution, worldwide demonstrated
by dozens of published works of measured organotins
concentrations worldwide in environmental matrices, the
classic imposex evaluation approach seems to need a revision.
The VDSI application as shown by Toste et al. (45), may
even help discriminating higher from lower exposition
conditions for the studied gastropod populations, what
could be useful in evaluating the relative importance of the
remaining organotins sources, or of their illegal use. This
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FIGURE 3 | Imposex development scheme for Stramonita brasiliana (Stramonita haemastoma as originally published) with high and low exposition routes, according

to Toste et al. (45). Captions: te, tentacle; pp, penis primordium; gp, genital papilla; vds, vas deferens; ov, obstructed vulva; ac, aborted capsules. The inclination of

the routes at the same stages is related to relative organotins exposition: the nearer to stage 1, lower expositions were indicated by distance for organotins sources in

the field. Dark arrows indicate the more commonly observed routes in Southeastern Brazil.
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approach, however, still requires the sacrifice of the studied
animals, what would not be required by the use of a non-
destructive approach such as the one developed by Fernandez
et al. (73).

The widespread occurrence of imposex female aphally renders
penis lengths indexes meaningless (for instance, total female
aphally was recorded for 9 out of 19 stations for imposex
monitoring in Nucella lapillus in 2014, causing values for
RPLI in this species along the Portuguese coast to drop to
almost zero, thus rendering its application unable to further
indicate decreasing tendencies afterward but for one sampling
station along the Portuguese coast [(53), Table 1]. The same
observation was reported in Hexaplex trunculus, showing a
temporal reduction pattern of phallic imposex development as
observed in Stramonita brasiliensis in Brazil, by Lahbib et al. (78)
in Tunisia. The use of vas deferens development only, without
taking in account the penis development, for VDSI application
was even indicated for Nucella lapillus by (79). In the other way,
some recent studies done in more heavily polluted areas that still
remain in Latin America, such as Peru (59, 80) and Chile (81),
for instance, showed that penis-based indexes are still useful and
could still provide relevant information for some time to come
in the remaining hot spots areas. Anyway, the aphallic imposex
development observed for S. brasiliensis could lead to female
sterility, as previously pointed out, when the females presented
only pre-penises or very small penises (45), thus making the
VDSI themost relevant imposex development index to be applied
in this new, mostly low exposure scenario.

There is still another complicating factor in the field imposex
analysis: the quite relevant question of interference in the
imposex response of the animals. This interference may arise by
two different mechanisms: one is the complexation of organotins
when high loads of organic matter are present in the waters
at the same time. It was long known that organic matter has
as very strong affinity to organotins (82) and that in anoxic
sediments, degradation of organotins is very slow (83, 84).
In any case, this same high affinity will be present in waters
rich in POC (particulate organic carbon) and DOC (dissolved
organic carbon). These organic compounds thus may act as a
kind of “buffer,” reducing the bioavailability of organotins to the
biota, and, consequently, the imposex expression of gastropod
populations. Frequently associated to organic rich waters in the
coastal zone are direct sewage discharges, important artificial
sources of POC and DOC. At the same time, these sewage
discharges are also important sources of xenoestrogens to the
same coastal areas. It has been demonstrated by bioassays with
Nucella lapillus using sewage treatment plant effluents rich in
xenoestrogens such as octylphenol, nonylphenol, and bisphenol
A that exposition to these effluents could activate the estrogen
receptor of this species (85) and at the same time were capable
of reducing the imposex expression of TBT-treated females (86).
The most affected response is, not unexpectedly, the RPLI, as we
saw the growing relative importance of the aphallic vas deferens
development routes before.

This interference mechanism was observed in the field for the
first time at a small touristic city, called Paraty, which is located at
the end of a small inlet in the southeastern coast of Rio de Janeiro

