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Abstract

Most methods for inferring gene-gene interactions from expression data focus on
intracellular interactions. The availability of high-throughput spatial expression data
opens the door to methods that can infer such interactions both within and between
cells. To achieve this, we developed Graph Convolutional Neural networks for Genes
(GCNG). GCNG encodes the spatial information as a graph and combines it with
expression data using supervised training. GCNG improves upon prior methods used to
analyze spatial transcriptomics data and can propose novel pairs of extracellular
interacting genes. The output of GCNG can also be used for downstream analysis
including functional gene assignment.
Supporting website with software and data: https://github.com/xiaoyeye/GCNG.

Keywords: Spatial transcriptomics, Graph convolutional networks, Extracellular gene
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Background
Several computational methods have been developed over the last two decades to infer

interaction between genes based on their expression [1]. Early work utilized large com-

pendiums of microarray data [2] while more recent work focused on RNA-Seq and

scRNA-Seq [3]. While the identification of pairwise interactions was the goal of several

studies that relied on such methods, others used the results as features in a classifica-

tion framework [4] or as pre-processing steps for the reconstruction of biological inter-

action networks [5]. Most work to date focused on intra-cellular interactions and

network. In such studies, we are looking for interacting genes involved in a pathway or

in the regulation of other genes within a specific cell. In contrast, studies of extracellu-

lar interactions (i.e., interactions of genes or proteins in different cells) mainly utilized

small-scale experiments in which a number of ligand and receptor pairs were studied

in the context of a cell line or tissue [6]. However, recently developed methods for

spatial transcriptomics are now providing high-throughput information about both,

the expression of genes within a single cell and the spatial relationships between cells
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[7–11]. Such information opens the door to much larger-scale analysis of extracellular

interactions.

Current methods for inferring extracellular interactions from spatial transcriptomics

have mostly focused on unsupervised correlation-based analysis. For example, the

Giotto method calculated the effect upon gene expression from neighbor cell types

[12]. While these approaches perform well in some cases, they may not identify interac-

tions that are limited to a specific area, specific cell types, or that are related to more

complex patterns (for example, three-way interactions).

To overcome these issues, we present a new method that is based on graph convolu-

tional neural networks (GCNs). GCNs have been introduced in the machine learning

literature a few years ago [13]. Their main advantage is that they can utilize the power

of convolutional NN even for cases where spatial relationships are not complete [14,

15]. Specifically, rather than encoding the data using a 2D matrix (or a 1D vector),

GCNs use the graph structure to encode relationships between samples. The graph

structure (represented as a normalized interaction matrix) is deconvolved together with

the information for each of the nodes in the graph leading to NN that can utilize both,

the values encoded in each node (in our case gene expression) and the relationship be-

tween the cells expressing these genes.

To apply GCN to the task of predicting extracellular interactions from gene expres-

sion (GCNG), we first convert the spatial transcriptomics data to a graph representing

the relationship between cells. Next, for each pair of genes, we encode their expression

and use GCNG to convolve the graph data with the expression data. By this way, the

NN can utilize not just first-order relationships, but also higher-order relationships in

the graph structure. We discuss the specific transformation required to encode the

graph and gene expression, how to learn parameters for the GCNG, and how to use it

to predict new interactions.

We test our approach on three datasets from the two spatial transcriptomics methods

that profile the most number of genes right now, SeqFISH+ [16] and MERFISH [17].

As we show, GCNG greatly improves upon correlation-based methods when trying to

infer both autocrine and extracellular gene interactions involved in cell-cell interac-

tions. We visually analyze some of the correctly predicted pairs and show that GCNG

can overcome some of the limitations of unsupervised methods by focusing on only a

relevant subset of the data. Analysis of the predicted genes shows that many are known

to be involved in a similar functional pathway supporting their top ranking.

