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Abstract: Japanese encephalitis virus (JEV) is a zoonotic mosquito-borne pathogen that regularly
causes severe neurological disease in humans in Southeast Asia and the Western Pacific region. Pigs
are one of the main amplifying hosts of JEV and play a central role in the virus transmission cycle.
The objective of this study was to identify in vitro cell systems to investigate early effects of JEV
infection including viral replication and host cell death. Here, we demonstrate the susceptibility of
several porcine cell lines to the attenuated genotype III JEV strain SA14-14-2. Monolayers of porcine
nasal turbinate (PT-K75), kidney (SK-RST), testis (ST), and monocyte-derived macrophage (C∆2+)
cells were infected with SA14-14-2 for up to five days at a multiplicity of infection (MOI) of 0.1. The
hamster kidney cell line BHK-21, previously shown to be susceptible to SA14-14-2, was used as a
positive control. Culture supernatants and cells were collected between 0 and 120 h post infection
(hpi), and monolayers were observed for cytopathic effect (CPE) using brightfield microscopy. The
number of infectious virus particles was quantified by plaque assay and cell viability was determined
using trypan blue staining. An indirect immunofluorescence assay was used to detect the presence of
JEV NS1 antigens in cells infected at 1 MOI. All four porcine cell lines demonstrated susceptibility to
SA14-14-2 and produced infectious virus by 12 hpi. Virus titers peaked at 48 hpi in C∆2+, BHK-21,
and SK-RST cells, at 72 hpi in PT-K75, and at 120 hpi in ST cells. CPE was visible in infected C∆2+
and BHK-21 cells, but not the other three cell lines. The proportion of viable cells, as measured
by trypan blue exclusion, declined after 24 hpi in BHK-21 and 48 hpi in C∆2+ cells, but did not
substantially decline in SK-RST, PT-K75 or ST cells. At 48 hpi, JEV NS1 was detected in all infected
cell lines by fluorescence microscopy. These findings demonstrate several porcine cell lines which
have the potential to serve as useful research tools for investigating JEV infection dynamics and host
cell mechanisms in a natural amplifying host species, such as pigs, in vitro.

Keywords: arboviruses; cell culture; Japanese encephalitis; infection; in vitro; porcine

1. Introduction

Arthropod-borne viruses (arboviruses) are common causes of emerging infectious
diseases that pose significant public health threats [1,2]. Notable among these viruses is
Japanese encephalitis virus (JEV), a zoonotic mosquito-borne flavivirus that is a leading
cause of severe neurologic infections in humans in endemic regions [3–5]. JEV is highly
endemic in the Asia–Pacific region and has expanded geographically to other continents
around the world, including Africa and Europe [6–10]. The prevalence of the virus in both
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temperate and tropical climates, and its demonstrated ability to spread to new geographic
regions, represent a significant risk of exposure and infection to people worldwide [11–13].
The global incidence of Japanese encephalitis (JE) is estimated to be close to 70,000 cases an-
nually, with up to a 30% case-fatality rate and long-lasting neurological complications in up
to 50% of clinical cases, especially in children and immune-compromised adults [3,14–16].

JEV is transmitted to humans and other vertebrate hosts through the bites of infected
mosquitoes. The main arthropod vector implicated in virus transmission in Southeast
Asia is Culex tritaeniorhynchus [17,18]. However, more than 30 vector species, including
mosquitoes from the Anopheles, Aedes, Armigeres, and Mansonia genera, have been iden-
tified as competent vectors [19–21]. JEV is maintained in a transmission cycle between
mosquitoes and vertebrate hosts, including aquatic birds and pigs, thus giving the potential
for extensive dissemination and maintenance upon introduction into new areas [10,22].
Humans and horses are considered dead-end hosts of JEV because the virus does not
appear to replicate to high enough levels to sustain transmission to competent mosquito
vectors and/or susceptible hosts [23]. Pigs are the major amplifying hosts and important
reservoirs of JEV mainly because they are highly viremic upon natural infection, facilitating
transmission to arthropod vectors [6,15,22]. Under experimental conditions, pigs have
also been implicated in vector-free transmission of the virus, suggesting a potential for
spread and maintenance of the virus in pig populations even in the absence of compe-
tent vectors [22,24,25]. Therefore, pig farming and the presence of feral hogs represent
potential risks factors for widespread JEV infection to humans and susceptible domestic
animals [6,23,26,27]. The rate and severity of clinical disease in JEV-infected pigs seem to be
age-dependent. For example, young piglets are highly susceptible to JEV, presenting with
sometimes fatal neurological manifestations whereas adult pigs may present with repro-
ductive complications including abortion and testicular edema [17,28–30]. With numerous
vectors identified as being competent for JEV, there is a potential for the introduction and
spread of JEV to wild and domestic pig populations in new areas, and a risk of economic
impacts on pig farming and production [31–34].

