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The microenvironment that surrounds a tumor, in addition to the tumor itself, plays an
important role in the onset of resistance to molecularly targeted therapies. Cancer cells and
their microenvironment interact closely between them by means of a molecular
communication that mutually influences their biological characteristics and behavior.
Leukemia cells regulate the recruitment, activation and program of the cells of the
surrounding microenvironment, including those of the immune system. Studies on the
interactions between the bone marrow (BM) microenvironment and Acute Lymphoblastic
Leukemia (ALL) cells have opened a scenario of potential therapeutic targets which include
cytokines and their receptors, signal transduction networks, and hypoxia-related proteins.
Hypoxia also enhances the formation of new blood vessels, and several studies show how
angiogenesis could have a key role in the pathogenesis of ALL. Knowledge of the molecular
mechanisms underlying tumor-microenvironment communication and angiogenesis could
contribute to the early diagnosis of leukemia and to personalized molecular therapies. This
article is part of aSpecial Issueentitled: InnovativeMulti-DisciplinaryApproaches for Precision
Studies in Leukemia edited by Sandra Marmiroli (University of Modena and Reggio Emilia,
Modena, Italy) and Xu Huang (University of Glasgow, Glasgow, United Kingdom).
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INTRODUCTION

Tumors have a small subpopulation of cells responsible for cancer initiation and relapses (1–3).
Leukemic stem cells (LSC), like normal hematopoietic stem cells (HSC), depend on the interaction
with the microenvironment or on the niche for their own self-renewal and maintenance.

The microenvironment consists not only of tumor cells but also of physiological tissues which
include the stroma (supporting scaffold) with fibroblasts, blood vessels and white blood cells,
especially T lymphocytes and macrophages, whose precursors are monocytes deriving from the
myeloid lineage. Some tumors have a rich T lymphocyte infiltration (4, 5). Innate immunity cells
such as macrophages, granulocytes and immature myeloid cells from which monocytes or
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macrophages derive are also found in different quantities (6).
Today, it is becoming increasingly clear that the immune system
can have a double significance, that is, to manifest antitumor
activity or to offer a significant contribution to the tumor
development, therefore constituting a barrier that opposes the
efficacy of anticancer drugs by creating chemoresistance (7). The
paradoxical role that the immune system plays in tumor control
can be explained by its plasticity that leads to pro or antitumor
properties (8–10).

Therefore, considering the role of the tumor microenvironment
in neoplastic diseases, it is clear that in the treatment of numerous
tumors it is necessary not only to target the tumor cells, but also to
control the inflammatory microenvironment that causes resistance
to anticancer therapies (11–14). In this regard, clinical studies aim at
blocking the recruitment of inflammatory cells into the tumor
environment by neutralizing attractive chemokines with specific
antibodies, and by taking advantage of suitable strategies to inhibit
the activity of cells. A possible antitumor therapeutic strategy
therefore is targeting the inflammatory microenvironment in
combination with the blocking of immune checkpoints.

In recent years, the interaction of LSC with other cells located
in the BM, the so-called medullary microenvironment, has a
leading role in these phenomena. In this context, it contributes
decisively to the development of the disease and to drug
resistance mechanisms and is also decisive in the process that
leads stem cells to transform into malignant cells.

In particular, the so-called mesenchymal progenitors, stem
cells derived from the BM, constitute a particular population,
since they support the niche of both normal and leukemic HSC
(15, 16). The rationale is therefore to explore this network of
relationships that feeds and protects LSC, in order to develop
therapeutic and personalized strategies that could effectively
interfere with these communication routes or with the
“interlocutors”. In the intertwining of these relationships the
process of angiogenesis also represents a crucial aspect, favoring
the malignant progression of cancer, both as regards solid
tumors and hematological ones (17, 18).

The complexity of interactions within the leukemic
microenvironment has been explored for many years. In
this review, the aim is to summarize the current understanding
of the cellular and molecular network of the tumor
microenvironment in ALL, and therefore its ability to modulate
the leukemogenesis process, leading to the development of future
treatment strategies that can intervene in the remodeling of the
leukemic microenvironment.
ACUTE LYMPHOBLASTIC LEUKEMIA

ALL is one of the most common malignancy in child
population (19–22). In pediatric patients, modern protocol
therapies are associated with overall success, while the adult
population that develops this disease has an unfavorable
prognosis: the survival rate in patients from 25 to 59 years
old is around 40%, while in the aging the survival rate is
usually below 20%.
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ALL is more frequent in males, and specifically adolescents
and young adults display a greater number of T-cell acute
lymphoblastic leukemia (T-ALL) subtype rather than the other
ALL progenitors. The B-cell subtype accounts for about 75-
80% of ALL cases and it mainly develops in children with a
peak incidence of around 2-5 years (23, 24). B-ALL is
characterized by an arrest in lymphoid differentiation and
therefore in the lymphoid development as pro or pre-B, with
recurrent genetic alterations that involve cell cycle and
lymphogenesis control genes (21). In adults, prognosis of B-
ALL is more consistent at least partially for the BCR-ABL1
fusion protein onset, which is usually found in 2-10% of cases
in children. T-ALL subtype is characterized by the
accumulation of undifferentiated thymocytes that have
acquired multiple genomic aberrations affecting critical
transcriptional and signaling networks (25). It represents
12.7% of pediatric cases, and survival rates at 5 years for
children and adolescents affected by T-ALL are 70–75%,
while in adults the rates are 35–40%. A morphological and
structural profile between two ALL cell line subtypes is shown
in Figure 1, that reports the morphology of a B cell precursor
leukemia cell line, SEM, and a T cell leukemia, Jurkat cell line.
The images were acquired by Transmission Electron
Microscopy (TEM). Observing TEM images, SEM cell
nucleus is delimited by a nuclear envelope and contains
more than one nucleolus (n) and some areas enriched in
heterochromatin (he). Jurkat cells have a well-defined
rounded nucleus with envelope, and a larger and more
distributed cytoplasm. Around the nucleus, structures such
as mitochondria (m) can be appreciated (Figure 1).

