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Simple Summary: In temperate climate zones, cows are in spring traditionally transitioned from a
silage and concentrate- ration to a pasture-based ration. This transition requires complex nutritional
and metabolic adaptions for the cow, resulting in a lower feed intake with consequences on energy
metabolism. Normally concentrate feed is supplied to support the cows after transition to pasture.
Depending on weather influences and growing stage, grass contains high amounts of fast fermentable
carbohydrates and low amounts of physical effective fiber. In a previous trial, pasture feeding
combined with low amounts of concentrate supply did not prevent an energy shortage after transition
to pasture but led to changes in ruminal fermentation patterns indicating a possible risk for rumen
health. However, the impact of ration change has not been extensively researched so far when
moderate concentrate feed was supplied moderately in order to prevent an energy deficiency.
To investigate the influences different rumen variables were documented, using continuous pH
measuring devices and weekly diurnal fermentation assessments in rumen fistulated animals.
Influence on rumen epithelial morphology was measured by the collection of rumen papillae biopsies
and subsequent surface area, as well as histopathological analyses. With the help of this data, a greater
understanding of the adaption period of the animals during transition from confinement to pasture is
made possible.

Abstract: In spring, transition from a total mixed ration (TMR) to pasture requires rumen adaptions
for the cow. It had been shown that transition period does not necessarily mean an increased risk
for subacute ruminal acidosis (SARA). After adaption to pasture, however, supplying low amounts
of concentrate did indicate increased risk, but caused no adverse effects on rumen morphology and
absorption capacity. The present study aimed to investigate the effect of transition, and how a supply
of 4.5 kg dry matter concentrate·cow−1·day−1 during fulltime grazing influenced different rumen
parameters. During a 12-week trial eleven rumen-cannulated dairy cows were observed during
transition from confinement to pasture (PG; n = 6) and compared to cows fed TMR indoors (CG;
n = 5). The CG stayed on a TMR based ration (35% corn silage, 35% grass silage, 30% concentrate;
dry matter basis), whereas the PG slowly switched to a pasture-based ration (week 0 and 1 = TMR,
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week 2 = TMR and 3 h pasture·day−1, week 3 and 4 = TMR and 12 h pasture·day−1, and week 5 to
11 = pasture combined with 4.5 kg DM concentrate·cow−1·day−1). Papillae surface area decreased
during transition and increased again during fulltime grazing, while the fractional absorption rate of
volatile fatty acids (VFA) was not influenced. This suggests only a limited effect of papillae surface
area on VFA absorption rate. Feeding changes resulted in different fermentation profiles of VFA.
Changing ratio of starch to sugar during transition to fulltime grazing plus concentrate supply did
not lead to lower rumen pH. In conclusion, the concentrate supply combined with high fermentable
grass during fulltime grazing increased papillae surface area but did not affect absorption rate or
rumen pH, so that risk for SARA was not increased.

Keywords: dairy cows; ration change; pasture; confinement; VFA; pH logger; rumen papillae
morphology; non-glucogenic to glucogenic VFA ratio

1. Introduction

Vernal transition from a total mixed ration (TMR) indoor system to a full-grazing system combined
with small amounts of concentrate supply was shown to result in an energy deficiency of high yielding
Holstein cows as well as in complex physiological and structural adaptions of the rumen [1,2]. Cows on
pasture (PG) have a higher energy requirement compared to confinement housing cows (CG), simply
due to walking and an insufficient nutrient intake [3], which gives cause for an additional energy supply
via concentrate feeding [4]. Especially high yielding cows need appropriate concentrate supply to
maintain their milking performance in pasture based systems [5], because their dry matter intake (DMI)
is lower compared to confinement housing cows [6–8]. Concentrate supply increases energy intake
and thereby rumen fermentation and microbial protein synthesis. Bannink et al. 2008 [9] stressed
the main points of rumen fermentation: composition of microbial population, type of fermented
substrate, changes in ruminal microbial environment within the rumen or the characteristics of
microbial metabolism. Especially in spring grass contains high amounts of fast fermentable organic
matter (fOM) [10], this combined with concentrate supply results in high volatile fatty acids (VFA)
production and thereby in a proliferation of rumen papillae [11] as well as low ruminal pH. Schären et al.
2016 [2] observed changes in rumen papillae surface area and after a few weeks of fulltime grazing and
supply of 1.75 kg concentrate·cow−1·day−1 (dry matter basis (DM)) an increased fermentation activity
up to an elevated risk of subacute ruminal acidosis (SARA). Bargo et al. 2002 [12] documented a
significant decrease in rumen pH of dairy cows on pasture when more than 8 kg DM concentrate·day−1

was provided. In contrast, Antonio Silva et al. 2017 [13] observed—despite increasing supply of
concentrate up to 6.0 kg·day−1—no rumen pH effect on non-lactating cows grazing on Tanzania grass
pasture. Results of the present study regarding the behavior adaption [3] mirrored in an increased time
spent eating for the PG, which could independent of concentrate supply lead to a higher fermentation
activity. Few studies have investigated the impact of TMR and pasture fed dairy cows regarding
fermentation patterns and results dealing with daily fluctuations are missing. The study of Schären et al.
2016 [2] underlines the importance of a more frequent sampling as daytime fermentation fluctuations
are influenced by DMI on pasture and confinement housing. The aim of the present experiment was
therefore to examine the effect of supplying an appropriate concentrate feed of 4.5 kg DM·cow−1·day−1

in a rotational grazing system on rumen papillae morphology and absorption rate of VFA as well
as on the SARA risk during fulltime grazing. For this we documented changes in variables like
rumen content, rumen fermentation characteristics (24 h pH course, 12 h profile of pH and VFA
concentrations), VFA absorption, papillae surface area, histopathological variables and SARA risk.
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2. Materials and Methods

Experimental work was carried out at the experimental station of the Institute of Animal
Nutrition, Friedrich-Loeffler-Institut (FLI) in Braunschweig, Germany. The experiment was carried
out in accordance with the German Animal Welfare Act approved by the Lower Saxony State
Office for Consumer Protection and Food Safety (LAVES, Oldenburg, Germany, file number:
33.19-42502-04-15/1858), and was supported by the Ministry for Science and Culture Section of
Lower Saxony (MWK), Hannover, Germany.

2.1. Experimental Design and Treatments

The experimental design, treatments, DMI, rations, climate data, animal performance, energy
metabolism, physical activity, clinical chemistry, and total blood counts were described in
Hartwiger et al. 2018 [3] and based on the setup described in Schären, et al. 2016 [1,2] except
for the grazing system (rotational vs. stationary) and the amount of concentrate supplementation
(1.75 kg vs. 4.5 kg DM concentrate·cow−1·day−1).