Controlled in vivo challenge models remain the gold standard for investigating the
complexities of viral pathogenesis, and recent studies have provided valuable insights
toward a better understanding of JEV infections in swine [24,25,27,35–37]. However, host
and virus factors associated with JEV pathogenesis remain poorly understood and ad-
vances in treatment and prevention in swine have been hindered by a lack of thorough
understanding of the viral replication cycle and host–virus molecular interactions. In vitro
cell model systems can serve as useful tools to investigate these interactions at the mech-
anistic level. JEV has demonstrated the ability to infect, and replicate in, cell types of
multiple origins including immune cells, cells of the central nervous system, epithelial
cells, and endothelial cells [38]. The mechanisms of JEV’s entry into host cells are not well
understood and may vary by tissue type, with evidence for roles of both receptor-mediated
and receptor-independent mechanisms [38–40]. Recent in vitro and ex vivo studies with
primary porcine cells, including nasal epithelial cells, monocyte-derived macrophages,
monocyte-derived dendritic cells, and testicular cells, have provided insights into JEV
tropism and innate immune responses [29,41,42]. However, established cell lines are a
needed resource because most researchers have limited access or ability to produce primary
cell cultures from fresh porcine samples. Few available cell lines have been identified as
suitable for the study of JEV. The porcine kidney cell lines PK-15 and PS have been shown
to support JEV replication; however, the ability to use them in some regions and/or assays
may be impacted by their reported chronic infections with other porcine viruses [43,44].
A commercially available Sertoli cell line derived from porcine testis (ST) was recently
shown to be a promising model to study JEV infection and subsequent inflammatory
responses in the testis, a known target organ for JEV infection [28,29]. The objective of this
study was to identify existing, established porcine cell lines for use as tools to study the
pathogenesis of JEV in pigs in vitro, with the hypothesis that they would be susceptible to
the attenuated JEV strain, SA14-14-2. We investigated the infection dynamics of SA14-14-2
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in commercially available cell lines derived from swine kidneys, nasal turbinates, and
testis. Additionally, we examined an established monocyte-derived macrophage cell line,
C∆2+ [45] to determine its potential utility as a model to study JEV infection in innate
immune cells which are known targets of JEV infection [42,46].

2. Materials and Methods
2.1. Virus and Cell Lines

All work was approved by the Kansas State University Institutional Biosafety Com-
mittee and conducted in approved biosafety level 2 laboratories at the Center for Grain and
Animal Health Research, United States Department of Agriculture (USDA), Agricultural
Research Service (ARS), Manhattan, KS, USA.

The JEV SA14-14-2 strain was obtained from the World Reference Center for Emerging
Viruses and Arboviruses (WRCEVA) at the University of Texas-Medical Branch, Galveston,
TX, USA. Virus was passaged one time in African green monkey Vero cells, then propagated
in Baby hamster kidney (BHK-21) cells prior to experiments; titer was determined by
standard plaque assay. The Vero, BHK-21, PT-K75 (porcine nasal turbinate), SK-RST
(porcine kidney cortex), and ST (porcine testis) cells were obtained from the American
Type Culture Collection (ATCC), Manassas, VA, USA. Cell growth media (Thermo Fisher
Scientific, Waltham, MA, USA) were as follows: Medium 199, Earle’s Salts (199E; Vero),
minimum essential medium (MEM; BHK-21, SK-RST, ST) or Dulbecco’s Modified Eagle
Medium (DMEM; PT-K75), supplemented with 10% (v/v) fetal calf serum (FCS, R&D
Systems, Minneapolis, MN, USA) and 1× antibiotic-antimycotic (100 units/mL of penicillin,
100 µg/mL of streptomycin, and 0.25 µg/mL Amphotericin B, Thermo Fisher Scientific,
Waltham, MA, USA). C∆2+ cells were initiated and established by the USDA, ARS, U.S.
Meat Animal Research Center (USMARC), Clay Center, NE and maintained as previously
described [45]. All cells were grown at 37 ◦C in a 5% CO2 atmosphere.