Chemoresistance and relapse mechanisms are driven by a
pool of rare leukemia initiating cells (LICs). These cells are able
to escape chemotherapeutic drugs and are mainly involved in
self-renewal and in new LICs generation. Moreover, this cellular
class has in common several properties with HSCs, that normally
leads to the formation of a HSC cell identical to the parent cell,
and to a partially differentiated progenitor cell incapable of self-
renewal (therefore not stem cells), but with a large replicative
potential. The type of differentiation that the progenitor cell
undergoes (also called TAC, Transit Amplifying Cell due to its
replicative capacity) determines the distinction of blood cells into
two large classes: cells from the myeloid lineage and cells of the
lymphoid lineage, therefore T lymphocytes, B lymphocytes and
Natural Killer (NK) cells (26, 27).

The optimal site for HSC is the BM, that includes specialized
areas called niches consisting of different cell types that control
the number, quiescence, self-renewal, differentiation and
distribution of HSCs (23). The niches are divided into two
distinct, but equally connected areas: the first in which the
osteoblast plays a primary role (Osteoblastic Niche); the
second where endothelial cells predominate and has been
called Vascular Niche (23, 28, 29).

In particular, in the vascular niche, sinusoidal endothelial
cells favor the survival, proliferation and differentiation of
myeloid progenitors and megakaryocytes. HSCs in the
Vascular Niche are exposed to hormones, growth factors,
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oxygen and nutrients, therefore to detect signals and stimuli
from the peripheral circulation. This favors self-maintenance,
proliferation and/or differentiation (30, 31).

On the contrary, the osteoblastic niche could act as a reservoir
since it favors the maintenance of the state of quiescence (32).
However, not all the cells of the endosteal surface perform these
functions; those that define the osteoblastic niche are represented
by the N-cadherin+ and CD45- (SNO) subpopulation.

The direct contact between the microenvironment and
leukemic cells is therefore essential, and also the activation of
different signaling pathways characterizes the microenvironment
in a specific way (33, 34). Phosphatidylinositol-3-kinase (PI3K)/
Frontiers in Oncology | www.frontiersin.org 3
AKT-Bcl2 or NOTCH1 appear to be relevant pathways to be
induced by microenvironment and leukemic cell connections (15).

Finally, long-term overactivity of reactive oxygen species
(ROS) could have deleterious effects on stem cells and on
leukemia incidence (35), and in this context several networks
are activated in response to ROS increment such as P53, AKT,
MAPK and ataxia telangiectasia mutation (ATM).

A bet ter unders tanding of the contr ibut ion of
microenvironmental stimuli in mediating leukemogenesis may
provide a better scenario of new therapeutic targets in the
treatment of leukemias.
The Role of Cytokines in Leukemic
Microenvironment
The inflammatory microenvironment surrounding cancer cells is
a complex network in which immune infiltration has long been
considered a defense mechanism against malignant tumors. In
fact, it can contribute to the development, spread of cancer,
metastasis and the onset of resistance to anticancer therapies
(36). Cytokines are essential for BM niche homeostasis, and the
first studies on B-ALL reported a higher expression of these
molecules when compared with healthy BM samples, suggesting
an autocrine/paracrine regulation of leukemic cells and cytokines
(37). Among the cytokines with more modulatory activity IL-7,
IL-8 and IL-15 are the most involved.

Interleukin-7 (IL-7) is a cytokine produced by stromal cells
and promotes hematological malignancy development and
differentiation (ALL, T-cell lymphoma). It functions primarily
as a growth factor and an antiapoptotic molecule, essential for
the differentiation of T lymphocytes with TCR g− d. It also works
as a cofactor during myelopoiesis and is capable of activating
monocytes/macrophages and NK lymphocytes. Its receptor is a
heterodimer consisting of an alpha chain, which binds IL-7, and
a gamma chain, a common component of the IL-2, IL-4, IL-9, IL-
15 receptor. Experimental data suggest that, even in humans, IL-
7 could act as a factor stimulating leukopoiesis, given that it is of
great importance in the treatment of bone marrow transplant
patients (38). Like normal T and B progenitors, most T-ALL and
B-ALL cells express functional receptors for IL-7 (IL-7R) which
are able to promote leukemia survival and proliferation both in
vitro and in patient- derived xenograft assays, suggesting a role
for IL-7R/IL-7 pathway in ALL progression. IL-7 and IL-7R
activate three main signaling networks: STAT5, PI3K/AKT/
mTOR and MEK/ERK, leading to leukemia cell progression
and survival, also with regard to T-ALL (25, 39, 40). An
overview of the IL-7 signaling, upon activation IL-7R, is
summarized in Figure 2. Upon IL-7 binding, IL-7 receptor a
chain (IL-7Ra) and g-common (gc) chains dimerize, with
consequent activation of JAK3 and JAK1 kinases that bind to
the intracellular domain of gc and IL-7Ra, respectively. JAK1
phosphorylates the IL-7Ra intracellular domain with activation
of PI3K and STAT, resulting in STAT translocation to the
nucleus and in the transcription of target genes involved in cell
cycle progression or differentiation. Phosphorylated AKT
promotes cell survival through degradation of pro-apoptotic
proteins and glucose uptake (Figure 2).
A