Briefly, the experimental work started on April 18, ran about 12 weeks, and ended on July 8, 2016.
The full experiment included 57 German Holstein cows (parity: 2.1 ± 1.3; 163 ± 32 DIM; 27.8 ± 1.1 kg
milk·cow−1·day−1; mean ± SD; at the beginning of the trial), which were either assigned to a pasture
(PG; n = 26) or a confinement group (CG; n = 31). Both groups contained rumen-fistulated animals
(PG; n = 6; CG; n = 5; parity: 3.5 ± 1.9; 157 ± 32 DIM; 27.4 ± 2.5 kg milk·cow−1·day−1; mean ± SD;
at the beginning of the trial). The present investigations only included fistulated cows, which were put
on a comprehensive feeding experiment.

The CG received a TMR (35% maize silage, 35% grass silage, 30% concentrate, DM-basis)
throughout the trial, whereas the PG gradually transitioned towards pasture feeding (weeks 0 and 1:
TMR-only, week 2: 3 h·day−1 on pasture, weeks 3 and 4: 12 h·day−1 on pasture, week 5 to 11:
pasture-only plus 4.5 kg DM concentrate·cow−1·day−1). During fulltime grazing, animals spent 2 h
daily in confinement for milking and concentrate supply.

A rotational grazing system was performed, dominated by perennial ryegrass (paddock size:
1.6 ± 0.3 ha each). On average all four paddocks were covered to 79.5 ± 13.6% with grass, 7.5 ± 6.9%
with herbs and 4.4 ± 7.4% with legumes (estimated pasture coverage; mean ± SD). All cows entered
a paddock when sward height had reached an average of 14 cm, and left the paddock when the
sward height was around 8 cm or when the visual assessment of the pasture indicated an insufficient
composition. Paddock sward height was checked daily with RPM F400, (Farmworks Systems Ltd.,
Manawatu–Wanganui, New Zealand). The average pasture allowance amounted to 142 ± 46 kg of DM
grass·cow−1·day−1 in the beginning of each grazing period and decreased on average to 87 ± 18 kg
of DM grass·cow−1·day−1 after 6 days of grazing. The composition of the pasture was documented
weekly from week 2 on. For this, we took pooled samples with the help of an electronic scissor in
areas were the cows spent most of the time for grazing and exclusively from the upper half of the
plant over one week, independent of the grazing plot. The composition of the TMR was analyzed two
times. All chemical methods concerning feed analyses are based on the procedures recommended by
Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten [14], as described
in details by Schären et al. 2016 [1].

In the CG individual DMI and water intake was recorded automatically using electronic weighing
troughs with ear tag detection (computerized feeding station Insentec Typ RIC, B. CF., Markenesse,
The Netherlands). DMI on pasture was recorded in week 6 and 7 using the n−alkane marker method
and calculated in week 2 to 11, based on modified equations according to Heublein, et al., 2017 [15],
including metabolic body weight, energy corrected milk and net energy for lactation of grass, as well
as using exclosure cages (described in detail in Hartwiger et al. 2018 [3]). Briefly, between week 5 until
week 8 the PG was supplied with n-alkane marker, mixed into the supplied concentrate. After seven
days a steady state in marker excretion is achieved and the sampling of manure starts (2 times·day−1)
as well as sampling of pasture. However, the n-alkane concentration in manure and grass are analyzed
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by gas chromatography and extrapolated to DMI. Using exclosure cages the DMI can be estimated
by cutting different areas on pasture: (1) reference area in size of the cage before entering the pasture,
(2) area underneath the cage when rotating to the next paddock and (3) while at the same time a
reference area next to the cage.

Body weight was measured twice daily, and body condition score was documented once per
week. Milk yield was measured twice daily, and samples were taken twice per week for analysis.
Weekly blood samples were taken for hematology, blood cell counts, and clinical chemistry.

The fistulated cows were alternately equipped with a sensor-based automatic measurement
system (RumiWatch, Liestal, Switzerland; during 3 ± 1 days per week; mean ± SD) to record the time
per day the animals were ruminating, eating or walking.

Weather and barn climate condition were recorded daily. The data were used to calculate the
temperature humidity index (THI).

2.2. Rumen pH and Fluid Composition

From week 1 to week 10 rumen fluid samples were collected one day a week after morning
milking on Tuesdays. Samples were taken on four different daytimes (Dt): 8:00 a.m., 12:00 p.m.,
4:00 p.m., 8:00 p.m. to examine the diurnal fluctuations of the fermentable end products.

With the help of a manual pump, rumen fluid samples were taken of the ventral sac of the rumen.
Samples were cooled to 4 ◦C until more analyzing steps followed.

For all time points, total VFA concentrations were determined as well as proportions of acetic acid
(C2%), propionic acid (C3%), butyric acid (C4%), valerate (C5%), iso-butyrate (iC4%), iso-valerate
(iC5%) as described in Geissler et al. 1976 [16], and NH3-N concentration was calculated using steam
distillation, according to Kjedahl method DIN38406-E5-2, [17].

For the 1200 pm sample Lipopolysaccharide concentration (LPS) was analyzed as described
elsewhere [2].

The non-glucogenic to glucogenic VFA ratio (NGR) was calculated as documented in Equation (1)
and described in Abrahamse et al. 2008 [18].

NGR = [C2% + 2 × (C4% + iC4%) + C5% + iC5%]/[C3% + C5% + iC5%] (1)

From week 1 on, rumen pH was continuously measured in the ventral rumen sac using a
continuous ruminal pH measuring device (Lethbridge, Research Centre Ruminal pH Measurement
System, Dascor, Escondido, CA; Penner et al. 2006 [19]. Briefly, before and after every measuring
period the devices were calibrated in buffer solutions (pH 4 and 7) at 39 ◦C. The system recorded the pH
every minute for 24 h. The PG was equipped for 5.58 ± 0.95 days with the data logger, and the CG for
3.75 ± 0.72 days (both means ± SD). For pH data interpretation the same variables as in Schären et al.
2016 [2] were calculated: logistic curve, β1 (average pH over 24 h period); β0 (pH-variation over 24 h
period); and the SARA risk (threshold of 314 min at pH < 5.8·day−1) was worked out according to
Zebeli et al. 2008 [20]. The amount of pH measurements and animals with logger differed between the
weeks, that’s why a score per group and week was calculated as SARA score, mirrored in Equation (2),
based on Schären et al. 2016 [2].