Results
The GCNG framework

We extended ideas from GCN [18, 19] and developed the Graph Convolutional Neural

networks for Genes (GCNG), a general supervised computational framework for infer-

ring gene interactions involved in cell-cell communication from spatial single cell ex-

pression data. Our method takes as input both, the location of the cells in the images

and the expression of gene pairs in each of these cells. GCNG starts by representing

single cell spatial expression data using two matrices. The first encodes cell locations as

a neighborhood graph, while the second encodes the expression of genes in each cell.

These two matrices are used as inputs for a five-layer graph convolutional neural
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network which aims to predict cell-cell communication gene relationships (Fig. 1a).

The core structure of GCN is its graph convolutional layer, which enables it to combine

graph structure (cell location and neighborhood) and node information (gene expres-

sion in specific cell) as inputs to a neural network. Since the graph structure links

spatially proximal cells, GCNs can utilize convolutional layers that underly much of the

recent success of neural networks, without directly using image data [14, 15]. Specific-

ally, GCNG consists of two graph convolutional layers, one flatten layer, one 512-

dimension dense layer, and one sigmoid function output layer for classification. Note

that we are using two convolutional layers here allowing the method to learn indirect

(i.e., non-physical or two-layer) graph relationships as well. Since the impact of regula-

tory proteins can be larger than just direct neighbors such an approach allows the

method to infer interactions that may be missed by only considering direct neighbors.

Training GCNG requires the use of positive and negative pairs and we discuss below

the data we used to obtain such training samples. After training, GCNG can predict,

for any pair of genes, whether they are interacting in the dataset being studied.

Applying GCNG to spatial transcriptomics data

While a number of recent methods have been suggested for spatial profiling of single

cell RNA-Seq data [7–11], we decided to focus on the two methods that currently pro-

vide expression levels for the most number of genes in such experiments. The first is

seqFISH+ [16]. We tested two datasets that used seqFISH+. The first contained infor-

mation on the expression of 10,000 genes in 913 cells in the mouse cortex and the sec-

ond profiled 2050 cells in mouse olfactory bulb (OB) in seven separate fields of view.

The second method we used is MERFISH [17] for which we analyzed a dataset

Fig. 1 GCNG for extracellular gene relationship inference. a GCNG model using spatial single cell expression data. A
binary cell adjacent matrix and an expression matrix are extracted from spatial data. After normalization, both matrices
are fed into the graph convolutional network. b Training and test data separation and generation strategy. The known
ligand and receptor genes can form complicated directed networks. For cross-validation, all ligand and receptors are
separated exclusively as training and test gene sets, and only gene pairs where both genes are in training (test) gene
set are used for training (test). To balance the dataset, each positive ligand-receptor (La, Rb) gene pair with label 1 will
have a negative pair sample (La, Rx) with label 0 where Rx was randomly selected from all training (test) receptor genes
which are not interacting with La in training (test)
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consisting of 10,050 genes in 1368 cells. Unlike the seqFISH+ data that profiled the ex-

pression in-vivo, the MERFISH data is from in vitro cultured cells and so does not in-

clude a diverse set of cell types. Still, as the authors of the MERFISH paper observed,

even within this population, there are differences in spatial expression and so the data

can be used to study extracellular gene-gene interaction. We normalized the expression

data such that expression levels for all genes in each cell sum to the same value as was

previously done [16]. See the “Methods” section and Additional file 1 for complete de-

tails on both datasets.

GCN requires labeled data for supervised training. While the exact set of signaling in-

teractions between cells in the spatial data we studied is unknown, we used as true in-

teractions a curated list of interacting ligands and receptors [20]. Ligands are proteins

that are secreted by cells and they then interact with membrane receptor proteins on

the cell itself or on neighboring to activate signaling pathways within the receiving cell

[21]. See the “Methods” section for complete details on the positive and negative pairs

used for training.

For evaluation, GCNG adopted a tenfold cross-validation. Train and test sets were

completely separated to avoid any information leakage (Fig. 1b). See the “Methods” sec-

tion and Additional file 1 for details.