B

FIGURE 1 | Morphological aspect of a B cell precursor leukemia (SEM) and
a T-ALL (Jurkat) cell lines. TEM images of: (A) SEM cells at 8000
magnification; (B) Jurkat cells at 8000 magnification. n: nucleolus, he:
heterochromatin, m: mitochondria. Scale bars correspond to 2 mm. For TEM
analysis, samples were fixed in 2.5% glutaraldehyde and post-fixed in 2%
osmium tetroxide, dehydrated in acetone solutions and included in Araldite
Durcupan ACM (Fluka). Samples were then counterstained with uranyl
acetate in saturated solution and lead citrate and observed under
transmission electron microscope Zeiss EM910 at 100 Kv.
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The activity of IL-7 in supporting ALL development was
firstly documented in in vitromodels (41, 42). In has been shown
that B-ALL primary cells co-cultured with stromal cells displayed
a CXCL12-dependent proliferation which was concomitant to
the presence of IL-7 and, to a lesser extent, to the expression of
IL-3 (43). This synergistic/additive effect was partially correlated
with the increased phosphorylation of components of CXCL12-
activated signaling networks (e.g., PI3K/AKT andMEK/ERK). In
in vivo models, mice with IL-7 receptor knocked out exhibited
thymic atrophy, developmental arrest of double-stage positive T
cells, and severe lymphopenia. Administration of IL-7 in mice
leads to an increase in B and T cells and in T cell recovery after
cyclophosphamide addition or after BM transplantation (44).
Thymic epithelial cells increased survival of T-ALL primary cells
through IL-7, suggesting a functional role for the thymic
microenvironment in the acquisition of selective growth
advantage of leukemic cells (23). Importantly, in BM stromal
or thymic epithelial cells co-cultured with T-ALL cells enhanced
survival specifically required IL-7/IL-7R interactions, while the
blocking of either IL-7 or IL-7R significantly reduced apoptosis
inhibition mediated by the leukemic microenvironment (45).
Moreover, IL-7 receptor is upregulated in about 50% of T-ALL
through mutational activation of NOTCH, considered an
upstream regulator (42).

It has also been shown that C-C Motif Chemokine Ligand 2
(CCL2) and IL-8 were able to increase the adhesion of ALL cells
to BM stromal cells, in a stromal-dependent manner, and to
promote survival and proliferation of BM stromal cells, while
they seem not to have effect on most precursor B-cell ALL
survival or migration. Indeed, it was found that the BM plasma
Frontiers in Oncology | www.frontiersin.org 4
levels of CCL2 and IL-8 in ALL children at diagnosis were
significantly higher than in healthy controls. Moreover, in T-
ALL IL-8 production is physiologically regulated by a specific
signaling network, represented by CXCL12/CXCR4 axis and the
nuclear factor-kB (NF- kB) and JNK/AP-1 pathways. Therefore,
the analysis of the molecular mechanisms that intervene in the
modulation of IL-8 could be important to further hypothesize
possible alternative therapeutic strategies (46, 47).

The role of IL-15 has been reported in a xenograft model of
human B cell precursor (BCP)-ALL in immunocompromised
mice, characterized by infiltration of ALL blasts into the CNS.
Blasts and brain resident cells induced aberrant activation of host
cells in the brain microenvironment, with a consequent cytokine
and exosomes release, including IL-15 that binds to astrocytes
and brain vessel endothelial cells. It has been shown that the
silenced expression of either IL-15 in the NALM6 cell line
significantly decreased CNS infiltration in engrafted mice, thus
providing important points by which lymphoblasts modulate the
brain microenvironment (48).

The Role of Signaling Networks in
Leukemic Microenvironment
LICs and BM niches are characterized by specific signal
transduction pathways which, if expressed in an aberrant way,
influence the mechanisms of survival, proliferation, drug
resistance and cellular invasion. Therefore, the aim is to identify
the molecular mechanisms that promote and support tumor
proliferation and downstream survival of important signaling
pathways critical for the onset and progression of ALL. Two
important signaling networks are CXCL12-CXCR4 and NOTCH.
FIGURE 2 | IL-7 signaling pathway. For details, please see the text.
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CXCL12-CXCR4 Network
The activation of the CXCR4 receptor by the chemokine
CXCL12 (also known Stromal cell-Derived Factor-1, SDF-1)
represents one of the most studied transductional axes, in the
modulation of the HSC migratory behavior and in the
localization of the leukemic cells to their niches (49, 50). As a
demonstration of the important biological function performed
by CXCL12, the amino acid sequence of this chemokine is
extremely conserved among the different species during
evolution. CXCL12 plays a role of primary importance already
during embryonic development; experimental mouse models of
gene knockout for CXCL12 or its CXCR4 receptor showed
defects in the heart, intestines, circulatory and nervous
systems, which are already lethal in the early stages of
development (51). Furthermore, the lack of ability of the
hematopoietic progenitors to colonize the bone marrow is
significant, and this phenomenon can be related to the role of
CXCL12 in regulating the migration of HSC and their trafficking
between the different hematopoietic niches. The mechanisms
that regulate the activity of CXCL12 remain largely still to
be characterized.

It is currently believed that the expression of CXCL12, as well
as the CXCR4 receptor, is extremely dynamic and regulated by
mechanisms of autocrine and paracrine secretion (52). In
particular, CXCR4 is widely expressed within the bone marrow
by immature or maturing hematopoietic cells, of which it finely
regulates the processes of homing, bone marrow retention or
migration and entry into the circulation (53). Worthy of note is
also the high expression of both CXCL12 and CXCR4 by stromal
cells and medullary endothelial cells, which seems to confirm the
existence of autocrine and paracrine stimulation circuits within
the medullary microenvironment (54).

The activation of CXCR4 induces the up-regulation of
different signaling networks such as p38 mitogen-activated
protein kinase (p38 MAPK), MEK/ERK, PI3K/AKT, and
protein kinase C (PKC) (50). It has been reported that PI3K/
AKT network could control cell cycle progression by regulating
the cyclin B1 and stathmin expression/phosphorylation (55).
Moreover, both MEK/ERK and p38 MAPK kinase promoted T-
ALL migration through interactions with a2b1 integrin,
suggesting that this blockade could be a valuable target for T-
ALL therapeutic treatment (56).

