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Abstract

Objectives: This study aimed to investigate the differentiation state and clinical significance of colorectal cancer cells, as well as
to predict the immune response and prognosis of patients based on differentiation-related genes of colorectal cancer.

Introduction: Colorectal cancer cells exhibit different differentiation states under the influence of the tumor microenvi-
ronment, which determines the cell fates.

Methods: We combined single-cell sequencing (scRNA-seq) data from The Cancer Genome Atlas source with extensive
transcriptome data from the Gene Expression Omnibus database. We obtained colorectal cancer differentiation-related genes
using cell trajectory analysis and developed a colorectal cancer differentiation-related gene based molecular typing and
prognostic model to predict the immune response and prognosis of patients with colorectal cancer.

Results:We identified 5 distinct cell differentiation subsets and 620 colorectal cancer differentiation-related genes. Colorectal
cancer differentiation-related genes were significantly associated with metabolism, angiogenesis, and immunity. We separated
patients into 3 subtypes based on colorectal cancer differentiation-related gene expression in the tumor and found differences
among the different subtypes in immune infiltration status, immune checkpoint gene expression, clinicopathological features,
and overall survival. Immunotherapeutic interventions involving a highly expressed immune checkpoint blockade may be
selectively effective in the corresponding cancer subtypes. We built a risk score prediction model (5-year AUC: .729) consisting
of the 4 most important predictors of survival (TIMP1, MMP1, LGALS4, and ITLN1). Finally, we generated and validated a
nomogram consisting of the risk score and clinicopathological variables.

Conclusion: This study highlights the significance of genes involved in cell differentiation for clinical prognosis and immu-
notherapy in patients and provides prospective therapeutic targets for colorectal cancer.
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Introduction

Colorectal cancer (CRC) has the third highest incidence and the
second highest fatality rate worldwide. More than 1.9 million
new instances and 935 000 deaths from CRC are expected in
2020, accounting for nearly 10% of all cancer cases and fa-
talities.1 Moreover, in some underdeveloped regions, the in-
cidence of CRC continues to rise rapidly.2 However, over the
last decade, cancer immunotherapy has emerged as a novel
therapeutic option,3 as it is an effective way to treat illnesses,
but only few patients benefit from this therapy modality.
Moreover, the identification of these patients remains unclear.4

Novel molecular biomarkers with predictive and/or prognostic
significance have become important for improving anticancer
therapy and patient outcomes.5 In recent years, potential bio-
markers that play a predictive role in cancer immunotherapy for
liver, ovarian, and pancreatic cancers have been discovered,
providing new insights for the precise treatment of cancer.6-8

Nevertheless, more effective prognostic markers for CRC and
predictors of immune response are still lacking.

Intratumor heterogeneity (ITH) is intimately associated with
tumor occurrence, development, and recurrence.9,10 An accu-
rate understanding of the characteristics of ITH in the tumor
microenvironment can not only identify predictive biomarkers
but also provide potential therapeutic targets.11 Furthermore,
differences in pathogenesis, differentiation status, and thera-
peutic interventions may lead to the development of new
molecular phenotypes.9 Molecular subtypes help to create
homogeneous patient subgroups and reveal the biological
processes associated with aggression in each subtype.12

However, CRC cases remain incompletely categorized, re-
sulting in subtypes with ambiguous molecular definitions, in-
dicating that more molecular typing and investigation of the
colorectal genome are required to improve our understanding of
CRC biology.13 Therefore, an in-depth investigation of the
heterogeneity of CRC at the molecular level and the discovery
of novel biomarkers are important for the clinical diagnosis,
successful treatment, and prognosis of CRC patients.