SARA score = [sum of (number of positive SARA observations per animal in week
i/total number of observations per animal in week i)]/total number of animals in

week i
(2)

The following procedures are described in detail by Schären et al. 2016 [2]. The methods
were practiced in week 1 (confinement), week 6 (2nd week of fulltime grazing plus 4.5 kg DM
concentrate·cow−1·day−1) and week 10 (after 6 weeks fulltime grazing), after morning milking
(5:30 a.m.) and before morning feeding (10:30 a.m.).
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2.3. Rumen Content

In the above-announced weeks, we emptied the rumen of the fistulated cows and separated the
content into fluid and solid fractions. After determining the weight, we took samples for determination
of the DM and for calculation of the total rumen DM and non-DM quantity. Until analyzation the
samples were kept in the freezer (−20 ◦C). During the experiment rumen content was kept warm in
insulated barrels. After further sampling (rumen papillae collection, VFA absorption test) the rumen
content was combined again and completely replaced into the rumen.

2.4. Rumen Papillae Collection

After evacuation papillae biopsies were taken from three different sampling sites of the rumen
(Saccus cecus caudodorsalis, saccus ventralis, and saccus cecus caudoventralis). From each sampling site an
equal amount of papillae was used to calculate the average papillae size of all three sampling sites.
The papillae surface area was evaluated for inflammatory lesions. Lesions per papillae on the epithel
site were evaluated and grouped into samples with lesions and without lesions. The average amount
of lesions overall sampling sites was used for evaluation per animal.

2.5. VFA Absorption Test

For the VFA absorption test a physiological solution, including acetic acid (C2), propionic acid (C3)
and butyric acid (C4), as well Cobalt EDTA, used as indigestible marker for the liquid phase, were filled
under standardized conditions in an empty washed rumen. Details are described in Schären et al. [1,2].
After introducing the solution into the rumen, a sample was taken, another after 30 min and after 60 min
of incubation time. The samples were analyzed immediately for pH and after storing in the freezer
for C2, C3, and C4 concentration, as well as for the Cobalt concentration (inductively coupled plasma
optical emission spectrometry). At the beginning of the test, after filling the solution into the rumen,
the average pH was 5.7 ± 0.03, the average C2 concentration was 78.3 ± 8.9 mM·L−1, the average
C3 concentration was 32.4 ± 3.8 mM·L−1 and the average C4 concentration was 19.4 ± 2.3 mM·L−1.
The buffer solution was used to describe the water inflow, fractional liquid passage rate (FLPR),
and fractional absorption rate (FAR) of the fatty acids mixed in the liquid.

2.6. Statistics

Most statistical analyses were performed using the Software SAS Enterprise Guide 7.1 (SAS
Institute Inc., Cary, NC, USA). Variables recorded more than once a week were reduced to weekly
means per cow before statistical analysis. For repeated measures the MIXED procedure was used
combined with a restricted maximum likelihood model (REML). The model contained time (T = week),
daytime (Dt) and group (G), as fixed factors as well as their interactions (G × T, G × T × Dt). To account
for repeated measurements from the same cow the repeated statement was used. Best fitting covariance
structures were tested using the Akaike information criterion for a finite sample size (AICC). For each
treatment, least squares means were calculated, and pairwise comparisons of each week were further
evaluated by multiple t-test (procedure PDIFF(p-values for all possible treatment differences), adjusted
according to Tukey). Results were signed as significant at p ≤ 0.05 and a trend declared 0.05 < p < 0.10.
Results are presented as least square means and pooled standard error of means (PSEM), unless
otherwise indicated (SD = standard deviation). Multiple comparisons within experimental groups
were signed by different letters, whereas group differences were presented with different symbols.
Correlation coefficients between different traits were estimated using Statistica 13.0 (StatSoft Inc., Tulsa,
OK, USA).
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3. Results

3.1. Ration Composition and Weather Data

The chemical composition of the different rations and detailed records of the weather data are
documented in Hartwiger et al. 2018 [3]. Briefly, the chemical composition of the TMR of both groups
is described in Table 1. A rotational grazing system as well as concentrate supplementation (4.5 kg DM
concentrate·cow−1·day−1) was practiced from week 5 on.

Table 1. Chemical composition of experimental diets.

Type of
Feeding

Item (g/kg of DM, unless otherwise noted)

D
M

(g
·k

g−
1 )

A
sh C
P

uC
P

N
EL

*

Su
ga

r

St
ar

ch

R
N

B

C
F

N
D

F O
M

A
D

F O
M

EE

TMR CG/PG 1 471 ± 6 66 ± 0 158 ± 1 152 ± 0.5 6.8 ± 0 18 ± 0 253 ± 2.5 1.1 ± 0.3 184 ± 0 363 ± 0 205 ± 1.5 37 ± 0.5
Pasture PG 174 ± 23 94 ± 9 188 ± 19 142 ± 7 6.2 ± 0.3 114 ± 45 – 6.2 ± 1.9 231 ± 34 471 ± 40 254 ± 37 41 ± 5.8

Concentrate PG 899 108 93 148 7.6 27 579 8.9 31.5 124 42 30

1TMR = total mixed ration; CG = confinement group; PG = pasture group; DM = dry matter; uCP = utilizable crude
protein; *NEL = net energy lactation (MJ·kg−1 of DM); RNB = ruminal nitrogen balance; CF = crude fiber; NDFOM =
neutral detergent fiber; ADFOM = acid detergent fiber; EE = ether extract. NDF and ADF were expressed without
residual ash and are therefore referred to as NDFOM and ADFOM.

Temperature-humidity index (THI) was calculated daily. The outdoor THI average was 58.8 ± 6.1
being 3.9 ± 1.9 (mean ± SD) units lower compared to indoors. Periods of a mild heat stress (THI
between 65 and 70 [21–23]) were outdoors in weeks 6 and 9 and indoors in weeks 6, 7, 9 and 11.

3.2. Animal Performance

For the complete herd of this study performance as well as serum clinical chemistry has already
been discussed [3]. Compared to the whole group (2.1 ± 1.3) the mean number of lactations of the
fistulated animals was 3.5 ± 1.9 (mean ± SD).

Table 2 shows milk production, body condition score (BCS), body weight changes (BW) and blood
glucose concentrations of the fistulated cows, representative of the rest of the herd [3].
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Table 2. Effect of a ration change from TMR to pasture on animal performance.