CXCL12 and CXCR4 could be also important in B-ALL.
Indeed, an elevated expression of CXCR4 in B-ALL blasts has
been related to a worse patient outcome, and the expression of
CXCR4 active form has been associated with a poor survival for
B-ALL patients (23, 57). Further evidence emerged from studies
conducted on a CXCR4 receptor antagonist, AMD3100
(Plerixafor). It was reported that a single injection of
AMD3100 is able to induce rapid mobil izat ion of
hematopoietic progenitors in mouse models, as well as in
humans (58). The molecular mechanism underlying this effect
could be the binding of the antagonist to the receptor expressed
by stem cells and hematopoietic progenitors, or to the receptor
present on the surface of stromal cells, or both. In particular, it
was seen that AMD3100 was able to block chemotaxis both in the
Frontiers in Oncology | www.frontiersin.org 5
B-ALL cells NALM6 and in primary B-ALL cells, therefore
enhancing the effects of cytokines and growth factors found in
the BM microenvironment (59).

CXCR4 is also highly expressed in T-ALL cells (60), reporting
also CXCR7 as the second receptor for CXCL12 that is able to
augment CXCR4 response in ALL, therefore contributing to
leukemia maintenance by initiating cell recruitment to BM
niches (60). A genetic targeting of CXCR4 in mouse T-ALL
after disease onset could lead to a rapid, sustained disease
remission, and CXCR4 antagonism is able to block human T-
ALL in primary xenografts. Loss of CXCR4 decreased leukemia
initiating cell activity in vivo and modulated targeted key T-ALL
regulators, such as the MYC pathway (61).

It was also found that BM stromal cells are able to up-regulate
IL-8 mRNA in T-ALL cells through the activity of CXCR4, and
exogenous CXCL12 induced IL-8 mRNA synthesis in primary T-
ALL cells, with consequent activation of nuclear factor –kB (NF-
kB) and c-Jun (47).

NOTCH Network
NOTCH pathway is one of the most evolutionarily conserved
signaling cascade across multiple species and it is involved in the
regulation of essential cellular functions, from cell fate decision
during embryo development, to the regulation of cell
proliferation, cell growth and survival (62, 63). NOTCH is a
surface receptor protein and binding of its cognate ligands, such
as Jagged 1 and 2 (JAG1-2) or Delta-Like 1-4 (DLL1-4),
promotes the proteolytic cleavages of the extracellular domain
by the Tumor Necrosis Factor-Alpha Converting Enzyme
metalloproteinase (TACE), followed by the cleavage mediated
by a g-secretase which facilitates the release and nuclear
translocation of the NOTCH intracellular domain (ICN1),
where it recruits coactivators to form a transcription-activating
complex, finally mediating its biological functions (64).
Importantly, the activity of NOTCH family members is
context-dependent, exerting sometimes even opposite roles
(promoting cell growth or apoptosis) in different cell types
and/or depending on the expression of specific transcriptional
programs. Considering its pleiotropic activities and the spectrum
of cellular processes in which it is involved, aberrant expression/
activity of NOTCH signaling components has been associated
with a variety of cancers, from solid tumors to hematological
malignancies where, given its dependency on the cellular context
(genetic and/or molecular variabilities), NOTCH can act either
as an oncogene or as a tumor-suppressor (65, 66). Gain-of-
function mutations as well as non-mutational hyperactivation of
NOTCH1 and NOTCH2 have been described in B-cell specific
lymphoproliferative disorders, including Chronic Lymphocytic
Leukemia (CLL) and different Non-Hodgkin lymphoma
subtypes (i.e., Diffuse Large B cell lymphomas, Mantle Cell
lymphoma, Burkitt’s lymphoma) (67). NOTCH1 mutations
represent one of the most frequent genetic modifications in T-
ALL, often in association with mutations/activation of the
Hedgehog signaling pathway, suggesting cooperation between
those pathways, even though this genetic interaction has not
been described yet. In both CLL and T-ALL, interference with
May 2021 | Volume 11 | Article 673506
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NOTCH activity has been shown to have a negative impact on
the growth of cancer cells, confirming the oncogenic potential of
NOTCH in those diseases (68). Whether NOTCH plays a similar
role in B-ALL is still a matter of debate. Several studies suggested
a contribution of genes involved in developmental signaling
pathways, i.e., Hedgehog and NOTCH, in promoting survival
and chemoresistance of leukemic cells, including B-ALL (69–71).
Additionally, there are evidence showing that inhibition of
NOTCH activity in B-ALL cell lines results in enhanced
sensitivity to cytotoxic treatments, suggesting protumoral
properties for NOTCH in B-ALL. However, conflicting data
suggest that NOTCH activation can be deleterious for
leukemic cells, as enforced expression of NOTCH in human or
mouse B-ALL cells results in growth arrest and apoptosis (72).
This is in line with a study reporting the activity of NOTCH in
inducing apoptosis in several B-ALL cell lines: here, the
activation of NOTCH resulting in NOTCH target Hairy/
Enhancer of Split1 (HES1)-mediated PARP1 activation and
subsequent apoptosis-inducing factor (AIF)-induced apoptosis
may in part explain the contrasting effects of NOTCH signaling
in B-ALL versus T-ALL, representing a mechanism of cell-
specific consequences of NOTCH activation. In a recent work,
the characterization of a new in vitro B-ALL model has been
proposed. The model is called VR-ALL and is a common-type B-
ALL cell line with mutations in some components of NOTCH
signaling, including NOTCH1 and NOTCH2. This mutated cell
line gives rise, once injected into immunodeficient NOG mice, to
a mouse xenograft model of B-ALL. VR-ALL has reported to be
sensitive to g-secretase inhibitors (GSIs) as well as conventional
anti-leukemic drugs, therefore helping to deepen further the role
of NOTCH signaling in B-ALL (71). NOTCH activity is highly
contextual and thus, it can be significantly influenced by the
genetic landscape and/or the transcriptional program
characterizing the cellular system used in the experimental
settings. In this view, the use of genetically and biologically
distinct cell lines might explain, at least in part, the discrepancy
between the different studies. Importantly, several inhibitors of
NOTCH pathway have been developed and entered clinical trials
for the treatment of CLL and T-ALL and could be rapidly
extended for the treatment of aggressive B-ALL, if supported
by consistent pre-clinical evidence.