The tumour microenvironment (TME) consists of dif-
ferent types of cells (endothelial cells, fibroblasts, and im-
mune cells) and extracellular components (cytokines, growth
factors, hormones, extracellular matrix, etc.).14,15 Tumors
develop with changes in the surrounding stroma, which leads
to the reprogramming of surrounding cells. This re-
programming is decisive for tumor survival and develop-
ment, resulting in different states of cell differentiation and
cell fates.16 Recent research has shown that immunological
components of the TME may affect tumor formation and act
as valuable therapeutic targets.17 Moreover, various elements
of the TME have the potential to influence clinical results,18

and different therapeutic techniques for distinct cell subsets
may be developed by understanding the kinds of tumor-
associated cells in the TME.19 However, because typical
molecular profiling studies depend mainly on bulk tissue
analysis, the features of various cell populations remain
unknown.20

Single-cell transcriptome analysis is a powerful method for
describing cell states and differentiation characteristics.21

Moreover, single-cell RNA sequencing (scRNA-seq) may
be utilized to detect ITH and predict TME interactions.22

Furthermore, the most malignant subtypes correlated with a
poor prognosis may be identified by scRNA-seq clustering
combined with signaling pathway analysis, which could
provide insights for targeted treatment.23 Combining TME
data with genomic and transcriptomic profiling may help
identify individual treatment combinations including che-
motherapy, immunotherapy, antiangiogenic therapy, and anti-
stromal agents.18 Previous studies have performed integrated
analysis of glioma and gastric carcinoma24,25 by merging
scRNA-seq data with The Cancer Genome Atlas (TCGA)
transcriptome data. As a result, they established a prediction
model based on differentiation-related genes; however, the
model did not evaluate CRC.

In this study, we combined scRNA-seq and bulk tran-
scriptomics to explore the differentiation trajectory of CRC
cells, classify patients according to the differentiation char-
acteristics of their CRC cells, predict tumor immunotherapy
responses and survival, and provide new insights into the
clinical diagnosis and therapeutic intervention of CRC.

Materials and Methods

Data Sources and Pre-analysis Processing

The scRNA-seq data were obtained from the Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database.
We used the scRNA-seq data of non-FAP (familial adenoma-
tous polyps) patients from the GSE109308 dataset,26 which
included 624 CRC cells from 7 samples. The data are repre-
sented as an M × N matrix (m = 624, n = 24 873), where the
columns represent each cell and the rows reflect the expression
of each gene. The scRNA-seq data were then processed using R
version 4.1.2 software using the ‘Seurat’ package.27 The pro-
portion of mitochondrial genes was determined using the
‘PercentageFeatureSet’ function. Low-quality cells were filtered
out (gene number < 100, sequence number < 50, mitochondrial
gene content < 5%).25 Following data filtration, we normalized
the scRNA-seq data using the logNormalize technique and then
used analysis of variance to select the top 1500 genes that
exhibited significant variations.
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Bulk RNA-seq data of 566 CRC samples were obtained from
the GEO database (GSE39582, https://www.ncbi.nlm.nih.gov/
geo/).28 These samples served as the validation set for the
model developed using the training set of 43 normal and 562 CRC
samples obtained from The Cancer Genome Atlas (TCGA, http://
cancergenome.nih.gov/). CRC samples from patients with 30-day
or less survival, equivocal survival status, or unknown clinical
features were not included in the clinical variable analyses.

Dimension Reduction, Cell Clustering, and Annotation

Principal component analysis (PCA)29 was used with a false
discovery rate (FDR) of < .05 to determine which of the available
dimensions were significant (P < .05). The top 18 principal
components were selected for analysis and were clustered using
the t-distributed stochastic neighbor embedding method. Cells
were positioned and grouped using the ‘FindClusters’ function in
the ‘Seurat’ package and cell criteria weremodularized.30Marker
genes for different clusters were identified using the ‘limma’
package, and the criteria for identification were log2 (fold
change) > .5 and FDR < .05.25 The ‘Singler’ software suite used
marker genes as the basis for cluster annotation.