2.2. Virus Growth Kinetics and Cell Viability

Cell monolayers of 3 × 105 cells were grown in 6-well plates for approximately 40 h,
then infected at 0.1 multiplicity of infection (MOI) with SA14-14-2 in MEM supplemented
with 2% FCS and 1× antibiotic-antimycotic (Thermo Fisher Scientific, Waltham, MA, USA)
based on cell counts at the time of infection. Virus was adsorbed for 90 minutes, then
monolayers were washed twice, and fresh growth media added. Infections were performed
three separate times for each cell line. After infection, cell morphology was monitored, and
cytopathic effect (CPE) was observed using brightfield microscopy. Cell and supernatant
samples were collected at 0, 12, 24, 48, 72, 96, and 120 h post infection (hpi). Cell culture
supernatants were harvested to detect extracellular virus released into the culture media,
and cell monolayers were trypsinized and collected to detect virus particles that remained
cell-associated. Cell viability was determined using a 1:1 dilution with trypan blue (Thermo
Fisher Scientific, Waltham, MA, USA), and cells were counted on a Luna-FL cell counter
(Logos Biosystems, Annandale, VA, USA) using brightfield settings. All samples were
subjected to three freeze/thaw cycles to lyse cells and stored at −80 ◦C until titered by
plaque assay. Standard plaque assays on BHK-21 cells were performed to calculate titers
in pfu/mL. To compare the number of viable virions produced in the extracellular and
cell-associated fractions of each well, pfu/well was calculated by multiplying the titer of
each sample (pfu/mL) by the supernatant volume (3 mL/well), or collection volume of
cellular fraction (0.5 mL/well), as applicable.

2.3. Immunofluorescence Assay

To demonstrate JEV NS1 protein production, an indirect immunofluorescence assay
(IFA) was performed. Briefly, 2–2.5× 104 cells seeded in black 24-well µ-plates (Ibidi GmbH,
Munich, Germany) were infected with JEV at an MOI of 1, or mock infected for 48 h. At
48 hpi, cells were fixed and permeabilized with the Image-iT fixation/permeabilization
kit based on the manufacturer’s recommendation (Invitrogen, Carlsbad, CA, USA). To
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minimize nonspecific background signals, cells were blocked overnight with 3% Bovine
Serum Albumin (BSA) at 4 ◦C. Primary (mouse anti-JEV NS1 clone GT1410—GeneTex,
Irvine, CA, USA) and secondary antibodies (Goat anti-mouse IgG highly cross adsorbed,
Alexa Fluor 594—Invitrogen, Carlsbad, CA, USA) were added to cell cultures at a dilution
of 1:100 for 2 h and 1:500 and incubated for 1 h at room temperature, respectively. Cell nuclei
were counterstained with ProLong Diamond Anti-fade Mountant with 4′,6-diamidino-
2-phenylindole (DAPI; Invitrogen, Carlsbad, CA, USA) and imaged with a fluorescence
microscope (Keyence Corporation, Itasca, IL, USA). To quantify the fluorescence intensity
of NS1 antibody signal in JEV-infected cells, the Keyence image analyzer was used to
measure the average brightness integration of five 10× objective fields from each of two
technical replicates, for each cell line. The percentage of infected cells was calculated as the
ratio of the number of NS1-positive cells to the number of DAPI-positive cells, multiplied
by 100. The brightness integration and percentage of infected cells were calculated for
three independent infection experiments. Graphical representations were performed with
GraphPad Prism.