Variable 1 Group 2 Week p-Value

0 1 2 3 4 5 6 7 8 9 10 11 PSEM 3 G T G × T

DMI (kg·d−1) 4 CG 19.1 19.9 21.4 20.3 20.8 21.5 22.5 21.9 21.2 21.8 22.8 20.4
1.2 0.079 0.05 <0.01DMI (kg·d−1) 5 PG 20.7 21.2 21.5 19.8 15.6 17.7 18.9 18.8 18.5 16.3 17.5 17.2

Milk yield CG 29.3 28.3 27.5 28.8 28.9 28.9 28.6 28.1 28.4 28.0 27.3 27.2
2.7 0.523 <0.01 <0.01(kg·d−1) PG 29.1 29.4 29.8 29.4 26.0 27.1 25.5 25.1 24.7 22.6 23.8 22.8

Milk fat CG 4.3 4.5 4.8 4.3 4.4 4.2 4.4 4.4 4.1 4.3 4.5 4.2
0.25 0.170 0.533 0.141content (%) PG 3.6 4.1 3.5 3.9 4.4 4.0 4.0 4.1 4.0 3.9 4.1 4.0

Milk protein CG 3.2 3.3 3.0 3.2 3.2 3.1 3.1 3.2 3.3 3.2 3.3 3.4
0.1 0.635 <0.01 0.075content (%) PG 3.2 3.2 3.3 3.2 3.0 3.1 3.0 3.1 3.2 3.1 3.2 3.3

Milk urea CG 129 139 142 183 211 166 166 177 179 173 180 185
17 0.181 <0.001 0.098ppm PG 160 159 174 210 218 195 214 202 198 170 258 168

Body weight CG 662 663 658 656 651 660 660 670 670 681 693 695
40 0.907 <0.001 <0.001(kg) PG 685 683 670 664 651 651 640 646 645 658 6 670 675

Body condition CG 2.9 2.9 3.0 3.0 3.1 3.1 3.0 3.0 3.1 3.1 3.1 2.9
0.2 0.955 0.069 0.878score (scale 1-5) PG 2.9 3.0 3.0 3.0 3.2 3.1 3.0 2.9 3.0 3.0 3.1 3.0

Blood glucose CG 59.4 63.3 64.6 58.3 63.1 63.6 59.1 51.7 61.1 62.2 47.6 54.5
2.8 0.143 <0.001 <0.01(mg·dL−1) PG 56.7 60.3 60.4 56.5 56.3 † 57.6 48.8 * 55.3 58.6 52.7 * 58.3 † 46.9 *

Different symbols indicate significant differences between groups in particular week († p ≤ 0.1, * p ≤ 0.05, ** p ≤ 0.01).1 Dry matter intake (DMI), Body weight (BW), BCS (Body condition
score), ppm (parts per million); Material and Methods are described in detail in Hartwiger et al. [3] 2 Fistulated animals only (PG; n = 6; CG; n = 5); The CG stayed on a TMR-based
diet during the entire trial, while the PG was slowly introduced to a pasture-based ration: weeks 0 and 1 = TMR, week 2 = TMR and 3 h pasture·day−1, weeks 3 and 4 = TMR and 12 h
pasture·day−1, week 5 to 11 = pasture and 4.5 kg DM concentrate·cow−1·day−1. 3 PSEM = pooled standard error of the mean; G = group, T = time 4 DMI was documented by means of
weighing troughs. 5 DMI in weeks 0 and 1 was documented by means of weighing troughs, DMI in week 2 to 5 was documented by means of weighing troughs plus calculated DMI on
pasture (Method described in Hartwiger et al. [3]), DMI on pasture in week 5 to 11 was calculated as described, including 4.5 kg DM concentrate·cow−1·day−1. 6 Because of technical
problems the BW of week 9 was assumed as the mean of weeks 8 and 10.
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Significant Group × Time (G × T) interactions were documented for almost all variables, except
of milk fat (%), milk urea (ppm) and BCS.

The DMI of the CG was nearly constant over the whole trial, whereas the PG showed a decrease
in DMI of TMR during transition (week 2 to 5). The n-alkane method used in week 6 and 7 (week 6:
19.5 kg·day−1, week 7: 17.7 kg·day−1; data not shown) nearly matched the calculated data of total DMI.
During fulltime grazing the calculated DMI was on average 3 kg lower compared to CG, resulting in a
Group × Time interaction.

The milk performance (kg) of the PG decreased by 3 kg until week 5 and by further 6 kg compared
to the initial value until week 11. For the last 3 weeks the milk performance seemed to stabilize.
Over time no significant differences between the groups were detected for the milk variables fat,
protein and urea, whereas a variation over time was documented.

In the CG a continuous increase in body weight of 33 kg compared to the initial value could be
observed with the beginning of week 5. For the PG between weeks 0 to 6 a decrease in body weight by
45 kg was documented, followed by an increase of 35 kg, but not reaching the initial value. The changes
in body condition score of the fistulated PG was not as pronounced as on group level (27 animals).
Between the fistulated CG and PG only a trend over time was documented. In both groups, high
variations of blood glucose concentrations were observed, resulting in a significant Group × Time
interaction. The serum glucose concentration of the PG was most of the time lower compared to the
CG, resulting in significant differences in week 6, 9 and 11.

3.3. Rumen pH and Fluid Composition

3.3.1. pH-Sensor Data

Based on the data of the pH-sensor four variables were calculated. The variables β0 and β1 as well
as the time in which the pH was below the thresholds pH < 5.8 and <5.6 (min·day−1) were regarded
to evaluate ruminal pH. The variable β0 describes the variation of rumen pH over the assessed 24-h
interval (the greater the more constant) and β1 present the average rumen pH of the assessed 24-h
period (Figure 1). The average rumen pH (β1) changed over time (pT < 0.01) independent of the group
(pGxT < 0.935). Comparing both groups a significant difference was observed (pG < 0.001), independent
of time.
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Figure 1. Effect of ration change from an indoor-based TMR to pasture on rumen pH. = pasture group
(PG; green); � = confinement group (CG; orange). Solid line = β0, the slope of the logistic curve at the
inflection point illustrates the variation in rumen pH over the assessed 24-h interval (the greater the
more constant; pooled SEM = 0.09); dashed line = β1 = inflection point of the logistic curve, representing
the average pH of the assessed 24-h period (PSEM = 0.81). Significance: β1: group (G): p = 0.199, time
(T): p = 0.348, G × T: p = 0.935; β0: group: p < 0.001, time: p < 0.01, G × T: p = 0.207. Logger data of
week 0 of both groups are missing because of technical issues. The CG stayed on a TMR-based diet
during the entire trial, while the PG was slowly introduced to a pasture-based ration: weeks 0 and
1 = TMR, week 2 = TMR and 3 h pasture·day−1, weeks 3 and 4 = TMR and 12 h pasture·day−1, week 5
to 11 = pasture and 4.5 kg DM concentrate·cow−1· day−1.
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During the trial the average pH (β0) of the PG was significantly higher (8.5 ± 0.2) in comparison
to the CG (5.8 ± 0.3; LSmean ± SD). In addition, a time increase could be observed independent of
influences of the group (pT < 0.01). From week 5 on the curve of the PG shows an elevation of β0,
whereas the value of the CG did not change during the trial. However, no interaction of group and
time was demonstrated (pGxT < 0.207). For the variables β0 and THI a positive correlation could be
documented (PG: r = 0.801, p = 0.005 and CG: r = 0.672, p = 0.033). The average β1 value of the PG
(6.0 ± 0.1) was not different from the average β1 of the CG (6.1 ± 0.1; LSmean ± SD). For the variable
time pH < 5.8 (min·day−1) a tendency of a group effect was observed (PG: 133 ± 77 min/day and
CG: 345 ± 84 min·day−1), independent of time (pT < 0.095). The variation of the mean value (β0) over
time gives no hint for the variation of the rumen pH over time (β1). A negative correlation showed up
between the time the pH was below 5.8 and the variable β0 (r = −0.634, p = 0.0364) and β1 (r = −0.605,
p = 0.049). Time pH < 5.6 (min·d−1) did not exhibit a significant group (pG < 0.176), time (pT < 0.410)
or Group × Time interaction (pGxT < 0.432). The pH was on average < 5.6 in the CG for 132 ± 49
min·day−1 and in PG for 36 ± 44 min·day−1 (LSmean ± SD). The calculated average SARA-score
showed that the PG had a 0.15 ± 0.15 and the CG a 0.44 ± 0.07 incidence for SARA risk. During TMR
and TMR plus pasture feeding (weeks 0 to 4) the highest SARA score (according Equation 2) was
observed for the PG (0.44), while in week 6 to 7 and 9 to 11, during fulltime grazing plus concentrate
supply, the lowest score (0.00) was documented. The CG showed with 0.5 the highest score in week 2,
5 to 7 and 10 to 11.