Cell Trajectory Analysis and Colorectal Cancer
Differentiation-Related Genes

Cell trajectory analysis of the processed data was performed using
the ‘Monocle’ software package. Monocle uses reversed graph
embedding to explainmultiple unsupervised destiny judgments.31

Different branches represent different differentiation states. Dif-
ferential genes exist between different branches. These branch-
specific marker genes were identified as CDRGs.24 The Kyoto
Encyclopedia of Genes andGenomes (KEGG, https://www.kegg.
jp/) was used to enrich each trace branch in the Gene Ontology
(GO) and KEGG pathways, obtain a P-value < .05 after en-
richment and explore the biological value of different genes.

CDRG-Based Classifications of Colorectal Cancer
Patients From the GSE39582 Dataset

Gene expression data files of CRC patients were obtained from
the GEO database (GSE39582). The data were obtained from 566
clinical samples. In this study, 620 CDRGs were identified from
differentiation trajectories for CRC molecular typing. The
‘ConsensusClusterPlus’ software program for R gives quantita-
tive and graphical proof of stability for assessing the number of
unsupervised classes.32 We used this package to classify genes
with differential cell trajectories, select the best results (k = 3), and
divide the 566 clinical samples into 3 clusters according to their
genotype. The R software packages, ‘Survival’ and ‘SurvMiner’
were used for survival analysis of the types, and the package,
‘ggplot2’ was used to explore the clinical relevance of the types
combined with clinical information and observe whether the
clinical traits differed among the different types (P < .05).

Immune Infiltration and the
Tumour Microenvironment

The ratio of stromal cells to immune cells in CRC, as well as
the immune score, stromal score, and estimate score for each
sample were calculated using the ‘Estimate’ software
package. Then, combined with the results of subtyping,
‘ggpubr’ was used to analyze the differences in the TME
among different clusters. Additionally, the CIBERSORT
algorithm33 was used to evaluate the relative proportion of
immune cell types in CRC samples and the outcomes of
immune cell infiltration. The relative percentage of each
immune cell was divided into high and low score groups and
the survival curve of immune cells with P < .05 was drawn
using ‘SurvMiner’ and ‘Survival’. Then, ‘limma’, ‘re-
shape2’, ‘ggplot2’, and ‘ggpubr’ were used to assess the
differences in immune checkpoint gene (ICG) expression
across various clusters. The ICGs were split into high and
low expression groups. Finally, the ‘SurvMiner’ and ‘Sur-
vival’ packages were used to draw the survival curves for
immune checkpoints with significant differences.

Construction and Validation of Prognostic Models

In this study, the TCGA database was used as the training set, and
the GSE39582 database was used as the verification set to
construct and validate the prediction model. The CRC tran-
scriptome data and clinical data files were downloaded from the
TCGA database, and the clinical trait matrix was obtained using
Strawberry Perl (V5.30.0) software. If the variables were regional
or categorical, theywere converted into the form of a 0-1matrix (1
indicates belonging to the group or having the attribute, 0 indi-
cates not belonging to the group or not having the attribute).
CDRGs in the GSE39582 and TCGA databases were then in-
tersected, and the transcription map was normalized and cor-
rected. Subsequently, we performed a weighted correlation
network analysis on intersecting CDRGs and identified key
modules associated with survival. We then performed univariate
analysis on the differentially expressed genes of the important
modules, followed by multivariate Cox regression analysis of the
remaining CDRGs to produce a CDRG-based prognostic risk
score (RS). The RS for each patient was determined using the
expression levels of the prognostic genes in the following formula

RS ¼
Xi

k

ðExpi ×CoeiÞ

In the formula, ‘i’ and ‘k’ represent the ‘i’th gene and the
total number of genes, respectively. ‘Expi’ represents the
expression level of the prognostic gene, and ‘Coei’ represents
the regression coefficient of the gene in the model.