3. Results
3.1. Porcine Cell Lines Support JEV SA14-14-2 Replication and Produce Infectious Virus

The cell lines selected for this study were chosen based on prior evidence of in vitro or
ex vivo JEV susceptibility of related cells or tissues [29,42,45,47–49]. When possible, com-
mercial cell lines were chosen owing to their public availability. The selected commercial
cell lines had no documented pre-existing infections (natural or transformed), according to
the vendor. These cell lines included a cell line with fibroblastic morphology derived from
newborn piglet nasal turbinate mucosa (PT-K75), cells with epithelial morphology derived
from the kidney cortices of 1-day-old pigs (SK-RST), and ST cells, as discussed above. BHK-
21 cells were used as a positive control because they are known to be highly susceptible to
JEV infection and have been used extensively in the study of the pathogenetic mechanisms
of JEV [48,49]. A non-transformed, commercially available adherent macrophage cell line
was not identified; therefore, a previously established macrophage cell line (C∆2+) derived
from the peripheral monocytes of a 10-week-old, mixed-breed pig was used as a model for
innate immune cell infection [45]. The attenuated SA14-14-2 vaccine strain of JEV was used
for these studies. Wild-type JEV requires containment in a biosafety level (BSL) 3 facility;
however, SA14-14-2 is a BSL-2 pathogen that has been a useful surrogate for in-depth study
of JEV infection dynamics and host cell mechanisms critical for viral replication [50,51].

An indirect immunofluorescent assay was used to determine if the selected porcine
cell lines infected with SA14-14-2 could support viral protein synthesis. The flavivirus
non-structural protein 1 (NS1) is important for virus replication [52,53]; hence, the presence
of cell-associated JEV NS1 was examined at 48 hpi following infection at 1 MOI (Figure 1A).
NS1 was detected in all JEV-infected cell lines, with the highest proportion of NS1-positive
cells among BHK-21 cells (Figure 1B). The fluorescence intensity of NS1 antibody signal
was assessed for all infected cell lines using calculated brightness integration (Figure 1C).
The highest NS1 fluorescence intensity was observed in BHK cells. Notable variability was
observed in the staining intensity among C∆2+ cells (Figure 1A). This may be a reflection
of heterogeneity within the population, which is consistent with previous observations that
cell surface expression of porcine cluster of differentiation (CD) markers can vary between
cells [45]. No NS1-specific signal was detected in uninfected controls (Figure S1).
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followed by Alexa Fluor 594 (red) and DAPI (blue), and observed with a Keyence BX-8100 fluorescence microscope. Scale 
Bar = 100 μm. (B) The percentage of infected cells was calculated as the ratio of NS1-positive cells to DAPI-positive cells, 
multiplied by 100. (C) Fluorescence intensity of the NS1 signal was calculated based on mean integrated brightness. B and 
C were obtained by measuring five 10× objective fields in duplicate from three separate experiments using the Keyence 
image analyzer. Bars represent arithmetic mean ± SD. 
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supernatants were collected at 0, 12, 24, 48, 72, 96, and 120 hpi and virus replication kinet-
ics were analyzed by plaque assay for both fractions at each timepoint (Figure 2). All four 
porcine cell lines demonstrated susceptibility to SA14-14-2 and produced detectable virus 
titers by 12 hpi. The extracellular and cell-associated virus titers peaked at the same 
timepoint for each cell line; BHK-21, C∆2+, and SK-RST cultures peaked at 48 hpi, while 
PT-K75 titers peaked at 72 hpi. Virus titers in ST cultures continued to increase through 
120 hpi, therefore it is not known if maximum virus production for this cell line was 
reached by the experimental endpoint. The highest virus titers for each cell line during the 
five-day study were in the supernatant fractions as provided in Table 1. After peak virus 
production, the virus titers of the BHK-21 and CΔ2+ cell and supernatant fractions de-
clined rapidly. Extracellular titers of SK-RST and PT-K75 cultures plateaued followed by 
a moderate decrease, with a more rapid decrease in the cell-associated titers. For all cell 

Figure 1. Detection of JEV NS1 in porcine cells infected with JEV SA14-14-2. (A) Cells infected with JEV SA14-14-2 at a
multiplicity of infection (MOI) of 1 for 48 h were fixed, permeabilized, incubated with a monoclonal antibody for JEV NS1
followed by Alexa Fluor 594 (red) and DAPI (blue), and observed with a Keyence BX-8100 fluorescence microscope. Scale
Bar = 100 µm. (B) The percentage of infected cells was calculated as the ratio of NS1-positive cells to DAPI-positive cells,
multiplied by 100. (C) Fluorescence intensity of the NS1 signal was calculated based on mean integrated brightness. B and
C were obtained by measuring five 10× objective fields in duplicate from three separate experiments using the Keyence
image analyzer. Bars represent arithmetic mean ± SD.