state, Brazil. Coincidently, in this area, the organotin sources and
organic matter sources are located very close to each other, in the
inner inlet, and this particularity made possible to understand the
different water residence times of each compound. Monitoring
studies of imposex development in populations of S. brasiliensis
were made in 2006 and 2011, and while a relative amelioration
was observed in the inner inlet stations, the outer stations
showed a relative aggravation of the imposex condition. The
most likely reasons for this strange observation are that while
organotins were present in the whole area, and recent input was
showed to occur at the 2011 sampling by sediment analysis, the
number of small boats, that are the only sources in the area,
remained approximately constant while local human population
has grown. Thus, organic matter and xenoestrogens inputs,
aggravated by total lack of sewage treatment, also have certainly
risen. Then, the “buffer” effect was enough to suppress part
of the imposex development of the animals in the inner inlet.
The populations recovered, while showing 100% imposex low
expression incidence (only two penis bearing females recorded
in the study). In the other hand, degradation of the organic
matter and dispersion reduced the “buffer” effect in the outer
inlet, and thus the remaining organotins are still able to produce
a response in the animals. While somewhat speculative, the key
to understand this process was the difference in water residence
times of organotins, that are highly toxic to marine organisms,
and of the sewage derived organic matter, that is highly nutritive,
and thus, quickly degraded by aerobic bacteria. While not all
these parameters were measured in occasion, the very color and
particulate matter content of the waters from the inner inlet
when compared to those of the outer inlet showed clearly where
the problem was. A schematic conceptual description of this
interferencemechanism is shown in Figures 4A,B, below. For the
original data and details, please refer to Borges et al. (87).

Putting all these information and ideas together, what seems
clear is that in a new scenario of lower organotins inputs, in
many instances derived from contaminated sediments, including
in Europe (48, 88–90), the imposex response of marine gastropod
populations should be evaluated with care. Under conditions
of interference with this response, imposex development could
be reduced in some areas, mostly in urbanized areas with
parallel sewage discharge pollution. In these conditions, while
the animals may show a low imposex response, the animals’
body burden of organotins could still be high, even higher
than in more pristine conditions. Some recent results seems to
indicate this possibility with animals presenting high organotins
body burden with showing low imposex responses (59, 91).
Some aspects of the populations used for biomonitoring have
influence on the results, such as genetics, temperature influence
on metabolism or even the seasonality of the reproductive cycle,
a basic aspect often not considered (92). In any case, the key
to understand the animal’s response would be the possibility
of interference by other parameters in the water, which is
dependent of each study area particularities. The conclusion
that organotin pollution has been ameliorated may be doubtful
in some situations. As biological monitoring is frequently used
without bioassays or body burden analysis, the result of these
studies must be evaluated with care. If interference is suspected,
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FIGURE 4 | (A) Schematic scheme for an interference mechanism in the imposex response of marine gastropod mollusk to organotin compounds. While cationic

organotins are the most available form to biota, both particulate and dissolved organic matter from sewage can complex organotins, while sewage is also a source of

xenoestrogens that may act as antagonists to imposex development. (B) Main environmental aspects of the interference mechanism proposed. Due to the multiple

variables involved, only the general lines are indicated.

confirmatory chemical analysis is indicated, and occurrence of
organotin pollution should be suspected. In this case, the very

occurrence of imposex in marine snails is a clue that biologically

active organotin compounds are present in local waters. It is
important to remember that organotins could present a human
health risk for some coastal populations, as previously reported
(34, 76, 81, 93, 94). Imposex development is still the faster and
cheaper biological monitoringmethod to evaluate the occurrence
of remaining hotspots of organotin pollution, or to verify its
illegal use.

ENDOCRINE DISRUPTION IN MARINE
BIVALVE MOLLUSKS: GROWING IN
IMPORTANCE AS BIOMONITORING
ORGANISMS IN A NEAR FUTURE

Among all animal taxa, bivalve mollusks are probably the
most important for monitoring the extension and intensity of
marine pollution. Numerous programs of marine monitoring
employed bivalve mollusks, among which the Mussel Watch
was the most important. Being sessile, resistant, easily collected,
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these are adequate organisms for monitoring studies. The fact
that bivalves are also important components of many human
populations diet in coastal areas, and the object of growing
mariculture investments make these species important vectors
of transference of pollutants introduced in these coastal areas to
human populations. Marine bivalves have also been shown to
present reproductive anomalies related to endocrine disruptors.
When the bivalve Ruditapes decussatus was transplanted to TBT
polluted areas, a rising on testosterone levels with estradiol
reduction was observed (18). This same observation was made
on Mya arenaria populations (16). This last species had shown
male-biased populations in another study, by Gagné et al. (17),
the first instance in which hormonal alterations were reflected
at population level. The occurrence of intersexuality has been
showed to occur in marine bivalves (21). On the subject of
endocrine disruption, the most common studies were focused
in the occurrence of vitellogenin proteins in males, for instance,
of Tapes philippinarum (95–97) or Mytilus edulis (19, 20, 98).
This occurrence is related to availability of xenobiotics such as
nonylphenol, bisphenol A, ethinylestradiol, or PAHs, common in
urban sewage (99–103). In spite of many instances of endocrine
disruption being observed within populations of marine bivalves,
the extinction of populations was not commonly observed. From
this point of view, the most studied case of extensive populational
damage was the Arcachon Bay, France, and the commercial
farming of Crassostrea gigas, the Pacific oyster.