Making a connection between the IL-7 signaling pathway and
NOTCH1 in the characterization of the leukemic tumor
microenvironment, another important and aberrant signaling
pathway is worthy of note, and it is represented by PI3K/AKT/
mTOR. Overactivation of the PI3K/AKT/mTOR signaling
pathway is a common occurrence in many patients with ALL,
portends a poor prognosis and for many years literature
highlighted that this network, constitutively active in ALL,
increases cell proliferation, survival and drug resistance (22, 25,
73–77). The activation of the PI3K/AKT/mTOR signaling
pathway also results from the close correlation between the
inputs deriving from IL7Ra/JAK signaling, NOTCH1-
mediated upregulation of IL7Ra , NOTCH1 and the
modulation of specific microRNAs (miRNAs) that induce the
inhibition of PTEN tumor suppressor gene expression, reduction
Frontiers in Oncology | www.frontiersin.org 6
of PTEN induced by phosphorylation of casein kinase 2 (78),
inactivation of phosphatase SHIP1, or elevated ROS
concentration (76).
THE ROLE OF ANGIOGENESIS IN ALL

Many tumors have a noticeable increase in vessel density, which
causes the tumor to transition from benign to malignant, in a
process referred to as “angiogenic switch”. The formation of new
vessels is a complex process involving many types of cells
including macrophages. In fact, the overexpression of colony
stimulating factor 1 (CSF-1), in a mouse model, resulted in a
premature accumulation of macrophages in the hyperplastic
lesion, an early angiogenic switch and consequently accelerated
the transition to malignancy (79).

The angiogenesis process in hematological malignancies is
similar to that reported in solid tumors (80).

During tumor development and progression, cancer and
stromal cells often are in a poor oxygen condition and have
poor access to nutrients. Indeed, in addition to the cellular
components, other physiological factors regulate the stem cell
niche. A physiological modulator of particular interest is hypoxia
(17, 81). Some studies suggest that hypoxia allows for a series of
events in the tumor microenvironment that lead to the
expansion of aggressive clones from heterogeneous tumor cells
and promote a lethal phenotype. The hypoxic response is mainly
attributed to hypoxia inducible factors (HIFs).

HIF Signaling
HIF-dependent signaling can induce changes that promote
cancer progression, survival, stem cell maintenance and
vascular remodeling (82, 83). The HIF family of transcription
factors includes HIF1, HIF2, and HIF3. These factors all have a
HIF-a subunit, that is extremely sensitive to oxygen (HIF1-a,
HIF2-a, or HIF3-a, respectively). Each of these subunits
contains two proline residues (HIF1-a: P402/P564 and HIF2-
a: P405/P531), which are hydroxylated in normoxia condition
by proteins containing prolylhydroxylase (PHD). Hydroxylation
of proline residues promotes binding to the von Hippel-Lindau
tumor suppressor (pVHL), which leads to ubiquitination and
degradation of HIF1-a (Figure 3) (84). High expression of HIF-
a was detected in 67% of patients with acute myelogenous
leukemia (AML) (85), 66.7% of patients with pediatric ALL
(86) and in 100% of patients with B-CLL patients (87).

The importance of HIF-1a in leukemia microenvironment
is given by the fact that it has an important role in
differentiation and growth of stem cells, maintaining also the
ability of HSC to regulate ROS and to keep a quiescence state
(35). It was demonstrated that in T-ALL NOTCH1 is required
for HIF-1a stabilization, contributing to HIF-1a- dependent
proliferation, invasion and chemoresistance (88). Moreover, it
has been reported that in Jurkat cells HIF-1a could be
significantly regulated by a protein, called seven in absentia
homolog 2 (SIAH2), involved in invasion and metastasis
processes (89).
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In T-ALL Jurkat cells, SIAH2 knockdown led to increased
apoptosis and decreased proliferation. Moreover, PHD, P27 and
Caspase3 were upregulated and HIF-1a, Vascular Endothelial
Growth Factor (VEGF), VEGF Receptor 2 (VEGFR2), Matrix
Metallopeptidase 13 (MMP-13), CyclinE1, C-myc and BCL2
were downregulated in the same cell model, making SIAH2 an
attractive therapeutic target, also in correlation with HIF-1a
modulation (89). In another work b-catenin transcription was
reported to be upregulated by hypoxia HIF-1a stabilization, and
deletion of the same transcription factor was able to reduce LIC
frequency. Of note, the deletion of b-catenin or HIF-1a did not
impair the growth or viability of bulk tumor cells, suggesting that
components of the Wnt pathway and HIF specifically support
leukemia stem cells (90). HIF-1a is also correlated to mTOR
signaling, frequently aberrant in ALL models: coculture of ALL
with stromal cells in hypoxic condition was able to induce HIF-
1a and AKT/mTOR networks, and mTOR inhibition decreased
HIF-1a, inducing ALL cell chemosensitization (91). HIF-1a
expression has also been reported to be associated with worse
overall and event-free survival in a Ph-negative pre-B ALL
model, implicating that inhibition of AKT signaling or
blockade of HIF-1a-mediated pro-survival signaling events
may improve clinical outcomes in pre-B ALL (91). However,
further studies are certainly needed to clarify HIF oncogenic and/
or tumor suppressor activity, in particular in the hematological
cancer stem cells (HCSCs).