To examine the permissiveness of C∆2+, PT-K75, SK-RST, and ST cells to virus repli-
cation and production of infectious virions, JEV-infected cells and corresponding media
supernatants were collected at 0, 12, 24, 48, 72, 96, and 120 hpi and virus replication kinetics
were analyzed by plaque assay for both fractions at each timepoint (Figure 2). All four
porcine cell lines demonstrated susceptibility to SA14-14-2 and produced detectable virus
titers by 12 hpi. The extracellular and cell-associated virus titers peaked at the same time-
point for each cell line; BHK-21, C∆2+, and SK-RST cultures peaked at 48 hpi, while PT-K75
titers peaked at 72 hpi. Virus titers in ST cultures continued to increase through 120 hpi,
therefore it is not known if maximum virus production for this cell line was reached by
the experimental endpoint. The highest virus titers for each cell line during the five-day
study were in the supernatant fractions as provided in Table 1. After peak virus production,
the virus titers of the BHK-21 and C∆2+ cell and supernatant fractions declined rapidly.
Extracellular titers of SK-RST and PT-K75 cultures plateaued followed by a moderate
decrease, with a more rapid decrease in the cell-associated titers. For all cell lines apart
from C∆2+, the cell-associated virus titers were approximately 2 log10 pfu lower than those
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in the respective extracellular fractions (range 81–141-fold). By comparison, cell-associated
virus titers produced by C∆2+ cells at the 48 hpi peak were 7-fold lower than extracellular
titers, and virus production detected in cells and supernatants of that cell line were largely
similar throughout the study.
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Figure 2. Replication of JEV SA14-14-2 in porcine cell lines. Cell monolayers were infected with JEV SA14-14-2 at a
multiplicity of infection (MOI) of 0.1; cells and supernatants were collected at 0, 12, 24, 48, 72, 96, and 120 hpi. Viral
titers were quantified by standard plaque assay and expressed as pfu/well for cell-associated (red) and extracellular (blue)
fractions. Error bars represent arithmetic mean ± SD of three biological replicates.

Table 1. Peak virus titers of each cell line measured during study.

Cell Line Peak Titer ± SD (pfu/mL) Time of Peak Titer (hpi)

BHK-21 4.83 ± 2.4 × 107 48

C∆2+ 4.11 ± 5.54 × 106 48

SK-RST 5.83 ± 1.44 × 106 48

PT-K75 6.38 ± 8.08 × 104 72

ST 5.22 ± 3.22 × 106 120 *
Peak titers are expressed as the arithmetic mean of three biological replicates. * Titers were still rising at the last
timepoint (120 hpi); therefore, it is not known whether the peak titer represents maximum virus production for
this cell line.

3.2. JEV SA14-14-2 Induces Differential Cytopathic Changes in Porcine Cell Lines

Cell monolayers were infected with SA14-14-2 at an MOI of 0.1 and evaluated for CPE
for 5 days (Figure 3 and Figure S2). BHK-21 cells, which are known to exhibit severe CPE
and produce virus at high titers following JEV infection [47,49,54,55] showed marked time-
dependent CPE with profound cytolysis evident by 48 hpi (Figure 3A,B). Morphological
changes in JEV-infected C∆2+ cells were first observed at 48 hpi with some increased cell
rounding and refractility (Figure 3C). CPE progressed in a time-dependent fashion with
C∆2+ cell detachment evident beginning at 72 hpi, and more than half of the cells appearing
detached by 96 hpi (Figure S2). Infection-specific morphologic changes were not evident
in PT-K75, SK-RST, and ST cells throughout the infection period. At 120 hpi, the mock-
infected BHK-21 and SK-RST cultures showed evidence of substantial overgrowth with
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sloughing and piling, respectively, of the cell monolayers. The number of cells collected
and the proportion of viable infected cells, as measured by trypan blue exclusion, was
largely consistent with the cytolysis observed microscopically at early timepoints (Figures 4
and S2), with cell death in infected BHK-21 and C∆2+ corresponding to loss of monolayer
integrity at 48 and 72 hpi, respectively. After an initial proliferation phase, the numbers and
viability of infected cells declined after 24 hpi in BHK-21 (Figure 4A) and 48 hpi in C∆2+
cultures (Figure 4B) but did not substantially decrease in PT-K75 or ST wells (Figure 4C,E).
The numbers of infected SK-RST cells (Figure 4D) appeared to decline sharply after 72 hpi;
however, dissociation-resistant cell clumping was prevalent in both the mock-infected and
infected samples from this cell line at 96 and 120 hpi which likely reduced cell counting
accuracy, as supported by the discrepancy between cell monolayer confluency (Figure S2)
and cell counts of the later timepoints. Some cell clumping was also observed in ST cells
collected at 96 and 120 h.
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Bar = 100 µm.
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tors including variable clinical presentations, limited availability of BSL-3 facilities to 
study wild-type JEV, and the expertise and resources needed to conduct in vivo experi-
ments. To help mitigate some of these obstacles faced by researchers, we aimed to identify 
in vitro cell systems to facilitate the study of JEV pathogenesis and host–virus interactions 
in pigs at the cellular level. We demonstrated the susceptibility of several established por-
cine cell lines, including monocyte-derived macrophages (CΔ2+), nasal turbinate (PT-
K75), kidney (SK-RST), and testis (ST) cells, to the attenuated strain of JEV SA14-14-2. This 
strain, which was derived from the virulent parental strain JEV SA14 through several pas-
sages in cultured cells (primary hamster kidney and chicken embryo cells) and tissues of 
animals (mice and hamsters), has been used for more than two decades as a vaccine to 
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enables it to be used at the BSL-2 level, making it more available to researchers than wild-

