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ABSTRACT
Objectives: Identification of pathway effects
responsible for specific diseases has been one of the
essential tasks in systems epidemiology. Despite some
advance in procedures for distinguishing specific
pathway (or network) topology between different
disease status, statistical inference at a population level
remains unsolved and further development is still
needed. To identify the specific pathways contributing
to diseases, we attempt to develop powerful statistics
which can capture the complex relationship among risk
factors.
Setting and participants: Acute myeloid leukaemia
(AML) data obtained from 133 adults (98 patients and
35 controls; 47% female).
Results: Simulation studies indicated that the
proposed Pathway Effect Measures (PEM) were stable;
bootstrap-based methods outperformed the others,
with bias-corrected bootstrap CI method having the
highest power. Application to real data of AML
successfully identified the specific pathway
(Treg→TGFβ→Th17) effect contributing to AML with
p values less than 0.05 under various methods and the
bias-corrected bootstrap CI (−0.214 to −0.020). It
demonstrated that Th17–Treg correlation balance was
impaired in patients with AML, suggesting that Th17–
Treg imbalance potentially plays a role in the
pathogenesis of AML.
Conclusions: The proposed bootstrap-based PEM are
valid and powerful for detecting the specific pathway
effect contributing to disease, thus potentially
providing new insight into the underlying mechanisms
and ways to study the disease effects of specific
pathways more comprehensively.

INTRODUCTION
Epidemiology involves the research of
disease prevalence, incidence and its risk
factors. However, traditional epidemiology
mainly focuses on a single risk factor related
to a disease, and this simplicity of the single-
level paradigm has serious limitations,1

which have been increasingly criticised.2

Recent advances in high-throughput-omics
technologies include genomics, epigenomics,
transcriptomics, proteomics and metabolo-
mics. It offers the potential to provide new
insight into the underlying mechanisms in
breadth and depth. The integration of trad-
itional epidemiology with various omics data
promotes a novel epidemiology branch,
systems epidemiology,3 4 which is expected to
create a network system to study health and
disease at a human population level.1 Under
this framework, the focus has been shifted
from identification of independent risk
factors to exploration of network or pathway
effects on specific diseases. Nevertheless,
systems epidemiology also proved to be a
great challenge in impeccably designed and
well-powered epidemiological studies with
powerful new statistical analysis methods.

Strengths and limitations of this study

▪ Powerful new statistical methods were proposed
in detecting whether the pathway effect is signifi-
cantly different between the case and control
groups within the framework of systems
epidemiology.

▪ Statistical simulations were conducted to assess
their performance, and a real data set for acute
myeloid leukaemia was further analysed to valid-
ate their practicability.

▪ Bootstrap-based pathway effect measures are
valid and powerful for identifying the specific
pathway contributing to disease, providing
potential new insight into underlying mechan-
isms and more comprehensive ways to study the
disease effects of specific pathways.

▪ The limitation of the proposed bootstrap-based
methods is the computation burden on the boot-
strap procedure used to evaluate the CI when
dealing with big data.
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Numerous network analytical methods, which have
been applied in studying human behaviour, physiology,
systems biology and modern drug development,5–9 have
provided the computational framework for data integra-
tion and biomarker selection in systems epidemiology.10

Among these, pathway analysis is an essential task for
network analysis in systems epidemiology. Several
methods have been proposed, including but not limited
to, a Gene Set Enrichment Analysis (GSEA) approach,11