3.3.2. DMI of Starch and Sugar and its Influence on Rumen pH

Over the whole trial the intake of starch and sugar did not differ within the CG, which is mirrored
in constant ratio of starch to sugar (Figure 2). For the PG the ratio of starch to sugar decreased, whereas
the ratio sugar to starch showed the opposite pattern, as soon as the PG had access to pasture (week 2).
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Figure 2. Effect of ration change from an indoor-based TMR to pasture on the ratio of starch to sugar
and sugar to starch. = pasture group (PG, green); � = confinement group (CG, orange); dashed line
= ratio starch to sugar; solid line = ratio sugar to starch. The CG stayed on a TMR-based diet during
the entire trial, while the PG was slowly introduced to a pasture-based ration: weeks 0 and 1 = TMR,
week 2 = TMR and 3 h pasture·day−1, weeks 3 and 4 = TMR and 12 h pasture·day−1, week 5 to 11 =
pasture and 4.5 kg DM concentrate·cow−1· day−1.

Figure 3 describes the connection between sugar or starch intake related to the average pH (β1),
documented with the continuous measuring pH sensor, and the minutes the pH was <5.8.
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Figure 3. Effect of ration change from an indoor-based TMR to pasture and its influence on starch and
sugar intake related to β1 (average pH over 24 h period) and the minutes the pH was <5.8 (according to
Zebeli et al. 2008 [20]). Pasture group (PG), green; confinement group (CG), orange. (A). Starch intake
and beta 1: r2 = 0.04, p = 0.037; (B). Sugar intake and beta 1: r2 = 0.06, p = 0.011; (C). Starch intake and
minutes pH < 5.8: r2 = 0.12, p < 0.001; (D). Sugar intake and minutes pH < 5.8: r2 = 0.14, p < 0.001.
The CG stayed on a TMR-based diet during the entire trial, while the PG was slowly introduced to a
pasture-based ration: weeks 0 and 1 = TMR, week 2 = TMR and 3 h pasture·day−1, weeks 3 and 4 =
TMR and 12 h pasture·day−1, week 5 to 11 = pasture and 4.5 kg DM concentrate·cow−1· day−1.

During confinement housing and transition to pasture the starch intake was higher (253 g·kg−1

feed) compared to fulltime grazing where the main source of starch was defined by the daily
concentrate intake of 4.5 kg DM (579 g·kg−1 feed; Figure 3A,C). Compared to the PG the dots of
the CG mirrored a higher starch intake and lower average pH values. Figure 3B shows the shift of
the green dots to higher values of sugar intake (TMR in average 18 g·kg−1 feed, pasture on average
114 ± 45 g·kg−1 feed) and influences on the mean rumen pH (β1). Compared to the CG most of the
green dots are reflecting higher pH, minimally shifting towards lower pH values. The intake of starch
and sugar in relation to the minutes the pH was <5.8 shows a similar picture (Figure 3C,D). More green
dots can be found at the beginning of the scale, describing the minutes the pH was <5.8, whereas the
orange dots are spread over the whole scale towards higher minute values.

3.3.3. VFA Concentration and Molar Proportions

For the total VFA concentration a time (pT < 0.001), daytime (pDt < 0.001), Group × Daytime
(pGxDt < 0.001), Group × Time (pGxT < 0.001) and a significant interaction between Group × Time
× Daytime (pGxTxDt < 0.001) was observed. Figure A1 mirrors the course of VFA concentration per
group and week during the day. In general, the VFA concentration during the day and over the weeks
showed a steady increase, reaching the highest value at 8:00 p.m. For the PG this course changed with
the beginning of transition and again during fulltime grazing plus concentrate supply. After 3 weeks
of fulltime grazing the daily pattern looked like a two cycle system. At 8:00 a.m. and 4:00 p.m. the
highest concentrations were analyzed, being significantly different to the concentrations at 12:00 p.m.
and 8:00 p.m.
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Figure A2 shows the development of VFA concentration over the whole time period for both
groups. The VFA concentration of the PG decreased continuously but not steadily decrease, whereas
the decreasing concentration of the CG was followed by an increase. The weekly pattern resulted in a
Group × Time interaction.

With exception of week 4 all other values for weeks significantly differed within the PG
compared to week 1, where the PG received fulltime TMR. During transition to pasture (week 2
to 4) the highest VFA concentrations could be measured. During fulltime grazing plus 4.5 kg DM
concentrate·cow−1·day−1 the lowest VFA concentrations were observed. In weeks 7 and 8 a tendency
in difference between both groups showed up and in week 10 a significant difference as observed.
The β0 value correlated negatively with VFA concentration (r = −0.646; p = 0.044).

For the molar proportion of acetate (C2%) a significant increase over time (pT < 0.001) depending
on group could be observed, resulting in a GroupxTime interaction (pGxT < 0.001; Figure A3).

Between week 6 and 10 the highest proportion of C2 occurred, which led to significant differences
between the groups. Furthermore, within the PG the proportion in week 6 to 10 significantly
differed to week 1 and the transition period (weeks 2 and 3). In week 5 (fulltime pasture plus 4.5 kg
concentrate·cow−1·day−1) C2% was significantly lower compared to week 6 to 10. The proportion in
week 5 corresponded to the proportions in week 1, 2, 3.