The RS of patients in the GEO dataset was determined
using risk ratings from TCGA data. The median RS value of
patients in each dataset were compared, classified as high- or
low-risk, and the Kaplan–Meier survival curve was drawn.
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The statistical significance of the difference between the 2
curves was evaluated using the bilateral log-rank test, and the
receiver operating characteristic (ROC) curve and Kaplan–
Meier survival curve were used to verify the prediction
model. Univariate and multivariate Cox regression analyses
were performed on clinicopathological factors and available
gene expression matrices to assess whether risk scores were
independently associated with CRC prognosis.

Establishment of Predictive Nomogram

All patients in the TCGA database with CRC had available
clinicopathological information, including age and sex. Based
on the RS of the training group and clinical data from TCGA,
including RS, age, stage, and TNM factors, a nomogram was
constructed using the ‘RMS’ package to predict survival.
Finally, we drew Kaplan–Meier calibration and ROC curves to
estimate the performance and accuracy of the nomogram.

Data Accessibility

The scRNA-seq data of the CRC samples were obtained from the
GEO database (GSE109308, https://www.ncbi.nlm.nih.gov/geo/
). Additionally, the bulk RNA-seq data of the CRC samples were
obtained from TCGA (http://cancergenome.nih.gov/) and the
GEO databases (GSE39582, https://www.ncbi.nlm.nih.gov/geo/).

Ethics Approval

Because the data were obtained from databases that were open
to the public, ethical approval was not necessary.

Results

Data Quality Control and Cell Trajectory Analysis

The research design is illustrated in Figure 1. The GSE109308
database was used to acquire 624 cells from 7 CRC samples.26

Thus, 624 cells were examined in the subsequent study. Figure
2(a) and Figure 2(b) illustrate the link between the amount of
sequencing performed and the mitochondrial gene and overall
intracellular sequences. After data sorting, filtering, and stan-
dardization, we obtained the 1500 genes with the most sig-
nificant fluctuations (Figure 2(c)). The PCA results showed no
significant differences among CRC cells (Figure 2(d)). These
quality control results support the feasibility of subsequent
analysis. For the next step of the analysis, the top 18 principal
components with statistically significant differences were
chosen (Figure 2(e)). The t-distributed stochastic neighbor
embedding approach was used to produce single-cell maps of
CRC (Figure 2(f)). Cells were divided into 7 clusters, and the
‘FindAllMarkers’ algorithm identified genes that differed be-
tween the clusters. Based on the marker genes, 7 clusters were
annotated: clusters 0, 2, and 3 represented cancer cells; cluster 1
represented macrophages; cluster 4 represented tissue stem
cells; cluster 5 represented T cells; cluster 6 represented B cells
(Figure 2(g)). The ‘FindAllMarkers’ algorithm detected 1440
clustered differential genes; the heat map (Figure 2(h)) only
shows the differential genes that ranked in the top 10% of the
clusters. Then, we performed pseudo-time and trajectory ana-
lyses on the cells and found that clusters 1/4 were allocated to
branch I, clusters 0/2/3 were in branches II and III, clusters 5/6
were allocated to branch IV, and clusters 1/5 were allocated to
branched V (Figure 2(i)).

Figure 1. The research design diagram.
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Functional Enrichment Analysis of the Five Branches

In this study, branch-dependent marker genes of the 3 subsets
were identified as CDRGs. After differential analysis, 203,
242, 80, 180, and 209 marker genes were identified as branch
I, II, III, IV, and V CDRGs, respectively. Based on gene
enrichment analysis, we found that the CDRGs of branch I
were involved in angiogenesis regulation. CDRGs of branches

I/III were related to extracellular matrix formation and col-
lagen fiber organization. The CDRGs of branches II/IV/V
were closely related to the immune-inflammatory response.
Finally, branches I/II/III were associated with protein meta-
bolism pathways (Figure 3).

We performed consensus clustering on the GSE39582
dataset based on CDRGs, and all CRC samples (N = 566)
were divided into 3 molecular subtypes (C1, C2, and C3).