The Basin D’Arcachon is a closed roughly triangular tidal
water body with some 156 km2 area, in which some 10,000 to
15,000 tons of commercial oysters were produced each year.
From 1975 to 1982, oyster production was severely reduced,
due to absence of spatfall and anomalous growth, with shell
calcification anomalies (32). While these problems were reported
at the same time in other areas with this same species in
England and also along the Spanish Mediterranean coast, the
most important and studied area was Arcachon (104). In a
very interesting review, Ruiz et al. (33), indicated that from
initial water concentrations of TBT of <1 ng(Sn)L−1 by 1960,
the increased use of this compound led these concentrations
to rise above 100 ng(Sn)L−1 by 1981–1982, when controls
on application were applied by the French government. After
these measures, water concentrations of TBT decreased to about
10 ng(Sn)L−1 by 1987, reaching again about 1 ng(Sn)L−1 by
1993. These same authors have also shown that besides the
oyster production collapse, other important ecological changes
occurred in the same area. Simultaneously, it was observed a great
reduction of the local populations of the gastropod Ocenebra
erinacea, in which the first symptoms of imposex development
were reported by 1973, earlier than the oyster production
collapse. With the reduction of organotin pollution, gastropod
populations recovered later. Also “green tides” of Enteromorpha
spp. were reported to occur by 1982. While clearly indicating
the gaps in the original data, the authors indicated that TBT
effects on other invertebrate grazers may explain this anomalous
observation, a first evidence of multispecific TBT ecological
disturbance. Our research group has also noted excessive algal
growth and apparent reduction of herbivorous species in some

organotin polluted coastal areas in Brazil. This subject is now
under a closer scrutiny, as our previous studies were designed for
imposex evaluation only.

It should be pointed out, also, that dioecious bivalves did not
have the internal fecundation of marine gastropods that made
gastropods such useful species for environmental monitoring
of endocrine disruption. Reproductive conditions evaluation
in marine bivalves often requires histological analysis, what
precludes a quick, fast, effective monitoring methodology such
as imposex evaluation. With the phasing out of TBT, and the
intensive use of new antifoulings that may act as xenoestrogens
or estrogen agonists, such as Irgarol 1051, the “naval version”
of atrazine [see (73) for a deeper discussion], imposex will
be used only in the monitoring of the remaining hotspots
of legacy organotin polluted areas. The relative importance of
marine bivalves as indicators of marine endocrine disruption will
probably rise in a near future, including in the evaluation of
health risks for coastal human populations.

POSSIBLE NEW TARGETS FOR ED
COMPOUNDS: MARINE CEPHALOPOD
MOLLUSKS

Cephalopods are free-living predator mollusks with high
mobility and very effective sensorial capabilities, almost
completely opposed to the typical oyster species in respect of
adequation for environmental monitoring studies. They are
in some instances important and appreciated food items, and
have been included in human risk analysis for coastal areas
(34). From an endocrine disruption point of view, cephalopods
have a more complex nervous system than the other mollusks.
While in bivalves and gastropods neurohormones secreted
by nervous ganglia and gonads are responsible for sexual
maturation, showing first and second order control systems,
cephalopods show a third order neuroendocrine control system
that is comparable to the vertebrate HPG ax [see (105)]. In
this sophisticated control system, the Octopus Gonadotrophin-
Releasing Hormone (Oct-GnRH) has been shown to act as
modulator in functions such as feeding, memory or sensorial,
as well as in steroidogenesis in Octopus vulgaris (106). In the
other hand, it has been shown that estradiol regulates Oct-GnRH
and several functions of the nervous systems in the same
species (107). As cephalopods are being considered excellent
candidates for mariculture in Europe (105), a cycle may be
closing on them: as xenoestrogens have been shown to be
present in many instances in coastal areas and can affect these
animals, their use in mariculture will turn them sessile for all
environmental aspects such as bioaccumulation and pollutants
transference for humans. Clearly more research is required on
this subject.