Molar proportions of propionate (C3%) decreased significantly over time (pT < 0.001), depending
on group, resulting in a Group × Time interaction (p < 0.001; Figure A4).

During transition, less significant changes within the PG could be observed. With the beginning
of week 6 a significant decrease occurred. The C3% in weeks 6 and 8 to 10 significantly differed from
weeks 1 to 3 and week 5. The C3 proportion of the PG correlated significantly with β0 (r = −0.686,
p = 0.029) and blood glucose concentration (r = 0.787, p = 0.007).

The acetate/propionate (C2/C3) ratio increased significantly over time (p < 0.001), depending on
group and resulting in a Group × Time effect (pGxT < 0.001; Figure 4).
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Figure 4. Effect of ration change from an indoor-based TMR to pasture on rumen ratio of acetate
and propionate (pooled SEM = 0.16). = pasture group (PG, green); � = confinement group (CG,
orange). Significance: group (G): p < 0.294, time (T): p < 0.000, G × T: p < 0.004. Different symbols
indicate significant differences between groups, in particular weeks († p ≤ 0.1, * p ≤ 0.05, ** p ≤ 0.01);
different letters (a–e) indicate significant differences between weeks within particular groups (p ≤ 0.05).
The CG stayed on a TMR-based diet during the entire trial, while the PG was slowly introduced to a
pasture-based ration: weeks 0 and 1 = TMR, week 2 = TMR and 3 h pasture·day−1, weeks 3 and 4 =
TMR and 12 h pasture·day−1, week 5 to 11 = pasture and 4.5 kg DM concentrate·cow−1· day−1.

A strong and significant increase of the ratio occurred for the PG after 1 week of fulltime grazing.
In week 6 a tendency in differences between both groups was observed and in week 9 and 10 the
differences became significant. Weeks 6, 9 and 10 significantly differed from the weeks in confinement
(week 1) and transition period (week 3 to 5).



Animals 2018, 8, 205 12 of 25

Molar proportions of butyrate (C4%) showed significant changes over time (pT < 0.001), depending
on group and resulted in a Group x Time interaction (p < 0.001; Figure A5). With the beginning of
fulltime grazing the Group × Time interaction showed for the PG a continuous decrease, whereas the
C4% of the CG showed minor changes around the starting level.

Only in week 4 a strong decrease with a significant difference within the PG and between both
groups could be documented. Furthermore, week 5 showed the highest proportion but did not
significantly differ within the PG from transition period (week 1 to 3), yet significantly changed from
the sampling during fulltime grazing (week 6 to 10).

The development of the proportion of C5 showed a pronounced decrease for the PG, while the
concentration of the CG slightly increased, resulting in a Group × Time interaction (pGxT < 0.01,
data not shown). The same development was documented for the proportion of iC5, resulting also
in a Group × Time interaction (pGxT < 0.01; data not shown). The iC4 proportion of the PG strongly
fluctuated in comparison to the steady proportion of the CG, resulting likewise in a Group × Time
interaction (pGxT < 0.01; data not shown).

3.4. Non-Glucogenic to Glucogenic Ratio

In PG, the proportions of C2% and C4% were higher but those of C3%, C5% and iC5% lower,
resulting in a higher NGR than in CG with the beginning of week 6 (Figure 5).
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Figure 5. Effect of ration change from an indoor-based TMR to pasture on rumen non-glucogenic
to glucogenic ratio (NGR; according to Abrahamse et al. 2009 [24] calculated weekly during week 1
to 10. , dashed line = pasture group (PG, green); �, solid line = confinement group (CG, orange).
non-glucogenic to glucogenic ratio. pooled SEM (PSEM) = 0.35. Significance: group (G): p = 0.259,
time (T): p ≤ 0.001, daytime (Dt): p ≤ 0.001, G × T: p ≤ 0.05, G × T × Dt: p ≤ 0.001. Different symbols
indicate significant differences between groups in particular week († p ≤ 0.1, * p ≤ 0.05, ** p ≤ 0.01);
different letters (a–d) indicate significant differences between weeks within particular groups (p ≤ 0.05).
The CG stayed on a TMR-based diet during the entire trial, while the PG was slowly introduced to a
pasture-based ration: weeks 0 and 1 = TMR, week 2 = TMR and 3 h pasture·day−1, weeks 3 and 4 =
TMR and 12 h pasture·day−1, week 5 to 11 = pasture and 4.5 kg DM concentrate·cow−1· day−1.

A significant interaction between Group × Time (pGxT < 0.001) was detected, mainly caused by
the larger differences in feeding regimen and chemical composition after transition. Within the PG
the ratio of week 1 significantly differed from the other weeks where the DMI consisted of TMR plus
pasture and later pasture plus concentrate. Significant differences between the groups were observed
in week 9 (p < 0.05), when a pronounced ratio (as well as week 1) for the PG could be documented.
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3.5. Rumen Variables

3.5.1. Rumen Content

Total rumen content averaged 87.6 ± 14.3 kg (mean ± SD). The average DM concentration (liquid
and solid phase) was 134.7 ± 12.3 g·kg−1 (mean ± SD). For total rumen content (pT < 0.05), DM
content (pT < 0.05) and non-DM content (pT < 0.05) only a time effect could be observed (Figure 6A).
Total rumen content decreased numerically from week 1 to 6 (PG: −15 kg, CG: −10 kg), whereas an
increase could be observed from week 6 to 10 (PG: +18 kg, CG: +2 kg; PSEM: 6.2 kg). From week 1 to
6 a decrease of 1 kg DM content in the CG and of 4 kg in the PG could be documented (Figure 6A).
Afterwards, from week 6 to 10 an increase of 2 kg in the PG could be observed, whereas the CG showed
no change. For the non-DM content, a decrease of 9 kg for the CG and of 11 kg for the PG was detected
from week 1 to 6. By contrast, a more pronounced increase arose from week 6 to 11 for the PG: 16 kg
compared to the CG: 2 kg.
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Figure 6. Effect of ration change from TMR to pasture on different rumen variables measured in week
1, 6 and 10 (week 1, week 6 and week 10) of the trial. Confinement group (CG, orange); pasture group
(PG, green). (A). Rumen content. Total rumen content: pooled SEM = 6.2, significance: Group (G):
p = 0.845, Time (T): p = 0.049, G × T: p = 0.294; Dry matter (DM) content: PSEM = 0.9, significance:
Group (G): p = 0.116, Time (T): p = 0.033, G × T: p = 0.297; Non DM content: PSEM = 5.3, significance:
G: p = 0.985, T: p = 0.047, G × T: p = 0.184. (B). Mean papillae area. PSEM = 0.01. Significance: G:
p = 0.137, T: p = 0.005, Location (Loc): p = 0.020, G × T: p = 0.042; G × L: p = 0.500; T × L: p = 0.469,
G × T × L: p = 0.565. (C). Histopathological analysis of papillae. Illustrated as amount of inflammations
per papillae: PSEM = 0.51, significance: Group (G): p = 0.867, Time (T): p = 0.083, G × T: p = 0.083.
(D). LPS concentration. , dashed line = pasture group (PG); �, solid line = confinement group (CG).
PSEM = 0.20. Significance: Group: p = 0.116, Time: p < 0.001, G × T: p = 0.158. Different symbols
indicate significant differences between groups in particular week († p ≤ 0.1, * p ≤ 0.05); different letters
(a,b) indicate significant differences between weeks within particular groups (p ≤ 0.05). The CG stayed
on a TMR-based diet during the entire trial, while the PG was slowly introduced to a pasture-based
ration: weeks 0 and 1 = TMR, week 2 = TMR and 3 h pasture·day−1, weeks 3 and 4 = TMR and 12 h
pasture·day−1, week 5 to 11 = pasture and 4.5 kg DM concentrate·cow−1· day−1.
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3.5.2. Rumen Papillae