GCNG correctly infers ligand-receptor interactions between cells

We first evaluated GCNG’s ability to predict ligand-receptor interactions. For this, we

used two datasets. The first is seqFISH+ mouse cortex tissue which contains the ex-

pression of 10,000 genes in 913 cells. Our labeled set consisted of 1056 known interac-

tions between 309 ligands and 481 receptors. The second is a MERFISH dataset with

10,050 genes from 1368 cells, and 841 known interactions between 270 ligands and 376

receptors.

We enforced a strict separation between the training and test sets in the 10-fold

cross-validation (CV) (Fig. 1b). Negative pairs were also ligand-receptor and were ran-

domly selected from non-interacting training (test) data genes. We also used the 10-

fold CV to select hyper-parameters to determine the neighborhood for each cell

(Methods). We compared three possible GCNG models: diagonal GCNG that only uses

a diagonal matrix to represent the graph so that only autocrine interactions are pos-

sible, exocrine GCNG where only exocrine interaction between cells are allowed, and

autocrine plus (+) GCNG that allows for both autocrine and exocrine interactions. To

evaluate the performance of GCNG, we compared it to a number of prior methods that

were recently used to predict genes involved in extracellular gene interactions from

spatial expression data. These include computing the spatial Pearson correlation (PC)

between ligand and receptors in neighboring cells and Giotto [12] which first calculates

a similarity score for all pairs of genes in all pairs of neighboring cell types and we then

rank pairs based on their average score.

We also compared GCNG to two alternative methods that do not use spatial infor-

mation at all to determine the contribution of neighborhood data. These included Pear-

son’s correlation between the expression of ligand and receptors within each cell [22]

and our diagonal GCNG method with only autocrine interactions. Finally, we compared

GCNG performance on the real data to results when applied to permutation of both,
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the neighborhood information for each cell and the set of interacting ligand-receptors

used for training and testing. We also tested additional variants of GCNG including

variants that utilized cell type information (encoded as a node attribute), edge weight

(using the distance between cells), and variants using other GNN architectures includ-

ing EdgeconditionConv [23] and graph attention [24] (Additional file 1: Fig. S1).

Results are presented in Fig. 2. As can be seen, GCNG achieved the best results in

both datasets (Fig. 2a–d). Specifically, for seqFISH+ cortex data, autocrine+, diagonal,

and exocrine GCNG reached mean (median) AUROC/AUPRC of 0.65/0.73 (0.99/1.0),

0.59/0.70 (0.99/1.0), and 0.60/0.69 (0.99/1.0), respectively. In contrast, for this data

spatial PC, Giotto and single cell PC all performed much worse with mean (median)

AUROC/AUPRC of 0.54/0.65 (0.75/0.79), 0.45/0.58 (0.25/0.33), and 0.48/0.60 (0.38/

0.38), respectively. For MERFISH data, autocrine+, diagonal, and exocrine GCNG

reached mean (median) AUROC/AUPRC of 0.69/0.76 (0.99/1.0), 0.60/0.69 (0.99/1.0),

and 0.61/0.71 (0.75/0.79), respectively, again improving on the other methods we com-

pared to. See also Additional file 1: Figs. S2&3 for detailed performance values. Overall,

for both datasets, GCNG achieves a relative improvement of at least 20% for mean

AUROC/AUPRC when compared to prior methods. In addition, the fact that auto-

crine+ GCNG outperformed diagonal GCNG for both datasets confirms the import-

ance of spatial information for this task.