ENDOCRINE DISRUPTION AND
ECOLOGICAL RISK ASSESSMENT

The global aspects of endocrine disruptionmay be inferred by the
ubiquity of detection of proven or suspect endocrine disrupting
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compounds, even while the biological effects in invertebrate
populations are not clearly shown yet. Simple and inexpensive
monitoring tools as imposex induction was for organotins
monitoring are still lacking, and tools as vitellogenin induction
in males are not specific. Certainly a weight of evidence approach
will be required at each location based on previous knowledge
of possible ED compounds sources and loads. However, in the
same way that imposex have been shown to occur worldwide,
and to have caused many gastropod species local extinctions,
there is no plausible reason today to suppose that the ubiquity
of ED compounds is not producing population damage on
many invertebrate species, damage that cannot be observed with
current methods and approaches. It was recently demonstrated
that male infertility could be induced by several environmental
contaminants (108), and that even low incidence of female
intersexuality in crustacean populations may have drastic effects
at population level (10, 109).

Ecological risk assessment is one of the most difficult tasks
today, because it requires a deep knowledge of at last three
important fields that should be employed at the same time.
These are: (i) the pollutant chemical properties and behavior
in aquatic environments, that will define its speciation and
reactivity; (ii) the physical components of dispersion and mixing
that will also influence the compound’s water residence time,
which is the basic aspect to indicate the exposition of aquatic
communities to pollutants: and (iii) the response of each
individual species to the pollutant. This is the basic scenario
for single pollutants exposition. Much of the current risk
evaluation works relay on these three basic kinds of information.
First, the available chemical data for each compound are not
always complete or reliable. Second, the mean concentrations
reported for the studied compounds in the literature were seldom
based on modeled concentrations in any particular area, let
alone thoroughly calibrated dispersion models (110–112). Third,
the available database of biological effects of the ED tested
compounds is very far from being complete.

While presenting today’s best available technology, would
these approaches be sufficient to understand the selective
pressures posed by the actual sum of anthropogenic compounds
present in coastal areas? I believe these are not. Experience has
shown that as more studies developed, and as the legislations
advance, still the biological communities change and productivity
and biodiversity decreases, and the assessment of these changes
depends on expensive ecological studies that are not usuallymade
with the appropriate extension and frequency. To improve this
situation, it would be important to advance along three separate
lines of action at the same time:

Axis (i) the lack of knowledge on DE effects on invertebrates
of many compounds in current use tool should be a priority
in research. The importance of this point was shown in the
particular study case of marine antifouling paints by interference
these effects can induce in the evaluation of the most used
biomonitoring approach.

Axis (ii) the problem of the “cocktail effect,” not only by the
way of sheer toxicity—what means acute or extensive effects -,
but by the cumulative action of pollutants on the hormonal
regulation mechanisms, should be another. This line is consistent

with the results on human and vertebrate health discussed by
WHO-UNEP (1).

Axis iii) the final considerations on the difficulty of tracing
specific compounds effects on marine communities without
knowing the “cocktail” composition, based on antifoulings
examples previously discussed (112). This means a necessity for
stronger simultaneous determinationmethods formultiple target
compounds, and a relative potency scale for ED compounds in
multiple marine taxa.

Certainly, there are other factors on these ecological
risk evaluations, such as human population growth,
that is greater in the coastal areas; climatic changes; the
changing uses of littoral areas; overexploitation of marine
resources (113). But we should always try to control
the introduction in the environment of hazardous and
potentially hazardous chemicals, including known and possible
endocrine disruptors.

FINAL REMARKS

I guess in the near future it would be required to focus on
the necessity of integrated studies, and on some measures
required to make these studies easier to integrate. To reach
this goal, we will need a relative potency scale for EDCs in
marine species, an integrated database of EDCs with padronized
doses and responses easily accessible to researchers and a
combined chemical-ecotoxicological-ecological modeling and
monitoring approach as the desired end-point. A growing
number of works is appearing studying pollutants interactions
to different taxa, and these efforts should be supported, because
as pointed elsewhere, the interactions are not predicable.
To finish this discussion, I would like to point out that
specific bioindicators for ED in fieldwork in these new
times would be much more probably the exception than
the rule.

AUTHOR’S NOTE

My idea is that through the case of marine gastropod
and bivalve mollusks to raise interest in research on the
ecotoxicological and ecological effects of endocrine disruptors.
Among marine invertebrates, endocrine disruption could be
widespread, as I tried to show with the particular cases
discussed. In the same way that the effects of endocrine
disruptors are still poorly known in human and vertebrate
populations, invertebrates could also be at risk, as several
instances of populations extinctions and recuperation have
been demonstrated. So, while by the point of view of human
health research is much needed in this field, in the case of
ecological damage and ecosystems functions much research is
still required too. Perhaps even a specific topic may be raised on
this subject.
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