Therefore, it appears extremely interesting to target hypoxia
mechanism, the tumor tissue and the microenvironment, mainly
due to the point that hypoxia leads to resistance to anticancer
therapies. Some of the therapy-resistance mechanisms include (i)
increased expression of drug efflux pumps (such as P-
glycoprotein, Pgp), (ii) oxygen-dependent cytotoxicity of some
molecules, (iii) mutations conferring resistance, (iv) selection of
insensitive cells to p53-mediated apoptosis and (v) decreased cell
proliferation rate in hypoxic regions (92).
Frontiers in Oncology | www.frontiersin.org 7
VEGF and Thrombospondin-1 (TSP-1)
In addition to HIF-1a, numerous other angiogenic regulators
in the hypoxic environment are signal proteins and bind to
stimulatory or inhibitory receptors located on the surface of
vascular endothelial cells. The VEGF-A and TSP-1 are well
known angiogenesis modulators: the first one is an inducer,
while the latter is an angiogenesis inhibitor. The VEGF-A gene
encodes ligands that are involved in governing the growth of
new blood vessels during embryonic and postnatal
development, and then in the adult in regulating the survival
of endothelial cells and neoangiogenesis (93). Three tyrosine
kinase receptors (VEGFR-1 -2 -3) regulate this signal pathway
at several levels, demonstrating its complexity. Therefore, the
expression of the VEGF gene can be hyper-regulated both by
hypoxia and by oncogenes signals (94). Moreover, VEGF
ligands can be sequestered in the extracellular matrix in
latent form, and be subjected to release and activation by a
protease degrading the extracellular matrix (e.g., MMP-
9) (95).

VEGFR-1 and -2 are mostly expressed on vascular
endothelial cells, and the activation of VEGFR-2 is
predominantly responsible for mediating VEGF-dependent
angiogenesis and the induction of vascular permeability (96).
VEGFR-1 is also expressed on HSCs and leukemic cells,
vascular smooth muscle cells, different solid tumors such as
colon cancer, and in monocytes (97, 98), while VEGFR-2 is
expressed on endothelial progenitor cells and megakaryocytes
(99). VEGFR-3 is largely restricted to lymphatic endothelial
cells (100) and was analyzed in the plasma concentrations in
comparison and in combination with CA 15-3 in some cancers
in relation to the control groups, to better define its role as a
tumor marker (101). The first finding that leukemia
progression was accompanied by increased bone marrow
vascularization was provided by Judah Folkman’s and
collaborators (102) who demonstrated that the BM of ALL
FIGURE 3 | HIF signaling network in normoxic and hypoxic conditions. In hypoxia condition, HIF-1a is able to increase angiogenesis process, proliferation, therapy
resistance mechanisms and stem cell maintenance. Under normoxic condition, VHL is the recognition component of an E3 ubiquitin-protein-ligase, target for the
proteasomal degradation of HIF-1a. As a result, HIF-1a is modified and it is recognized by a proteasome and rapidly degraded.
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patients had a higher number of blood vessels compared with
controls, and this was assessed immunohistochemically by
factor VIII staining of bone marrow biopsies. Moreover,
VEGF and basic fibroblast growth factor (bFGF) were also
detected in urine and peripheral blood samples from ALL
patients and correlated with the increase in bone marrow
angiogenesis (103). VEGF can be regulated by signaling
pathways such as PI3K/AKT, as demonstrated in B-ALL cell
lines and patients, where an overexpression of heme
oxygenase-1 (HO-1) was found in the bone marrow stromal
cells (BMSCs) (104). It was found that B-ALL cell lines became
resistant to the chemotherapeutic agent vincristine (VCR) in
presence of VEGF recombinant protein induced by HO-1
expression. Therefore, VEGF may promote VCR resistance
in B-ALL cells, and this mechanism is stimulated by PI3K/
AKT network.

On the other hand, TSP-1 exerts an anti-angiogenic activity
and could be important in the maintenance therapy of ALL
patients, whose effect is anti-endothelial. In ALL children in the
maintenance phase consisting in daily oral mercaptopurine,
weekly oral methotrexate and VCR once a month for 12
months and dexamethasone for 5 days/month for 12 months,
circulating endothelial cells (CEC), endothelial progenitor cells
(EPC) and endothelial microparticles (EMP), but also VEGF,
VEGFR-1 and Ang-2, TSP-1 and regulatory T lymphocytes
(Treg) were monitored. It was reported a statistically
significant decrease in EPC and EMP counts throughout the
maintenance phase associated with a significant increase in TSP-
1 levels, therefore pointing out an antitumor maintenance
therapy activity with involvement of anti-angiogenic effects
(105). TSP-1 and other epi-driver genes such as LYN, TRAF3
or FLT1 were also analyzed in B-ALL cells and in patients,
underlining their use as prospective biomarkers in ALL
progression or as targets for innovative therapeutic agents that
can be involved in altered DNA methylation and gene
expression (106).
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THERAPEUTIC OPTIONS TARGETING THE
MICROENVIRONMENT IN ALL: FOCUS ON
SOME RECENT THERAPIES

As mentioned in the previous sections, leukemia cell
microenvironment involves several factors and processes
including expression of adhesion molecules, interactions between
cancer and stromal cells, cytokine and growth factors, and
angiogenesis. It is therefore extremely important to adopt and at
the same time to find innovative therapeutic strategies that can slow
down, at least in part, the progression of ALL, the cell-cell
interactions at the level of the tumor microenvironment and the
angiogenesis process, which as previously mentioned, is intrinsically
involved in the characterization of the leukemic microenvironment,
in the development of stem cells but above all in the scaffolding of
the entire vascular network that determines the profile of the
neoplasm. Consequently, it appears to be relevant to block the
interactions between malignant cells and their niche, and to identify
innovative and selective Small Molecule Inhibitors (SMIs) able to
inhibit most of the components forming part of the signaling
pathways that affect the niche and the BM directly.

In the following sections the most recent evidences regarding
the inhibitory activity of some classes of compounds at the level
of the leukemic microenvironment are shown. These drugs are
also summarized in Table 1.
Prodrugs
A prodrug is commonly defined as a substance that is inactive in
its initial form. Once administered, the compound turns into an
active state (138). The drug then takes effect to treat a specific
disorder or condition at a desired time interval. Metabolization
changes the molecular structure of a prodrug and this process
divides this drug substance into one in which the molecules
break down into fragments and into another that becomes
soluble after being metabolized.
TABLE 1 | A summary of the most recent evidences of drugs targeting the microenvironment in ALL.