To test if the interactions identified are likely active in the tissue tested, we further

compared the performance when using the real interaction data to running GCNG on

a permuted training and test dataset (in which we permute the set of interacting

ligand-receptor pairs). We observed a large drop in performance when using the

Fig. 2 GCNG correctly infers extracellular ligand-receptor interaction. a, b AUROC and AUPRC curves for
seqFISH+ using autocrine+ GCNG model. Here, each gray line represents results for one ligand (a total of 91
curves), red line represents the median curve, and the light green part represents the region between 40 and
60 quantile. Median and mean of area under the curves are shown on top of each panel. c, d AUROC and
AUPRC curves for MERFISH when using the autocrine+ GCNG model (73 curves). e, f Overall comparison in
terms of AUROC and AUPRC for single cell Pearson correlation, Giotto, spatial Pearson correlation, diagonal
GCNG, autocrine+ GCNG, and exocrine GCNG models. For Giotto on MERFISH (f), we set its all AUROC and
AUPRC as 0.5 since the data only has one cell type
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randomized data (autocrine plus GCNG in terms of mean AUROC for MERFISH (seq-

FISH+), real vs. random: 0.69 vs. 0.55 (0.65 vs. 0.52); exocrine GCNG vs. random: 0.58

vs. 0.50 (0.60 vs. 0.43). See Additional file 1: Fig. S1 for detailed comparison results on

both datasets.

Analysis of co-expression patterns identified by GCNG

To further explore the predictions of our GCNG and to map them back to the ori-

ginal spatial representation, we looked at some of the top correctly predicted pairs.

For each such pair (a ligand and receptor predicted to interact), we projected their

expression on the cell distribution figures. Figure 3 presents such projection for

two local ligands (col4a1 and lamc1) with their positive and negative receptor part-

ners in seqFISH+ cortex data (Fig. 3a, b for col4a1, and c, d for lamc1) Since here

the genes are fixed while cells need to be selected (in contrast to common cases

where for each cell highly expressed genes are selected), for a gene, cells are de-

fined to “highly expressing” it if the expression of the gene in that cell is in the

top 100 expression levels for that gene among all cells. For the positive col4a1-

cd93 pair, cells highly expressing col4a1 and cd93 are both concentrated in the 1st

and 5th fields, which have the most cells highly expressing the ligand or receptor

genes (see Additional file 1: Fig. S4A and B for plots of all fields of view). In con-

trast, for the negative col4a1-hrh3 pair, cells highly expressing hrh3 do not seem

to reside next to cells expressing col4a1. Similar pattern comparison can also be

observed for ligand lamc1 with positive (itgb1) and negative receptor (lyve1)

(Fig. 3c, d (see Additional file 1: Fig. S4C and D for all fields of view)). The ability

of GCNG to predict such interactions based on a subset of the data highlights the

usefulness of this approach compared to global analysis methods including PC. Cell

type plots (Additional file 1: Fig. S5) indicate that correctly predicted pairs can be

found in both, neighboring cells from the same type and cells from different types.

These results indicate that the GCNG method can generalize well and can be used

to correctly identify several different types of interactions.

Fig. 3 Spatial expression patterns for selected ligand-receptor pairs. a, b Spatial expression distribution of
correctly predicted positive (cd93) and negative (hrh3) receptors for ligand col4a1. Two of the 7 fields of
view (FOV) profiled are shown (see Additional file 1: Fig. S4 for all FOVs). As can be seen, the correctly
predicted pairs are indeed much better spatially correlated than the negative pair. c, d Spatial expression
distribution of correctly predicted positive (itgb1) and negative (lyve1) receptors for ligand lamc1. Cells
highly expressing lamc1 and itgb1 are both concentrated in the 5th and 7th fields as shown
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Inferring causal interactions

While correlation-based methods can be used to identify gene co-expression interac-

tions and networks [25, 26], these methods cannot be used to infer causality since their

outcome is symmetric. Causality information may be trivial for ligand receptors, since

the direction for such pair is known. However, for other interacting genes across cells,

the direction is often not clear. Thus, a method that can infer both interactions and dir-

ectionality may be beneficial for studying spatial transcriptomics data. Unlike prior un-

supervised methods, our supervised framework can be trained to identify causal

interactions based on the pair-wise spatial expression pattern if training data exists, in-

spired by a recent work [27]. We thus trained a GCNG on a subset of known causal

pairs (ligand and receptors) and then used it to predict directionality for other pairs. To

generate train and test data for this, for each known ligand-receptor (La, Rb) gene pair,

we introduce a negative sample (Rb, La) with label 0. The same tenfold cross-validation

strategy is used to evaluate GCNG’s performance here. Results are presented in Fig. 4.