Prioritising Risk Pathways fusing single nucleotide poly-
morphisms (SNPs) and pathways,12 Bayesian Pathway
Analysis,13 pathway analysis approaches based on the
adaptive rank truncated product statistic,14 and a
sub-pathway-based approach to study the joint effect of
multiple genetic variants.15 Generally, these methods are
suitable for various omics data in systems epidemiology.
However, most of them attach little importance to the
complex relationships (correlation and topological struc-
ture) between nodes in pathways, and only consider the
probability of disease-related nodes co-occurring in
pathways.
From the perspective of systems epidemiology, net-

works are abstract representations of biological systems
at the population level, which have illustrated multilevel
causes of the occurrence, development and prognosis of
complex diseases. In the network, variables (risk factors)
are represented by nodes, with their interactions or cor-
relation by edges (or arrows). Perturbations in networks
disrupt biological pathways and result in human diseases
usually in the following situations: (1) the topological
structure of pathways (or networks), but not pathway
effects, is the same between different disease status;
(2) the topological structure of the network changes
under different disease status, including nodes or edges
removal. Focusing on the former scenario, we attempt to
develop a novel statistical method for detecting the
pathway effect within a network between different
disease status under a case–control design, in order to
identify the specific pathway contributing to disease. To
assess the performance of the proposed statistics
Pathway Effect Measures (PEM), statistical simulations
were conducted to evaluate type I error and power, and
a real data set was further analysed to validate their
practicability.

METHODS
Pathway effect and PEM statistics
The proposed PEMs were developed under the frame-
work of a graph model.16 Graph G is an ordered pair of
disjoint sets (V, E), where V and E are finite sets. V=V(G)
is the set of vertices and E=E(G) is the set of edges.
A pathway is a graph P, where V(P)={x0, x1,…, xK} and E
(P)={x0x1, x1x2, …, xK−1xK}, K denotes the number of
edges in E(P) defined as the length of this pathway.
Figure 1 shows a specific network with six nodes Xi (i=1,
…, 6) and 10 edges. In this network, the effect of a spe-
cific pathway X1→X3→X5→X6→X4 is b ¼QK

k¼1 bk,

where βk denotes the standardised regression coefficient
between kth and (k+1)th nodes in the pathway. In this
paper, we mainly focus on detection of the pathway
effect between different disease status (case and
control) under the same topological structure of the
network. The difference in pathway effect between case
and control D=βD–βC can be introduced as an estimate
of the pathway effect contributing to the disease, where
βD is the pathway effect among cases and βC the pathway
effect among controls. Since the distribution of D is not
available, two typical PEM statistics were proposed for
detecting the pathway effect contributing to the disease.

Non-parametric bootstrap test
The statistic (PEM-D) is defined as

D ¼ bD � bC¼
YK
k¼1

bD
k �

YK
k¼1

bC
k ð1Þ

where bD
k and bC

k represent the standardised regression
coefficient between kth and (k+1)th nodes in the
pathway from cases and controls, respectively. To test
whether a pathway has an effect on the disease of inter-
est, we conducted hypothesis testing with H0:βD=βC
versus H1:βD≠βC. Bootstrap methods17 were further
employed to perform the hypothesis test. The percentile
bootstrap CI approach was conducted as follows: (1)
draw a large number of bootstrap samples (eg, 1000)
and estimate D in each of them to form a bootstrap dis-
tribution; (2) define the limits of a 1-α CI as α/2 and
1-α/2 percentiles of the bootstrap distribution and (3)
reject the null hypothesis (H0:βD=βC) if the CI does not
include zero.
Since the bootstrap distribution may fail to centre at

the sample estimate of D, a bias-corrected bootstrap CI18

was also adopted in this study. The detailed procedure is
outlined as follows: (1) form bootstrap distribution as
above; (2) find a z-score zρ=Φ

−1(ρ), where Φ−1 is the
inverse cumulative distribution function for standard

Figure 1 Network and one specific pathway.
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normal distribution and ρ the proportion of the boot-
strap distribution greater than the original sample D; (3)
calculate zlower=zα/2−2zρ and zupper=−zα/2−2zρ, the limits
of a 1-α CI are percentile ranks from the bootstrap distri-
bution for Φ(zlower) and Φ(zupper); and (4) make a deci-
sion using the bias-corrected CI of the test statistic D.