Figure 2. Data quality control and cell trajectory analysis. (A) After quality control and log-normalization of the data, 624 cells from 7 CRC
samples were retained. (B) Correlation of sequencing depth, total cellular sequences, and mitochondrial gene sequences. (C) A total of
24 873 genes were included, and 1500 genes with a high degree of variation were selected for subsequent analysis. (D) PCA based on scRNA-
seq data. No apparent separation was shown. (E) In principal component analysis, the first 18 principal components (P < .05) were retained. (F)
The t-distributed stochastic neighbor embedding algorithm was applied to divide the cells into 7 clusters. (G) The cell types of the 9 clusters
were annotated. (H) The ‘FindAllMarkers’ algorithm detected a total of 1440 clustered differential genes; the heat map only shows the
differential genes that ranked in the top 10% of the clusters. Yellow indicates high expression. (I) Cluster distribution corresponding to cell
differentiation trajectory.
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Figure 3. Functional enrichment analysis of the 5 branches based on CDRGs. (A–B) Enrichment analysis for the branch I genes. (C–D)
Enrichment analysis for the branch II genes. (E–F) Enrichment analysis for the branch III genes. (G–H) Enrichment analysis for the branch IV
genes. (I–J) Enrichment analysis for the branch V genes. Molecular subtypes in patients with CRC based on CDRGs.

6 Cancer Control



The cumulative distribution function (CDF) curve showed
that the optimal number of clusters was 3 (k = 3), and the
overall area under the CDF curve increased only slightly
(Figure 4(a)–(c)). According to the results of Kaplan–Meier
analyses, subtype C1 had the lowest overall survival (OS) rate,
followed by subtype C2, while subtype C3 had the best OS
(Figure 4(d), P = .028). The survival curves of the different

subtypes were significantly different, indicating that patient
categorization based on these CDRGs may be useful in pre-
dicting OS. The I/V, II/III, and IV branches followed the same
trends of up- and down-regulation as subtype I (C1), II (C2), and
III (C3), respectively (Figure 4(e)–(i)). These trends indicated
that C1 was composed of branches I and V, C2 was composed of
branches II and III, and C3 was composed of branch IV. Figure

Figure 4. Molecular subtypes in patients with CRC based on CDRGs. (A) CDF curves (k = 2-9). (B) Consensus clustering matrix for k = 3,
which was the optimal cluster number in the GSE39582 dataset. (C) Relative change in the area under the CDF curve (k = 2-9). (D) Kaplan–
Meier analysis of the 3 molecular subtypes. (E–I) The I/V branch followed the same trend of up- and down-regulation as C1. The II/III branch
followed the same trend of up- and down-regulation as C2. The IV branch followed the same trend of up- and down-regulation as C3. (J) The
distribution of clinicopathological features among the 3 different molecular subtypes.
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Figure 5. (A–C) The microenvironment of the 3 molecular subtypes of tumors. (D) Difference analysis diagram of immune cells; different
immune cells are represented by different colors. (E) Differential analysis of immune cells across the 3 molecular subtypes. (F–G) Survival
analysis of immune cells (P < .05).
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4(j) shows the distribution of clinicopathological characteristics
among the 3 different clusters (P-values for N and T stages were
.017 and .012, respectively).

Tumour Microenvironment and Immune Invasion
Analysis of Molecular Subtypes

The TME score showed that the immune/stromal scores of C1,
C3, andC2 decreased in turn, and the corresponding tumor purity
increased in turn. (Figure 5(a)–(c), all P < .05). We determined
that 22 immune cell types were present in each sample, and in the
bubble chart in Figure 5(d), the various colors correspond to
distinct cell types. Figure 5(e) depicts the variance in the
invasion densities of these 22 immune cell types across the
3 subtypes. Among them, memory B cells, neutrophils, and
CD4 memory-activated T cells were related to OS. Inter-
estingly, these 3 cells were highly infiltrated in C3 (Figure
5(e), all P < .05). Kaplan–Meier analysis demonstrated that
OS increased with the infiltration density of CD4 memory-
activated T cells (Figure 5(f), P < .05). Higher neutrophil

and B-cell memory infiltration densities were associated
with poorer OS (Figure 5(g)–(h), P < .05).