As can be seen for seqFISH+ cortex and MERFISH datasets, GCNG performs well on

this task with mean (median) AUROC/AUPRC of 0.636/0.728 (0.99/1.0) and 0.642/

0.734 (0.99/1.0), respectively. Thus, for top predicted pairs, the direction predictions of

GCNG can be used to further assign causality.

Fig. 4 GCNG can infer the direction of extracellular ligand-receptor interactions. a, b AUROC and AUPRC of
GCNG for the direction prediction task using the seqFISH+ dataset. c, d AUROC and AUPRC of GCNG for
the direction prediction task using the MRFISH dataset
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Functional gene assignment

We next tested whether GCNG can be used for applications that utilize predicted inter-

actions as features for downstream analysis. Specifically, we tested whether the out-

comes of GCNG can be used as features for assigning function to genes. A popular

method for such assignment is Guilt By Association (GBA) [28]. In GBA candidate

gene association with known genes is calculated, the total value of which is then used

as the final score for this candidate. For this as an alternative to GBA, we trained

GCNG to distinguish the spatial expression of pairs of genes within the same function

(positive set) from pairs where one gene is associated with that function and the other

is not (negative). We focused on functions related to cell-cell communication. In this

analysis, we focused on both autocrine+ and exocrine GCNG and applied it to both

seqFISH+ cortex and MERFISH datasets. For the functional gene sets, we used GSEA

sets [29] for “integrin cell surface interactions,” “cell surface interactions at the vascular

wall.” and “cell-cell communication,” which consist of 70 (55), 77 (67), and 79 (66)

genes in the seqFISH+ (MERFISH) data, respectively. Performance was evaluated using

fivefold cross-validation. Since in function assignment tasks, validation experiments are

usually limited to the top few genes, we focused the evaluation on the top 20% predic-

tions based on the scores of GBA and GCNG. Results are presented in Fig. 5 and indi-

cate that for communication-related functions, using spatial information can improve

functional gene assignment.

Fig. 5 Function assignment. a Fraction of correctly assigned genes in top 20% of predictions for autocrine+
GCNG and GBA method for “integrin cell surface interactions,” “cell surface interactions at the vascular wall,”
and “cell-cell communication” functions on seqFISH+ data. b Results for exocrine GCNG on seqFISH+ data.
c, d Results for autocrine+ and exocrine GCNG on MERFISH data
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Given its performance on accurately identifying known genes from the GSEA func-

tional sets, we next used GCNG to predict novel functional genes for these three GSEA

cell interaction sets using the MERFISH dataset. Additional file 1: Fig. S6 presents the

Gene Ontology (GO) analysis [30] for the top 100 predicted genes for each of these

functions, showing that several of the top categories by GCNG are related to cell com-

munication. Table 1 lists the top 5 genes predicted for each of these functions. As can

be seen, the assignment of 13 of the top 15 predicted genes is supported by recent

studies, including all the top five predicted for “cell-cell communication” and “cell sur-

face interactions at the vascular wall.” For example, Serpine1, predicted as the 2nd

ranked for integrin, was shown to regulate cell migration using receptor-mediated ad-

hesion [33], and Mdm2 (predicted for cell communication) was shown to relocate to

the cell membrane during acute kidney injury-chronic kidney disease [36].