Asymptotic normal distribution statistic (PEM-UD)
From the definition of D=βD−βC, the asymptotic normal
distribution statistic is defined as

UD¼ bD � bCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðbDÞ þ varðbCÞ

p ð2Þ

Where var(βD) and var(βC) denote the variance of βD
and βC, respectively, which can be calculated by four dif-
ferent methods:
(1) the exact estimator19

varðbÞexact¼
YK
k¼1

ðs2bk
þb2

kÞ �
YK
k¼1

b2
k;

where sbk
is the SE of βk;

(2) the unbiased estimator19

varðbÞunbiased¼
YK
k¼1

b2
k �

YK
k¼1

ðb2
k � s2bk

Þ;

(3) the multivariate Δ estimator20

varðbÞmult�delta¼ Dcovðb1;b2; . . . ;bKÞDT;

where

D ¼ @b

@b1
; � � � ; @b

@bK

� �
;

(4) the bootstrap estimator.17 The former three variance
estimators were derived under the independent assump-
tion of the standard regression coefficients βk.
In summary, the significance test procedure was con-

ducted as follows: (1) calculate βD–βC from the original
sample; (2) conduct the bootstrap procedure to estimate
the 1-α percentile bootstrap CI, bias-corrected CI and
calculate var(βD) and var(βC) by four different methods;
and (3) reject the null hypothesis if the CI does not
include zero or the p value less than the significance
level α.

Simulation
Simulations were conducted to evaluate the perform-
ance of D and UD under different sample sizes, pathway
effect and pathway length. For the specific pathway with
length K, the simulated (K+1)-dimensional variables
(nodes) were generated from a multivariate normal dis-
tribution NK+1(μ,∑) with mean vector μ and covariance

matrix ∑. In this article, we specified the mean vector
μ=0 and covariance matrix.

S ¼

1 b1 0 � � � 0 0
b1 1 b2 0 � � � 0

0 b2
. .
. . .

. . .
. ..

.

..

.
0 . .

. . .
.

bK�1 0

0 ..
. . .

.
bK�1 1 bK

0 0 � � � 0 bK 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

Under the null hypotheses (H0:βD=βC), the data were
generated by setting bD

k and bC
k to sufficeQK

k¼1 b
D
k¼

QK
k¼1 b

C
k . Under the alternative hypotheses

(H1:βD≠βC), different correlation coefficient βk,
pathway effect contributing to the disease
d ¼QK

k¼1 b
D
k �QK

k¼1 b
C
k and pathway length K were con-

sidered. All simulation data were generated by the R
“mvtnorm” package available from CRAN (http://cran.
r-project.org/).
Under H0, 1000 simulations, given the various sample

sizes (N=50, 100, 200, 300, 500, 1000) and pathway
length (K=2, 3, 4, 5), were conducted to assess the type I
error of the above two typical PEM, including the non-
parametric bootstrap test with CI estimated by the per-
centile bootstrap and bias-corrected bootstrap methods,
and asymptotic normal distribution statistic with var-
iances calculated via four approaches. Under H1, given
the various sample sizes, we repeated 1000 simulations
to assess the power under a different correlation pattern,
δ and K, respectively.

APPLICATION
The proposed two typical PEM were applied to acute
myeloid leukaemia (AML) data, consisting of T helper
type 17 (Th17) cells, regulatory T (Treg) cells and their
related cytokine transforming growth factor β (TGFβ) in
a bone marrow microenvironment from 98 patients with
AML and 35 controls collected by the Qilu Hospital of
Shandong University in China. Patients with AML were
diagnosed according to the French-American-British
(FAB) classification system. Patients with hypertension,
diabetes, cardiovascular diseases, or chronic or active
infection, or were pregnant were excluded. Individuals
with a slight iron deficiency anaemia, having no immuno-
logical changes, were used as controls. Clinical character-
istics of the participants are presented in table 1.
Informed consent was obtained from all participants
before enrolment in the study in accordance with the
Declaration of Helsinki. TGFβ is a pre-requisite for the
induction of CD4+ T-cell Foxp3 expression and differenti-
ation into Treg cells. TGFβ is also critical for human
Th17 cell differentiation.21 22 All six methods were con-
ducted to detect the pathway (Treg→TGFβ→Th17) effect
contributing to AML.
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RESULTS
Simulation
Type I error rate
Table 2 shows the estimated type I error rates of the two
proposed PEM D and UD under different pathway
lengths and sample sizes. The type I error rates of the
non-parametric bootstrap test are close to the given
nominal level (α=0.05) when the sample size reaches 300,
and 500 for the asymptotic normal distribution statistic.