From prior research, we collected a total of 38 ICGs.25 ICGs
with significant differences among the different types are shown
in Figure 6(a). We found that 8 ICGs (PVR, PD-1 (PDCD1),
LGALS9, LDHC, LAMA3, ICOSLG, FGL1, and CD40LG)
were significantly highly expressed in C2 (Figure 6(a), all P <
.05). Two ICGs (YTHDF1 and LDHB)were significantly highly
expressed in C3 cells (Figure 6(a), all P < .05). Additionally, 22
ICGs were significantly highly expressed in C1 tumors (Figure
6(a), all P < .05). Importantly, Kaplan–Meier analysis revealed
that upregulated CTLA4 (P = .035), ICOS (P = .018), LGALS9
(P = .026), and IL12A (P = .039) were correlatedwith better OS.
In contrast, high expression of JAK1 (P = .009) and VTCN1
(P = .016) predicted worse OS (Figure 6(b)–(g)).

Establishment of a Prognostic Model

To establish a prognostic model based on CDRGs, we
combined a large amount of transcriptome data from TCGA to

Figure 6. (A) Differential analysis of immune checkpoints across the 3 molecular subtypes. (B–G) Survival analysis of immune checkpoints
(P < .05) PD-1 (PDCD1), and PD-L1 (CD274).
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Figure 7. (A) The CDRGs were divided into 3 modules with an optimum power value of 3. (B) Modular diagram for weighted correlation
network analysis. (C) Differentially expressed CDRGs in 3 modules. (D) The 15 prognostic CDRGs were further identified by univariate
analysis. (E) Survival analysis of the training group (P < .001). (F) Survival analysis of the test group (P = .013). (G) Receiver operating characteristic
curves of the training group. (H) Receiver operating characteristic curves of the test group. (I) Distribution of model genes in the single-cell atlas.
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perform a clinical correlation analysis and screened prognostic
genes in relevant modules. We identified the intersection of
CDRGs from TCGA and the GSE39582 cohorts. All 579
CDRGs at this intersection were included in the weighted
correlation network analysis. The CDRGs were divided into 3
modules with an optimum power value of 3 (Figure 7(a)). We
then selected the blue modules closely related to survival time
for follow-up analysis (Figure 7(b)). We identified 121 dif-
ferentially expressed genes in the blue module (Figure 7(c)).
Using univariate analysis, 15 prognostic CDRGs were iden-
tified and incorporated into multivariable Cox regression
analysis (Figure 7(d)). A prognostic RS signature that included
4 CDRGs was established. Based on the relative coefficients of
each gene and the level of gene expression, we calculated the
RS using the following equation: RS = (.584211853836928 ×
expression of TIMP1) + (�.159781548561726 × expression of
MMP1) + (�.236573249214328 × expression of LGALS4) +
(�.0679959793384008 × expression of ITLN1). The RS was
determined for each CRC sample in TCGA and GSE39582

cohorts. The Kaplan–Meier curves demonstrated that OS was
much greater in the low-risk group than in the high-risk group
(Figure 7(e), TCGA, P < .001; Figure 7(f), GSE39582, P =
.013). The areas under the ROC curve for predicting OS at 1, 3,
and 5 years were .671, .690, and .729, respectively, for the
TCGA cohort (Figure 7(g)). Those of the GSE39582 cohort at
1, 3, and 5 years, were .551, .607, and .573, respectively (Figure
7(h)). Figure 7(i) depicts the expression levels of the 4 CDRGs
in the 7 clusters. TIMP1 increased in cluster 1/4 (branch I),
MMP1 increased in cluster 1 (branch I), LGALS4 increased in
cluster 0/2/3 (branch II/III), and ITLN1increased in cluster 0
(branch II/III).