Drug Relevant effects Clinical Trials Reference(s)

Prodrugs
PR104 Hypoxia condition:

hypoxia-selective cytotoxicity via DNA crosslinking
– (107–109)

Nelarabine Normoxia condition: NCT00501826 (110–117)
Cell growth blockage NCT03020030
ALL sensitization improvement to other drugs (AraG)

OBI-3424 Cytotoxic activity NCT04315324 (118)
Prolongation the event-free survival
Disease regression

HIF inhibitors
Echinomycin Improvement of the survival of mouse models – (119)

Cell growth blockage
Proteasome inhibitors
Bortezomib (Velcade™) Apoptosis induction

Activation of caspase-3, -8 and -9
– (126–133)

Angiogenesis pathway inhibition
Stimulation of HDAC inhibitors activity
Alteration of mitochondrial transmembrane potential

Carfilzomib Apoptosis and autophagy induction (134–137)
Minimal Residue Disease response improvement
May 2021 | Volume 11 |
 Article 673506

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Simioni et al. The Leukemic Tumor Microenvironment
Remaining in the context of the normoxic or hypoxic
condition, a hypoxia activated prodrug (HAP) is represented
by PR104, that is a phosphate ester, rapidly hydrolyzed in vivo to
the corresponding alcohol, PR104A, therefore acting as a HAP.
In hypoxia condition, PR104 is reduced to the amines PR104H
and PR104M, which induce DNA cross-linking in hypoxic cells
(107). PR104, that could be activated also by the enzyme aldo-
keto reductase 1C3 (AKR1C3) showed remarkable activity in in
vivo B-ALL mouse models, suggesting that sensitivity is
correlated with AKR1C3, whose expression could be used as a
biomarker to select patients for this treatment in future clinical
trials (108). In detail, an important aspect highlighted by this
study was the great expansion of the hypoxic zones in the BM of
leukemic mice, with a consequent loss of vessels integrity with
increased leukemic cell burden. BM samples from B-ALL
patients, immunostained for HIF1a expressed also in stromal
cells, showed a strong positivity at diagnosis, which was
impressively reduced when patients achieved a remission
(108). The efficacy of PR104 has been reported also in
preclinical models of pediatric T-ALL (109).

Several studies are ongoing to generate new HAPs that could
be stimulated and activated by hypoxia condition for new
molecularly targeted inhibitors having potential benefits in
ALL treatments.

As regards instead the non-hypoxic prodrugs, one
example is Nelarabine, a water-soluble prodrug of 9-b-
Darabinofuranosylguanine (ara-G), a purine nucleoside
analogue preferentially accumulating in T-lymphoblasts (110).
Nelarabine is indicated for the treatment of patients with T-ALL
(111–113) and T-cell lymphoblastic lymphoma (T-LBL) (115)
that have not responded or have relapsed after treatment with at
least two chemotherapy regimens.

Focusing more in detail on clinical trials currently active,
Nelarabine was recently well tolerated in combination with the
chemotherapy regimen Hyper-CVAD in the treatment for T-
ALL (115), and its activity is involved significantly in the
modulation of different signaling networks, mainly by targeting
aberrant PI3K/AKT/mTOR signaling pathway (111, 116). Phase
II recruiting study of effects of Hyper-CVAD and other drugs
with Nelarabine in previously untreated T-ALL and
Lymphoblastic Lymphoma is also active (please see www.
clinicaltrials.gov, Identifier: NCT00501826). This Interventional
Clinical Trial involves the enrollment of approximately 160
participants, and the crucial objectives of the study include the
determination of complete remission (CR) following treatment,
the safety and overall survival of previously untreated patients
with T-cell ALL and T- cell lymphoblastic lymphoma, as well as
the efficacy of two other antineoplastic drugs, pegaspargase and
venetoclax. Nelarabine would be administered for several days
and pegaspargase in multiple treatment steps. The study is
recruiting and a further objective foresees how the
combination of different chemotherapeutic agents can
influence the different phases of cell growth, blocking it as
much as possible, also influencing protein synthesis in terms of
inhibition, considering the role of pegaspargase. Pegaspargase
and Nelarabine are included in treatments with other
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chemotherapeutic agents also in newly diagnosed ALL children
and adolescents (please see www.cl inical tr ia ls .gov,
Identifier: NCT03020030).

In a recent study, a combined pharmacogenomics data
combined with data from an ALL cell line panel and patients
reported the sensitivity differences between T-ALL and B-ALL. It
was seen that the depletion of the deoxynucleotide triphosphate
(dNTP) hydrolase SAMHD1, that is able to cleave and inactivate
AraG, sensitized ALL cells to AraG, underlining the role as a
therapeutic target to improve nelarabine therapies in ALL
patients (117).

Recently, a novel AKR1C3-prodrug, OBI-3424, has shown
significant antitumor activities in preclinical models of pediatric
T-ALL, in relapsed/refractory T-ALL and also in solid tumors
(118). A relevant reduction in BM infiltration was observed in
ALL patient-derived xenografts (PDX) characterized by
aggressive and fatal disease (118). Toxicity of OBI-3424, as well
as the evaluation of the complete remission (CR), the event-free
survival (EFS), the relapse-free survival (RFS) and the overall
survival (OS) in patients with relapsed/refractory T-ALL are also
the objectives reported in a phase II recruiting trial (please see
www.clinicaltrials.gov, Identifier: NCT04315324).

Targeting HIF
Targeting HIF-1a represents another promising approach to
block hypoxia-dependent progression, cell growth and drug
resistance (92).

Although HIF represents an excellent and promising target in
the characterization of the leukemic tumor microenvironment,
there are currently no recent drugs capable of selectively
inhibiting this transcription factor in ALL. The goal is
therefore to develop more specific SMIs in ALL in order to
make a significant breakthrough in the reduction of angiogenesis.
In previous studies, echinomycin inhibiting HIF activity in
lymphoma and leukemic stem cell models has been
demonstrated, significantly improving the survival of mouse
models and limiting the progression and growth of cancer cells
(119). A very recent study instead reports the possible correlation
between the activity of this transcription factor and the signaling
pathway of PI3K/AKT/mTOR (120). In fact, it has been shown
that in T-ALL cells the mTOR inhibitor rapamycin in normoxia
is able to mimic the effects of the hypoxic condition, decreasing
cell growth and increasing quiescence. Knocking down (KD)
HIF-1a, a key regulator of the cellular response to hypoxia, the
effects observed in hypoxic T-ALL were antagonized with a
return to chemo-sensitivity. Therefore, the inhibition of mTOR
in HIF1a KD T-ALL protected leukemic cells from
chemotherapy. This mechanism may help to suppress the drug
resistance of T-ALL in hypoxia, suggesting new therapeutic
protocols (120).