Figure 4. Porcine cell numbers and viability following infection with JEV SA14-14-2. BHK-21 (A), C∆2+ (B), PT-K75 (C),
SK-RST (D), and ST (E) cells were infected with JEV SA14-14-2 at a multiplicity of infection (MOI) of 0.1 and collected at 0,
12, 24, 48, 72, 96, and 120 hpi; mock-infected samples were collected at 0, 48, and 120 hpi. Left panels show the absolute
numbers of total cells and viable cells per well at each timepoint based on trypan blue exclusion. Right panels show the
percent viability at each timepoint. Bars represent arithmetic mean ± SD of three biological replicates.

4. Discussion

Pigs have an important role in JE epidemiology as amplifying hosts; however, signif-
icant knowledge gaps remain about JEV pathogenesis in these animals. Understanding
fundamental mechanisms in the progression of porcine infections is complicated by factors
including variable clinical presentations, limited availability of BSL-3 facilities to study
wild-type JEV, and the expertise and resources needed to conduct in vivo experiments. To
help mitigate some of these obstacles faced by researchers, we aimed to identify in vitro
cell systems to facilitate the study of JEV pathogenesis and host–virus interactions in pigs
at the cellular level. We demonstrated the susceptibility of several established porcine
cell lines, including monocyte-derived macrophages (C∆2+), nasal turbinate (PT-K75),
kidney (SK-RST), and testis (ST) cells, to the attenuated strain of JEV SA14-14-2. This strain,
which was derived from the virulent parental strain JEV SA14 through several passages in
cultured cells (primary hamster kidney and chicken embryo cells) and tissues of animals
(mice and hamsters), has been used for more than two decades as a vaccine to protect
against JE in endemic countries [14,15,22,50,56]. SA14-14-2 has previously been described
to differ from its parental strain by 57 nucleotide changes and its attenuation enables it to be
used at the BSL-2 level, making it more available to researchers than wild-type strains [57].
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Despite its attenuation, studies have shown that viral replication and protein expression
profiles of SA14-14-2 are as efficient as that of its parent strain with slight differences in
growth kinetics, plaque sizes, and time in which maximum titer was achieved [50,57], and
it has been used in some in vivo animal models [50,51,57]. It remains to be investigated
how observations made here with SA14-14-2 will translate to in vivo pathogenesis in pigs
infected with virulent strains of JEV or how the findings with this genotype III virus will
extrapolate to pathogenesis associated with other genotypes in vivo or in vitro. However,
despite these potential limitations, the in vitro system described here can be a useful surro-
gate to study pig–virus interactions and perform discovery of disease countermeasures
such as antiviral compounds at lower levels of biocontainment.