Establishment and Evaluation of the Nomogram

Univariate analysis was performed on TCGA cohort, and the
results showed that patient prognosis was simultaneously
affected by age, TNM stage, and RS (Figure 8(a); all P < .05).

Figure 8. (A) Analysis of RS and clinicopathological features using a univariate model. (B) Analysis of risk score and clinicopathological
features using a multivariate model. (C) Nomogram for predicting the prognosis of CRC patients based on the TCGA training cohort. (D)
Calibration curve of the nomogram for predicting 3 and 5-year OS.
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Age, T stage, and RS were independent predictive factors of
CRC, as shown by multivariate analysis (Figure 8(b); all P <
.05). Three prognostic factors were included in the nomogram
for predicting 3 and 5-year OS based on TCGA cohort (Figure
8(c)). The 3 and 5-year OS calibration curves were consistent
with the observed values (Figure 8(d)). These findings indicate
that the prognostic nomogram for predicting OS was accurate.

Discussion

CRC varies on several levels, resulting in varying prognoses
and therapeutic responses, even among tumors with the same
TNM staging.34 These distinctions highlight the necessity for
effective classification tools to stratify types of CRC to de-
termine the appropriate therapy modality and prognosis. At
present, the most commonly used colon cancer classification
method consists of the 4 molecular subtypes integrated by
Guinney et al.35 However, some samples with mixed features
remain unclassified by this method. The rise in single-cell
sequencing has facilitated the study of tumor heterogeneity,
and its application has contributed to the mining of cancer
molecular subtypes.23-25,36 This study revealed the differen-
tiation trajectory of CRC, identified differentiation-related
genes using single-cell sequencing data, and further ex-
plored the heterogeneity of CRC from the perspective of CRC
cell differentiation trajectory. We developed a molecular
phenotype based on CDRGs that can predict patients’ OS and
immunotherapy reactions.

Numerous studies have demonstrated that significant
intratumoral heterogeneity in CRC contributes to disease
progression and poses a great challenge in developing ef-
fective therapeutic strategies.11,13,37,38 Previous studies have
identified angiogenesis as a dynamic and complex process
that is inseparable from the progression and metastasis of
CRC.39 Metabolism and immunity influence the TME and
play an important role in tumor heterogeneity.40,41 Ac-
cording to the findings of this study, cellular differentiation
trajectories may demonstrate the heterogeneity of CRC and
are associated with metabolic, angiogenic, and immuno-
logical pathways. This suggests that the differentiation of
CRC cells may be related to angiogenesis, metabolism, and
immunological responses inside the tumor. Drugs can be
used to block angiogenesis and interfere with the main
metabolites, such as bile acids. Additionally, corresponding
immunotherapy drugs can be selected based on the immune
responses, which will provide more effective and precise
treatment for CRC patients.

Based on the CDRGs identified in this study, CRC was
divided into 3 subtypes. Using TME ratings, immune infil-
tration status, and ICG expression, we provided a reasonable
explanation for the differences in OS and clinicopathological
characteristics associated with the various subtypes. Consis-
tent with earlier research, we discovered that CRC patients
with low neutrophil infiltration and high T cell CD4 memory-
activated infiltration had a better prognosis.42-45 However,

neutrophils have been linked to a better prognosis in other
studies.46,47 Thus, more studies are necessary to provide an
explanation for the biological role of these immune-infiltrating
cells in CRC. Immunotherapy for cancer includes checkpoint
inhibitors and adoptive cell therapy, which modify and instruct
the immune system to detect and target cancer cells.48 Cancer
immunotherapy medicines, including anti-PD-1 mAbs pem-
brolizumab, nivolumab, and anti-CTLA-4 mAb ipilimumab,
are FDA-approved cancer immunotherapy medications that
have improved the lives of many patients with CRC, high-
lighting the great anticancer potential of immunotherapy.49

However, different types of CRC respond differently to
immunotherapy.50,51 Our data revealed that subtype I ex-
pressed higher levels of CTLA4/PDL1 than did subtype II.
However, patients with subtype II had better survival rates.
Therefore, immunotherapeutic interventions corresponding to
highly expressed immune checkpoint blockades may be se-
lectively effective in the corresponding cancer subtypes.