The average rumen papillae area (one side) was 15 ± 1 mm2. During the trial a Group × Time
interaction (pGxT < 0.05, Figure 6B), and a single time (pT < 0.01) as well as a location (pLoc < 0.05) effect
could be observed. The papillae size of the PG diminished by 15% from week 1 to 6 but expanded
by 10% from week 1 to 10. Weeks 1 to 6 and weeks 6 to 10 were significantly different within the PG.
The papillae size between the groups significantly differed in week 10. Minor changes occurred for the
CG, a decrease of 7% from weeks 1 to 6 as well as 4% smaller papillae in week 10 compared to week
1. Histopathological analyses showed a trend of time (pT < 0.1) as well as a trend of Group × Time
interaction (pGxT < 0.1). Amount of inflammatory lesions per papillae decreased time-dependently in
both groups, whereby the decrease between week 1 and 6 was with 77% more pronounced in the PG
compared to the CG with 53% (Figure 6C). Afterwards, an increase of inflammation for both groups
appeared, for the CG up to the initial value. In most cases diagnosis of the epithel site showed no
lesions, minimally lymphoplasmacytic infiltrations or multifocal purulent pustular inflammations.

3.5.3. Lipopolysaccharide Concentration in Rumen Liquid

Both groups showed a decreasing development during the trial, indicating a single time effect
(pT < 0.000; Figure 6D) without group differences. The initial value of the PG was numerical higher
compared to the trial´s end. The LPS concentration of the CG peaked in week 7, and showed a
higher fluctuation.

3.6. VFA Absorption Test with Buffer Solution

The following results rest on the experiment with buffer solution filled into the rumen after
its evacuation.

The linearity of the pH changes during incubation time was confirmed by pH assessment every
15 min, after the rumen had been filled with buffer solution (data not shown). During incubation time
changes of the pH can be described with 0.033 ± 0.003 units per minute. After 60 min incubation a
higher pH compared to the starting value (pH: 5.7 ± 0.03) was observed, independent of influences
of group or time referred to week or its interaction (Table 3). The average concentrations of the fatty
acids after filling the buffer solution into the rumen was: C2 concentration 78.3 ± 8.9 mM·L−1, C3
concentration 32.4 ± 3.8 mM·L−1 and C4 concentration 19.4 ± 2.3 mM·L−1. During the incubation,
buffer solution concentrations of C2, C3 and C4 decreased, independent of group. Influences of time
referred to week were documented.

Neither a significant single group or time effect nor their interaction could be documented for the
fractional absorption rate of the solution’s fatty acids. For the parameter influx of water into the rumen
(Table 3) only a time effect (pT < 0.013) occurred, independent of group. The fractional liquid passage
rate increased and decreased over time PT < 0.0544) depending on group (pG < 0.018) but without an
interaction of group and time. The difference between both groups consisted of the always lower value
of the PG compared to the CG.
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Table 3. Effect of a ration change from TMR to pasture on variables documenting VFA absorption.

Week p-Value

Variable Group 1 0 6 10 PSEM 2 Group Time G × T

Buffer solution pH 60 min CG 7.01 6.91 7.07
0.02 0.753 0.105 0.241PG 6.9 6.96 7.01

Buffer solution C2 60 min (mmol·l−1)
CG 35.3 41.8 41.9

2.2 0.374 <0.001 0.547PG 30.8 39.4 44.4

Buffer solution C3 60 min (mmol·l−1)
CG 11.9 14.2 14.5

0.91 0.273 <0.001 0.639PG 10.3 13.2 14.8

Buffer solution C4 60 min (mmol·l−1)
CG 5.4 6.7 7.1

0.56 0.446 <0.001 0.866PG 4.9 6.3 6.9

Fractional absorption rate C2·h−1 CG 0.35 0.33 0.37
0.04 0.718 0.417 0.380PG 0.44 0.34 0.32

Fractional absorption rate C3·h−1 CG 0.56 0.52 0.56
0.05 0.478 0.425 0.324PG 0.64 0.54 0.54

Fractional absorption rate C4·h−1 CG 0.8 0.75 0.75
0.06 0.407 0.404 0.868PG 0.88 0.76 0.79

Influx of water (L·h−1)
CG 7.3 8.6 10.3

0.98 0.57 0.013 0.247PG 6.9 11.0 9.6

Fractional Liquid passage rate·h−1 CG 0.33 0.45 0.41
0.07 0.018 0.054 0.742PG 0.12 0.34 0.29

1 Dry matter intake: CG (week 0 to 11) and PG (weeks 0 and 1) DMI from TMR only, PG: (week 2) DMI from TMR
and 3 h pasture, (weeks 3 and 4) DMI from TMR and 12 h pasture, (week 5 to 11) fulltime grazing plus 4.5 kg DM
concentrate·cow−1day−1. 2 PSEM = pooled standard error of the mean; G = group, T = time.

3.7. NH3-N Concentrations

The NH3-N concentration was influenced by time (pT < 0.001), Dt (pDt < 0.001), G × T
(pG×T < 0.001), G × Dt (pG×Dt < 0.001), as well as a threefold interaction G × T × Dt (pGxTxDt < 0.001,
Figure A6).

Over the course of the trial the NH3-N concentration of the CG showed a two-phase curve
between 8:00 a.m. and 8:00 p.m., whereas the daily course of the PG began to deviate from this pattern
in the third week of transition.

The curve progression of the CG showed over all the weeks a significant increase from 8:00 a.m.
to 12:00 p.m. and a significant decrease from 12:00 p.m. to 4:00 p.m., followed again by a significant
increase from 4:00 p.m. to 8:00 p.m.