Discussion and conclusion
Gene expression data has been extensively and successfully used to infer interaction be-

tween genes, gene regulation and temporal and causal effects [5, 42, 43]. With the re-

cent advances in spatial transcriptomics, such data can now be used to infer pairs of

genes involved in cell-cell communication. However, directly converting methods used

to infer intra-cellular interactions to methods for inferring extra-cellular interactions is

not trivial. The spatial data tends to be very sparse, contains several different cell types,

and requires specific decisions about the neighborhoods to consider. Other recent ap-

proaches attempted to identify downstream targets of activated ligands using bulk and

single cell data [44]. However, unlike GCNG, these methods do not attempt to infer

Table 1 Top predicted genes for cell communication-related GSEA functional sets

Cell communication

scara3 Scara3 can be translocated to cell surface [31].

thbs1 Thbs1 is an extracellular matrix protein involved in cellular interactions [32].

serpine1 Serpine1 regulates cell migration using receptor-mediated adhesion [33].

ccdc144nl
Ccdc144nl is a protein located in the plasma membrane [34]. See https://www.proteinatlas.org/
ENSG00000205212-CCDC144NL/cell for location details. And lncRNA CCDC144NL-AS1 can regu-
late cell migration [35].

mdm2 Mdm2 relocates to cell membrane during acute kidney injury-chronic kidney disease [36].

Integrin cell surface interactions

ctgf Ctgf can regulate cell-matrix interaction by binding to cell surface proteins [37].

serpinh1 Serpinh1 can promote cancer cell–platelet interaction [38].

lbr

plod1

lamc1 LAMC1 encodes extracellular matrix protein, and regulates cell adhesion, invasion and migration
[39].

Cell surface interactions at the vascular wall

serpine1 Serpine1 regulates cell migration using receptor-mediated adhesion [33].

ctgf Ctgf can regulate cell-matrix interaction by binding to cell surface proteins [37].

serpinh1 Serpinh1 can promote cancer cell–platelet interaction [38].

loxl2 LOXL2 can modulate focal adhesion and tight junction in breast cancer cells [40].

pcolce Pcolce encodes protein as component of extracellular matrix involved in cellular interactions [41].
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novel direct interactions and are only focused on identifying activated pathways using

known interactions.

We presented a supervised GCN approach which can be used to identify new interac-

tions from spatial scRNA-Seq data. GCNs have recently been used in computational

biology, though prior applications did not focus on cells but rather on intracellular

pathways and utilizing known gene-gene and gene-drug interactions to define the graph

structure [45, 46]. For example, Zitnik et al. used GCNs to predict polypharmacy side

effects by encoding protein and drug interaction knowledge [45]. In contrast, GCNG is

focusing on inferring extra-cellular interactions and can work with a general spatial

image for which the specific interactions between cells are not known. It generates a

neighborhood graph based on distances between cells and uses it, together with the

pairwise expression values for genes to predict interactions between and across cells.

Application of our GCNG method to datasets that provide the highest coverage of

genes shows that it can successfully identify known ligand-receptor pairs and that it is

much more accurate when compared to prior methods proposed for this or to methods

that do not utilize the spatial information. Visualization of some resulting predictions

highlights the ability of GCNG to focus on a relevant subset of locations rather than on

global correlation. The output of GCNG can also be used as features for downstream

analysis including methods for gene function assignment and methods for learning

interaction networks.

There are several ways in which GCNG can be improved. First, the choice of the

number of convolutional layers to use (which relates to the assumption about the

propagation distance of secreted proteins) needs to be better handled to fit the needs of

individual datasets. Second, GCNG can focus more on specific cell types rather than on

the overall interactions. We expect to address these and other issues in future work.

Another important direction is that compared to the intra-cellular case, the extra-

cellular interactions between genes might be more complex, including different kinds

of functional mechanisms, so we hope future GCNG can model them with more details

rather than treating them as an identical case. Furthermore, it is noticed that the mean

and median performance for the same method are some different and sometimes the

compared prior method is even worse than random guess, which is due to the small

sample size of train and test dataset. Finally, the results reported are likely an under-

estimate of the performance of the method. Note that we use as the test data the entire

set of known ligand-receptor pairs. While some are likely active in the tissues we ana-

lyzed, many pairs that are listed as “positives” in the test data are not, and so labeling

them as “negative” is the actually the correct answer (but is still panelized in our evalu-

ations). More generally, if we had a better ground truth data, we would expect that the

results would be much better.