Statistical power
The power of the proposed PEM D and UD under K=3
is shown in figure 2. It can be seen that the power of the

proposed six methods monotonically increases with the
sample size and δ. The bootstrap-based tests (percentile
bootstrap, bias-corrected bootstrap, variance estimated
via a bootstrap) perform better than the other three
tests, with the bias-corrected bootstrap CI method
having the highest power. The power can be consider-
able under a larger δ (figure 2C), even with the small
sample size (200).
Figure 3 presents the power of the proposed PEM

under three different correlation patterns (figure 3A–C)
given same δ=0.1 with pathway length K=2. It suggests
that the power of all six methods decreases when the
correlation pattern increases, with figure 3A showing the

Table 1 Clinical characteristics of patients grouped according to acute myeloid leukaemia (AML) status

AML
(n=98)

Control
(n=35) p Value

Gender (female) 47 (48.0%) 16 (45.7%) 0.819

Age (years) 42.36±13.89 39.63±13.03 0.313

Treg (%) 2.20 (1.51) 1.37 (2.04) 0.001

Th17 (%) 2.48 (3.08) 2.49 (2.73) 0.657

TGFβ (pg/mL) 3700.20 (5803.65) 9763.59 (6633.97) <0.001

Data are presented as means±SDs, medians (IQRs); compared continuous variables with two sample t test or Wilcoxon rank-sum test, and
categorical variables with a χ2 test.