Proteasome Inhibitors
The potential effects of proteasome inhibitors as anticancer
therapy as well as for the treatment of other diseases have long
been studied (121–123). Studies have shown that these agents
could induce programmed death in leukemia cell lines, Burkitt’s
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lymphoma cell and other blood cancers and solid tumors (122,
124, 125).

Proteasome inhibitors are a relatively new class of cancer-
targeted therapy. An example is Bortezomib (Velcade™) that
is known to induce apoptosis, blockage of cytokine effects of
myeloma and also on ALL models (126–129). Bortezomib
works by activating two upward activating kinases of NFkB
(RIP2 and IKKb) and causes non-proteasomal degradation
of IkB and stimulates DNA binding of NFkB (130).
Moreover, it acts at the medullary level by stimulating the
osteoblastogenetic process and inhibiting the angiogenic
pathway (127).

The most recent studies reported how this drug could be
effective in ALL relapsed and refractory pediatric patients, in
addition with reinduction chemotherapy based on combinations
with mitoxantrone, vincristine, pegaspargase or dexamethasone
(131). Response rates were most significant in T-ALL. Notably,
no patient in the study demonstrated neurological toxicities,
despite this may represent a side effect induced by bortezomib,
together with pulmonary complications. In ALL models,
Bortezomib is able to enhance the activity of HDAC inhibitors,
enzymes that normally regulate the structure and function of
chromatin (132). In detail, treatment of pre-B ALL cells with the
HDAC inhibitor panobinostat influences cell viability, induces
apoptosis at increasing time treatment and leads to an increase in
the expression levels of cyclin-dependent kinase inhibitors p21
and p27, correlating with the reduction of c-Myc and CDK4
mRNA expression level. Apoptotic cell death through the
alteration of apoptosis-related genes is further enhanced by
administration to cells with Bortezomib. Indeed, this drug led
to an enhanced cytotoxicity of the HDAC inhibitor through
decreasing the mRNA expression levels of anti-apoptotic target
genes (132).

In Jurkat and Molt-4 T-ALL cells, the co-treatment of
bortezomib with the glycosidic antibiotic daunorubicin
enhanced the activation of caspase-3, -8 and -9, and the effect
was reversed by the pan-caspase inhibitor, Z-VAD-FMK (133).
Moreover, cotreatment with bortezomib and daunorubicin
enhanced the collapse of mitochondrial transmembrane
potential and upregulated the proapoptotic protein, B-cell
lymphoma 2 (Bcl-2)-interacting mediator of cell death (Bim).
These findings can help to deepen preclinical and clinical
investigations (133).

The activity of Bortezomib was recently compared with a
second recent proteasome inhibitor, Carfilzomib, whose efficacy
was reported both in B and T-ALL models (134, 135). It was in
fact seen that Carfilzomib showed relevant activity in the
majority of ALL cell lines except for the P-glycoprotein-
positive t (17, 19) ALL cell lines, and the knockout of the
IKZF1 gene was associated with a favorable response to
Carfilzomib treatment (136), making the association of
Carfilzomib with the current chemotherapy protocols a new
therapeutic option for refractory ALL with P-glycoprotein-
negative leukemia cells. In a Phase I study, increasing doses of
Carfilzomib were associated with Hyper CVAD in Patients with
Newly Diagnosed ALL, showing promising results, also in terms
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of safety, feasibility and Minimal Residue Disease (MRD)
response improvement (137).
CONCLUSIONS

The tumor microenvironment represents a key factor in the
maintenance and metastasis of different type of tumors.
Therefore, the comprehension of the interactions between the
microenvironment and the tumor constitutes a fundamental
element for the study of new promising therapies, considering
also the fact that the cellular and molecular connections that are
established within the microenvironment itself strongly
influence neoplastic growth and dissemination.

Focusing on hematological malignancies, the ultimate goal in
the characterization of the leukemic microenvironment,
therefore of the niches , i s the real izat ion of new
pharmacological therapies targeting the BM in connection with
actual optimized protocols. This could be achieved by hitting
pharmacologically the interactions between the malignant cells
and the hematopoietic cell-intrinsic networks that define and
influence the niche or the BM microenvironment, such as
CXCL12/CXCR4, NOTCH, MEK/ERK or PI3K/AKT signaling
networks, or the interactions between interleukins, essential for
BM niche homeostasis and functionality.

The formation of new vessels is also important for the growth,
progression and maintenance of leukemic cells. An extremely
important modulator in tumor microenvironment is hypoxia.
This condition triggers a process that leads to the development of
new blood vessels, generally exploited by tumor tissues to grow
and create metastasis. Indeed, exploiting the distinctive hypoxia
aspects and the hypoxia-dependent component such as HIF-1a
or the angiogenesis factor VEGF in the context of hematological
neoplasms and, in this specific manuscript, in ALL, represents a
promising challenge to improve the current treatment scenario,
selecting the optimal drug doses to reduce side effects and
overcoming drug resistance.

The complete characterization of the leukemic tumor
microenvironment for the formulation of innovative and specific
therapies has not yet reached the highest level of completeness.
However, the rapid discovery of microenvironment-ALL
interactions increasingly aims at relevant clinical advances.

Comprehensive strategies are therefore needed for the
characterization of the leukemic tumor microenvironment and
leukemogenesis, further expanding proteomic and genomic
methodologies, imaging and sequencing technologies and
immunotherapeutic approaches, which can then consequently
broaden the spectrum for ALL cure, both in pediatric and in
adult patients.
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