In this study, a prognostic gene signature consisting of 4
genes, TIMP1, MMP1, LGALS4, and ITLN1, was con-
structed with good performance in predicting the OS of CRC
patients. TIMP1 belongs to the TIMP gene family and encodes
proteins that are natural inhibitors of matrix metal-
loproteinases (MMPs), which are particularly important in the
invasion, progression, and metastasis of CRC.52 The results of
a study by Huang et al53 showed that the expression of TIMP1
was negatively correlated with the OS of CRC patients and
was a high-risk factor for CRC (HR = 1.578, P = .001). Matrix
metalloproteinase 1 (MMP1) is a member of the MMP family
that degrades interstitial collagen types I, II, and III.54 MMP1
is involved in the induction of CRC migration, invasion,
angiogenesis, and metastasis.55 MMP1 stimulates VEGFR2
expression and endothelial cell proliferation by stimulating
PAR-1 and activating NF-κB.56 A recent study showed that
MMP1 downregulation is strongly linked to shorter disease-
free periods.57 Furthermore, LGALS4 is essential for lipid raft
stability, protein apical trafficking, cell adhesion, wound
healing, intestinal inflammation, and tumor development.58

According to previous studies, LGALS4 is considerably
under-expressed in cancerous tissues and is directly linked to
the suppression of Epithelial-Mesenchymal Transition
(EMT).59 Through stimulation of IL-6/NF-κB/STAT3 sig-
naling, downregulation of LGALS4 promotes tumor growth in
vitro and in vivo60 ITLN1 synergistically suppresses IL-17D-
and CXCL2-mediated tumor vascularization. According to a
number of studies, plasma ITLN1 is highly expressed in CRC
patients and is an independent risk factor for recurrence and
survival.61 In contrast, Katsuya et al62 found that enhanced
tumor expression of ITLN1 was associated with a more fa-
vorable prognosis in CRC patients. In this study, MMP1,
LGALS4, and ITLN1 were low-risk genes associated with a
good prognosis. However, the relationship between these
prognostic CDRGs, as well as their biological roles and
mechanisms in the occurrence and development of CRC,
require further study.
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Using multivariable Cox regression analysis, this study
provided a CDRG-based signature. We constructed a no-
mogram by combining the CDRG-based RS with predictive
clinicopathological variables to provide a more intuitive
predictive approach. Based on the patients’ clinical parameters
and bioinformatics, this intuitive method enables doctors to
forecast patient survival more accurately and build more
complete treatment strategies.

The present research suffers from a number of short-
comings. First, while our model was verified in an inde-
pendent cohort, more large-scale prospective clinical trials
are necessary to determine the validity and usefulness of
the model. Second, some clinicopathological character-
istics linked to prognosis are not accessible from public
databases and should be evaluated in the future. Finally,
fundamental investigations are still required to discover
the possible mechanisms of these predictive markers in
cancer.

Conclusion

In this study, the differentiation trajectories of CRC cells were
evaluated using scRNA-seq, and a CDRG-based molecular
typing system was constructed. This method accurately pre-
dicted patient survival, expression of immunological check-
points, and immunotherapy responsiveness to tumors. We
combined the RS and clinicopathological variables of key
prognostic CDRGs to generate a nomogram that can intui-
tively predict OS in CRC patients. This study highlights the
importance of differentiation trajectories for understanding
CRC heterogeneity and assessing patient prognosis.

Appendix

Abbreviations

CDRGs CRC differentiation-related genes
CRC colorectal cancer
GEO Gene Expression Omnibus database
ICGs immune checkpoint genes
ITH intratumor heterogeneity
PCA principal component analysis
RS risk score
scRNA-seq single-cell RNA sequencing
TCGA The Cancer Genome Atlas
TME tumor microenvironment
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