Table 2 Type I error for two typical PEM in different scenarios

Sample size 50 100 200 300 500 1000

Pathway length K=2 ðbD
1 ;b

D
2 Þ ¼ ð0:4; 0:2Þ ðbC

1 ;b
C
2 Þ ¼ ð0:2; 0:4Þ

Multivariate Δ* 0.027 0.039 0.045 0.032 0.040 0.051

Exact* 0.019 0.035 0.042 0.031 0.040 0.050

Unbiased* 0.033 0.043 0.045 0.033 0.040 0.051

Bootstrap* 0.040 0.052 0.057 0.042 0.049 0.059

Percentile bootstrap† 0.046 0.057 0.059 0.047 0.057 0.059

Bias-corrected bootstrap† 0.056 0.068 0.058 0.048 0.057 0.058

Pathway length K=3 ðbD
1 ;b

D
2 ;b

D
3 Þ ¼ ð0:1; 0:3; 0:5Þ ðbC

1 ;b
C
2 ;b

C
3 Þ ¼ ð0:5; 0:1; 0:3Þ

Multivariate Δ* 0.005 0.021 0.037 0.035 0.048 0.045

Exact* 0.003 0.015 0.033 0.035 0.047 0.044

Unbiased* 0.015 0.026 0.042 0.040 0.050 0.047

Bootstrap* 0.011 0.020 0.044 0.037 0.053 0.048

Percentile bootstrap† 0.029 0.034 0.049 0.047 0.054 0.050

Bias-corrected bootstrap† 0.059 0.057 0.059 0.053 0.058 0.057

Pathway length K=4 ðbD
1 ;b

D
2 ;b

D
3 ;b

D
4 Þ ¼ ð0:6; 0:5; 0:1; 0:3Þ ðbC

1 ;b
C
2 ;b

C
3 ;b

C
4 Þ ¼ ð0:1; 0:3; 0:5; 0:6Þ

Multivariate Δ* 0.004 0.012 0.022 0.030 0.035 0.047

Exact* 0.001 0.009 0.021 0.026 0.032 0.047

Unbiased* 0.010 0.019 0.032 0.035 0.037 0.047

Bootstrap* 0.014 0.020 0.034 0.037 0.039 0.054

Percentile bootstrap† 0.033 0.034 0.042 0.045 0.048 0.058

Bias-corrected bootstrap† 0.065 0.060 0.055 0.052 0.054 0.056

Pathway length K=5 ðbD
1 ;b

D
2 ;b

D
3 ;b

D
4 ;b

D
5 Þ ¼ ð0:1; 0:3; 0:4; 0:5; 0:6Þ ðbC

1 ;b
C
2 ;b

C
3 ;b

C
4 ;b

C
5 Þ ¼ ð0:6; 0:5; 0:1; 0:3; 0:4Þ

Multivariate Δ* 0.000 0.004 0.018 0.034 0.035 0.032

Exact* 0.000 0.003 0.014 0.031 0.033 0.029

Unbiased* 0.001 0.013 0.023 0.039 0.038 0.033

Bootstrap* 0.004 0.007 0.026 0.037 0.037 0.041

Percentile bootstrap† 0.022 0.035 0.043 0.049 0.049 0.043

Bias-corrected bootstrap† 0.066 0.061 0.059 0.057 0.056 0.046

*For PEM-UD with different methods, estimate the variance.
†For PEM-D with different methods, estimate the CI.
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highest power followed by figure 3B,C. Again, the
bootstrap-based tests still have more advantageous per-
formance than the other three.
The power of the proposed PEM under different

pathway length K is shown in figure 4. Figure 4A shows
that the power increases monotonically with K, given the
same δ. Moreover, figure 4B shows the power with
the same correlation pattern, though δ decreases with
the increase in pathway length, the power may still
increase. In addition, UD with variance estimated via a
bootstrap is more powerful than other variance-estimated
approaches (exact, unbiased, multivariate Δ).

Application result
Table 3 shows the results of the proposed PEM for
detecting the pathway (Treg→TGFβ→Th17) effect con-
tributing to AML. This pathway effect can be detected
significantly at α=0.05 by the percentile bootstrap and
bias-corrected bootstrap CI method, as well as by
PEM-UD estimated the variance via the unbiased estima-
tor,19 the multivariate delta estimator,20 the bootstrap
estimator.17

DISCUSSION
Systems epidemiology couples traditional epidemiology
with modern high-throughput technologies which seek to
integrate pathway-based (or network-based) analysis into
observational study designs to enhance the understanding
of biological processes in the human organism. It provides
a means to organise and study the interdependencies of
factors (eg, genes, proteins, metabolites)23–28 at a human
population level. Within this framework, the identification
of pathways effects responsible for specific diseases has
been one of the essential tasks. In the framework of bio-
informatics, various methods existed for inferring bio-
logical networks29–31 aiming to mine underlying networks
for identifying biological modules, clustering interactions,
and topological features of the network such as degree
and betweenness centrality.32–34 Despite these procedures
for distinguishing specific pathway (or network) topology
between different disease status, statistical inference at a
population level remains unsolved, and further develop-
ment is still necessary In summary, both the specific
pathway (or network) topology and their effect on pheno-
type (or disease) should be considered in systems

Figure 2 Power of PEM under different sample size and different d given pathway length K=3. Different pathway effect

contributing to the disease d=0.05 (A), d=0.1 (B) and d=0.15 (C) were given, respectively.

Figure 3 Power of PEM under different sample size and different correlation patterns given K=2 and d=0.1. (A) for correlation

pattern given ðbD
1 ;b

D
2 Þ ¼ ð0:45;0:3Þ and ðbC

1 ;b
C
2 Þ ¼ ð0:25;0:14Þ; (B) for correlation pattern given ðbD

1 ;b
D
2 Þ ¼ ð0:5;0:4Þ and

ðbC
1 ;b

C
2 Þ ¼ ð1=3;0:3Þ; (C) for correlation pattern given ðbD

1 ;b
D
2 Þ ¼ ð0:6;0:5Þ and ðbC

1 ;b
C
2 Þ ¼ ð0:5;0:4Þ.
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epidemiology data analysis. In this paper, we furnished two
typical PEM to detect the pathway effect within a network
between different disease status using the case–control
design, expected to identify the specific pathway contribut-
ing to disease.
Our simulation showed that both D and UD kept