GCNG is implemented in Python and both data and an open source version of the software

are available from the supporting website, https://github.com/xiaoyeye/GCNG, and Zenodo [47].

Methods
Data used

The two seqFISH+ datasets were downloaded from [16]. These datasets included infor-

mation from two tissues profiling the expression of 10,000 genes in 913 cells in the
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mouse cortex and in 2050 cells in mouse olfactory bulb (OB). We normalized the ex-

pression data such that expression levels for all genes in each cell sum to the same

value, as was previously done [16]. The third is a recent dataset from MERFISH. That

data consisted of 10,050 genes in 1368 cells [17]. The counts in seqFISH+ and MERF

ISH data were processed with the following rule:

expresionij ¼
countijX
j

countij
� 10; 000

where i represents cell i and j represents gene j. We also downloaded the cell location

files for all the three datasets to generate graph matrices.

Graph representation for spatial transcriptomics data

To determine the neighbors of each cell, we calculated the Euclidean distance in the

image coordinates for all cells and used a distance threshold to select neighbors. The

threshold value was selected using 10-fold cross-validation (see “Train and test strat-

egy” section below for details), which for the 2D images, we used seemed to represent

the number of neighbors that were in physical contact with the cell (Additional file 1:

Tabs. S1&S2). Consider the seqFISH+ cortex data as an example. Given the set of

neighbors, we constructed an adjacency matrix size of 913 × 913 (where 913 is the

number of cells in the seqFISH+ dataset), which we term A. In other words, for the

symmetric network, A, Aij = Aji = 1 if i and j are neighbors and 0 otherwise. Using the

adjacency matrix A, the normalized (symmetric) Laplacian matrix LN is defined as [48]:

LN ¼ I −D − 1=2AD − 1=2;

where Dii ¼
X
j

Aij , and I is the identity matrix. LN can be used as a graph matrix. We

also tried other graph representation matrices in GCNG. One such method which we

adopted first normalizes the adjacency matrix to get AN,

AN ¼ D − 1=2AD − 1=2;

where Dii ¼
X
j

Aij,

and then computes the normalized Laplacian using the normalized adjacency matrix,

LNN,

LNN ¼ I −D
− 1

2
N AND

− 1
2

N ;

where DNii ¼
X
j

ANij .

Finally, we also tested the following formulation of a graph matrix:

L
0 ¼ D

0 − 1=2A
0
D

0 − 1=2;

where D
0
ii ¼

X
j

A
0
ij, and A′ =A + I.
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In this paper, we use the graph matrix LNN in the exocrine GCNG, and L′ in the

autocrine+ GCNG model, and diagonal matrix for diagonal GCNG. See Additional file

1 for a detailed discussion about graph representations.

Labeled data

GCN requires labeled data for supervised training. While the exact set of signaling in-

teractions between cells in the cortex data we studied is unknown, we used as true in-

teractions a curated list of interacting ligands and receptors [20], consisting of 708

ligands, and 691 receptors with 2557 known interactions. Of these, 309 ligands and 481

(involved in 1056 known interactions) are profiled by the seqFISH+ datasets we stud-

ied, and 270 ligands, 376 (841 known interactions) are included in the MERFISH data-

set. These were used for training and testing. See “Train and test strategy” section

below for details on how we define and generate positive and negative examples during

training.