Macrophages represent an important cell population that warrants in-depth evalu-
ation in order to understand the pathogenesis of JEV infection. Host defenses against
JEV are facilitated by innate immune cells including macrophages [46]; however, tissue
macrophages and microglia of the central nervous system can also contribute to the sever-
ity of JE through the induction of an inflammatory cytokine milieu [58,59]. Studies have
shown that human JE patients and mouse models of JEV infection demonstrate increased
circulation of monocytes in the peripheral blood and infiltration of macrophages into the
CNS [58,60]. Generally, primary pig macrophages are labor intensive to isolate and vary in
quantity, quality, and activity; hence, we used the cell line C∆2+, which has been charac-
terized as a representative macrophage line based on cell morphology, proinflammatory
cytokine expression, cell-surface markers, and bactericidal activities [45]. In agreement
with previous studies showing JEV infection of monocyte-derived macrophages of pigs,
humans, and mice, C∆2+ cells demonstrated remarkable susceptibility to JEV, successfully
supporting replication of the virus and producing high titers of infectious virus parti-
cles [41,61]. Of the four porcine cell lines, C∆2+ cells exhibited the most cytopathology
with some observable cell rounding and decreased viability after 48 hpi, which coincided
with peak virus production in both the cell-associated and extracellular compartments. In
contrast to the other three porcine cell lines, the quantity and kinetics of infectious virus
production in the supernatants were similar to the cell-associated titers throughout the
five-day infection period. The significance of this is not clear but could indicate functional
bottlenecks in virus release or potential cellular mechanisms favoring intracellular survival
and persistence. Macrophages have been implicated in the persistence and pathogenesis of
varying pig infectious agents [8,62–64]. The demonstrated permissiveness of C∆2+ cells
indicate that this cell line is a useful tool to better understand viral replication mechanisms
and host defense factors against JEV infection in the innate immune cells of a natural
animal host.

Like C∆2+ cells, SK-RST and ST cells produced peak infectious virus titers that were
within approximately 1 log10 pfu/mL of titers produced by highly permissive BHK-21
cells (range 0.8–1.3). Unlike C∆2+ cells, however, SK-RST and ST cells did not exhibit
obvious CPE during the study. This lack of cytolysis may make these cells unsuitable
reporter cells for assays such as plaque assays. However, they may be useful cells for
virus propagation due to the ability to maintain intact monolayers while producing high
virus titers. Although cell clumping reduced the ability to accurately quantify the numbers
of SK-RST and ST cells that remained during the last two timepoints of infection, the
proportion of viable cells did not substantially decline throughout the infection period,
suggesting that JEV had less of an effect on cell survival mechanisms in these cells than
on BHK-21 and C∆2+. The effects of JEV on the viability and death of these cells will be
further explored with additional assays in future studies.

The high virus titers produced by ST cells in this study also provide insights into the
utility of studying SA14-14-2 in porcine cell lines to investigate JEV pathogenesis in pigs at
the BSL-2 level. JEV is known to cause testicular edema in boars and studies investigating
the impact of JEV on the male reproductive system are limited [29]. ST cells have previously
been shown to be highly permissive for wild-type JEV infection [29]. Here, we demonstrate
that ST cells are likewise highly permissive for the attenuated vaccine strain SA14-14-2.
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Data from the current study demonstrated that the porcine nasal turbinate cell line
PT-K75 produced infectious JEV with peak titers 2–2.5 log10 pfu/mL lower than the other
porcine cell lines. The comparison of extracellular virus to cell-associated virus indicates
that virus was not being trapped inside the cells, so it is possible that this cell line is less
permissive for JEV, or the attenuation of SA14-14-2 may be contributing to the lower titers.
Notwithstanding, PT-K75 cells may serve as an in vitro alternative to in vivo or ex vivo
models for some studies of vector-free transmission of JEV. Studies have shown the ability
of the virus to propagate in the nasal mucosa, one of the targets of virus infection during
experimentally demonstrated vector-independent transmission between pigs, indicating a
potential means of virus spread and maintenance in pig populations [25,41]. Hence, these
cells can be further used to study the replication mechanisms in the targets of oronasal route
of virus transmission. Planned studies include investigating the behavior of wild-type
strains of JEV in PT-K75, as well as the other porcine cell lines.

Overall, results from the current study demonstrated that JEV induced productive
infections in several established pig cell lines, most of which are commercially available.
These cell lines represent research resources that can assist in the study of JEV biology
and the evaluation of host factors and disease mechanisms in a natural amplifying host.
Additionally, they may be useful tools for countermeasure discovery such as therapeutic
target screening and vaccine development, with the ultimate goals of improving treatments
and preventing disease in humans and animals.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pathogens10111468/s1, Figure S1. Comparison of JEV NS1 in infected and uninfected porcine
cells. Figure S2. Cytopathic changes observed in porcine cell lines.
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