stable under the null hypothesis with a large sample
size. It indicated that the power of the proposed six
methods increased monotonically with sample size, δ
and K (figure 2 and 4A), and decreased when the cor-
relation pattern increased (figure 3). Even though δ
decreased, the power still increased with the increase in
the pathway length under a fixed correlation pattern.
Overall, the bootstrap-based tests (percentile bootstrap,
bias-corrected bootstrap, variance estimated via a boot-
strap) perform better than the other tests, with the bias-
corrected bootstrap CI method having the highest
power. Additional simulation also showed that all trends
remained the same, regardless of the pathway length
(see online supplementary figures S1 and S2). A signifi-
cant pathway (Treg→TGFβ→Th17) effect contributing
to AML has been detected in our real data (table 3).
Not only does a functional antagonism exist between
Th17 and Treg cells, but there is also a dichotomy in
their generation,35 and Treg, TGFβ and Th17 have been
confirmed to be associated with AML.36 Our results

further demonstrated that the Th17–Treg correlation
balance was impaired in patients with AML, suggesting
that the Th17–Treg imbalance potentially plays a role in
the pathogenesis of AML. In summary, the bootstrap-
based methods are preferred for identification of the
pathway effect contributing to disease.
A reviewer suggested that we show the conventional

association parameters, for example OR. It is indeed
important to obtain some association or effect para-
meters such as OR. However, unlike one single factor, it
is extremely hard to define the pathway levels since one
pathway usually refers to many factors with a specific top-
ology structure. The aim of our study is to develop a
novel statistical method for detecting the pathway effect
within a network between different disease status using
the case–control design; thus, the exposure unit is the
pathway rather than one single factor.
Although PEMs were proposed under a case–control

design, they can also compare the difference between
any two groups (different times or treatment). For
instance, the main problem for drug developers is that
they have to determine which one can be chosen as a
priority to be a therapeutic target when faced with many
disease-specific pathways involved in complex networks.
PEM can provide the researchers with one guide to
choose the pathway that most likely contributes to the
disease from a statistical perspective. Our results also
highlight the great potential of the proposed PEM usage
in systems epidemiology in advancing medicine
research, and Th17–Treg balance may be a promising
therapeutic approach in patients with AML. Although
our proposed PEMs can be extended to a matched and
nested case–control design, the distribution of PEM-D is
still difficult to determine. The reason why the distribu-
tion of the difference in pathway effect between cases
and controls is unknown is that our proposed method is
derived from the multiplication of some correlated stan-
dardised coefficients. There seems to be little correl-
ation with the epidemiological design.

Figure 4 Power of PEM under different pathway length given sample size 300. (A) For different pathway length K given same

d=0.05; (B) for different pathway length K given same bD
i ¼ 0:5 and bC

i ¼ 0:4, ðd ¼ 0:5K � 0:4KÞ i ¼ 1; . . . ;K.

Table 3 The results of the pathway (Treg→TGFβ→Th17)

effect contributing to acute myeloid leukaemia using six

different methods

p Value or 95% CI of D

Multivariate Δ 0.048

Exact 0.091

Unbiased 0.014

Bootstrap 0.034

Percentile bootstrap (−0.202 to −0.011)
Bias-corrected bootstrap (−0.214 to −0.020)
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One possible drawback of the proposed bootstrap-
based methods is the computation burden on the boot-
strap procedure used to evaluate the CI and SD of D,
and theoretical justification work is highly desirable in
future studies.

CONCLUSIONS
In this paper, we proposed two typical PEM to detect the
pathway effect within a network between different disease
status under a case–control design within the framework
of systems epidemiology. Bootstrap-based PEM are valid
and powerful for identifying the specific pathway contrib-
uting to disease, thus potentially providing new insight
into the underlying mechanisms and more comprehen-
sive ways to study the disease effects of specific pathways.
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