GCNG network architecture

To construct GCNG, we used the python packages of “spektral,” “Keras,” and “Tensor-

flow.” See Fig. 1a for the architecture of GCNG. GCNG uses two types of input: one

encodes the graph structure, LNN of size of 913× 913 as discussed above, while the sec-

ond encodes node-specific values, and is generated as the normalized expression of a

pair of candidate genes using a matrix of dimension of 913 × 2. GCNG consists of two

32-channel graph convolutional layers, one flatten layer, one 512-dimension dense

layer, and one sigmoid function output layer for classification. The graph convolutional

layer is defined as:

Z ¼ elu LXW þ bð Þ

where X is the expression matrix with dimension of 913 × 2 and L is the 913 × 913

graph matrix. W is a weight matrix of filters (also termed the convolution kernel) with

a size of 2 × 32, where 2 corresponds to the two-dimension gene expression of each

node, and 32 represents 32 filters or feature maps. b is the bias vector term with a size

of 1 × 32. The “elu” (exponential linear unit) function is defined as:

elu xð Þ ¼ x; x > 0
α exp xð Þ − 1ð Þ; x≤0

�
;

where α = 1 by default. Here, Z represents the embedding vectors of all cell nodes with

a size of 913 × 32. Note that we are using two convolutional layers here allowing the

method to learn indirect graph relationships as well. Since the impact of secreted pro-

teins can be larger than just direct neighbors, such an approach allows the method to

infer interactions that may be missed by only considering direct neighbors.

The first graph convolutional layer combines the two inputs and converts them to em-

bedding vectors for cell nodes of dimension of 913 × 32. The second graph convolutional

layer combines the embedding vector of each cell with the one learned for its direct neigh-

bors. The flatten layer then converts the matrices generated by the second layer to a vec-

tor using ReLU activation function. Finally, a dense layer with one-dimensional output is

used to predict the interaction probability based on the sigmoid activation function. The

activation functions used by the different layers are defined below.
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ReLU xð Þ ¼ x if x≥0
0 if x < 0

�
;

Sigmoidθ xð Þ ¼ 1= 1þ eθx
� �

:

And the objective function for the entire GCNG model is as follows:

F ¼ −
XN
i¼1

yi log GCNGΘ xð Þð Þ þ 1 − yið Þ log 1 −GCNGΘ xð Þð Þ;

where i represents the ith sample, yi represents the label for the ith sample, and Θ rep-

resents all parameters that need to be optimized in GCNG.

We tested one, two, and three graph convolutional layer networks and determined that two

layers network led to the best performance. In addition, we also tried GCNG with cell type in-

formation as node attribute using one-hot encoding, distance value as edge attributes, and

other GNN architectures including “EdgeconditionConv” model [23] and graph attention

model [24], see detailed results for these in Additional file 1: Fig. S1.

Train and test strategy

We evaluated GCNG’s performance using tenfold cross-validation. Train and test sets

were completely separated to avoid information leakage: for each fold, 90% of ligands

and 90% of receptors were selected at random for training. Known interactions between

the 90% training (10% test) proteins were used as the positive train (test) set and the

negative train (test) set was composed of randomly selected ligand-receptor pairs that

are not known to interact among the training (test) proteins (on average each ligand

only interacts with very few receptors so ∼ 99% of random pairs are expected to be

negative). Note that pairs for which one of the proteins was part of the training set

while another was in the test set were removed and so all proteins in the test set are

never seen in training (Fig. 1b). Early stopping through monitoring validation accuracy

was used to avoid overfitting. In addition, 20% of the training set pairs were used as val-

idation set to select the distance threshold used for graph matrix generation (see Add-

itional file 1: Fig. S7 and Additional file 1: Tabs. S1&S2 for details), and the patience

epoch number was set as half of the total training epoch number. To evaluate models’

performance, we first calculated the individual area under the receiver operating char-

acteristic curve and the area under the precision recall curve (AUROC/AUPRC) for

each ligand and then combined them for the figures presented. In addition, the 40%

and 60% quantiles of true positive rate (precision) are calculated along with false posi-

tive rate (recall) for AUROC (AUPRC).
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