4. Discussion

In Hartwiger et al. 2018 [3], we reported the efficacy of a moderate concentrate feed supply (4.5 kg
DM·cow−1·day−1) after transition from an indoor-based TMR to fulltime grazing on metabolism and
production. In the current investigation, all variables concerning to performance and rumen changes
were collected from 11 rumen fistulated animals integrated in the confinement group (CG; n = 5) or
pasture group (PG; n = 6). However, we cannot completely exclude effects of number of parturitions
on the investigated traits, since it is well known that age of the cow might have an influence on several
metabolic and hematological parameters.

4.1. Changes of Rumen Papillae Surface Area

In the present experiment rumen papillae surface area showed a 15% reduction during transition
from confinement to pasture (week 2 to 6), completed with a decreased DMI, and as a consequence
a numerical degree of rumen content. The results are concomitant with the results of Schären et al.
2016 [2]. They also observed a decrease in rumen fill grade and papillae surface area during
transition. In our experiment, however, during fulltime grazing combined with 4.5 kg DM
concentrate·cow−1·day−1, the papillae surface increased again, namely by further 10% compared to
the initial value. Papillae proliferation increases in response to the intake of high fOM, which increases
papillae size and number, and hence the surface area available for VFA absorption [25]. Dieho et al.
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2016 [26] detected a connection between rumen papillae surface atrophy and decreasing VFA load
as a stimulus. We, also found that during transition, less DMI leads to low VFA concentrations and
smaller papillae but in our trial the VFA load was still low, although the papillae increased during
fulltime grazing. Ma et al. 2016 [27] found a connection between the ratio of NDF to starch and
rumen epithelium structure. There, an increased ratio was associated with a decrease in expression of
genes related to papillae growth. In our investigation this stimulus could only have been triggered
by concentrate feed as grass does not contain starch. Because of this, we assume among other things,
that the low ratio of NDF/starch influenced papillae growth. Wang et al. 2017 [28] suggests that
both VFA and particle size stimulate changes in proliferation or apoptosis processes, whereby particle
size is more important in regulating rumen epithelial morphology. Whether the continuous grazing
system [2] or the rotational grazing system (current trial) with their two different particle sizes/pasture
heights influenced papillae area can be only speculated.

4.2. Weekly Pattern of pH during Transition and Fulltime Grazing

Based on the results of Schären et al. 2016 [2] we had expected a VFA load combined with pH
variations, resulting in an increased risk for SARA during fulltime grazing with a 2.5 times higher
concentrate feed supply. Contrary to our expectation the grass combined with concentrate feeding
regimen never caused a critical average ruminal pH. With the beginning of fulltime grazing plus 4.5 kg
concentrate supply per day the pH variation of the PG reassembled and was more constant compared
to the weeks during confinement and transition (weeks 2 to 5) as well as to the CG. This observation
does not agree with other documentations [2,10,29]. According to the results of Antonio Silva et al.
2017 [13] supplementation levels up to 6 kg·day−1 during grazing showed no effects on the rumen
pH. Bargo et al. 2012 [12] found rumen pH changes during pasture occurring when more than 8 kg
concentrate (DM) were provided. The physical presentation of the grazing system could be another
supposed reason for the difference in pH pattern compared to other trials. The characteristics of the
practiced grazing system and the influence of environmental conditions resulted in a longer grass
height (10.9 ± 2.3 cm, mean ± SD), a 28% lower sugar concentration and a 13% higher CF concentration
during fulltime grazing compared to the continuous grazing system in Schären et al. [1]. Researchers
already had shown the influence of feeding change on rumen microbiome, which in turn effects rumen
VFA and pH [8]. During transition and fulltime grazing, the change of the ratio starch to sugar and
vice versa did not influence rumen pH into low values, whereas the proportion of starch in the TMR
did from time to time lead to a lower average pH in the CG. We also assume an influence of behavioral
adaptations on rumen pH. The PG spent more time grazing compared to the eating time of the CG
(data shown in Hartwiger et al. 2018 [3]); so that it could be presumed they would eat more evenly
throughout the day. Scientists had already researched whether a higher frequent feeding system in a
confinement housing system eventually prevented occurring lower pH values, but without positive
results [30]. Ruminal pH varies during the course of a day and is particularly influenced by the amount
of fermentable carbohydrate per meal. The study of Filho et al. 2012 [31] found that grazing time does
not influence ruminal fermentation, which depends on the changes that occur when different sward
layers are grazed. Structural properties depending on particle length of the feed affect chewing activity
combined with saliva production [32]. This probably prevented a pronounced decrease of rumen pH
in the current trial. Based on the results of the continuous pH measuring devices and calculated SARA
score, no increased SARA risk was observed for the PG, whereas the SARA score for the CG showed
an increased risk in week 2, 5 to 7 and 10 to 11. The low degree of inflammation of rumen papillae
supports this view. In conclusion, individual variations influenced rumen pH, which underlines
the importance of time needed for adaption without overloading rumen metabolism. Over time the
LPS concentration developed almost equally between groups, indicating only an influence of climate
conditions. Nevertheless, the PG showed a numerical decrease of LPS concentrations, whereas the
course of the CG showed higher variations between the weeks, which could be a reflection of feeding
type (starch, concentrate).
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4.3. Development of Rumen Fill Grade, Consequences on VFA Production

The pH development of the PG could also be a reflection of rumen fill grade. From week 1 to 6
we observed a numerically decrease of 16% in rumen fill grade of the PG, followed by an increase of
3% compared to the initial value. Schären et al. 2016 [2], had associated the decrease of rumen fill
with a decrease in DMI rather than an increased turnover rate of grass compared with TMR. Our data
confirms this, as it indicates a reduced fermentation activity. The turnover rate describes the net result
of oral inflow and aboral outflow as well as absorption and secretion. At the end of the trial, for the
PG a numerical increase especially of rumen liquid (plus 7% compared to the initial value) could be
observed, probably due to the higher water content in fresh grass compared to silage. Melo et al.
2013 [33] had found that cows with a less pronounced acidic rumen pH have a greater inflow of water
and a more developed rumen mucosa connected with a higher efficient VFA absorption. Our VFA
absorption test showed a numerical higher influx of water for the PG, compared to the initial phase.
Ueda et al. 2016 [34] observed that the WSC content of grass in the morning was an important factor
that limits morning grazing time, and hence presumably herbage intake. Maybe the experiment of
rumen evacuation would have been more exact in the dusk when the DMI is higher compared to other
periods during the day [35,36]. However, we assume a low ruminal pH throughout the trial was not
observed due to the low intake rate of grass (being normally a fast-fermentable substrate; in weeks 5
to 11 average grass intake was 13.3 kg) and its changes of chemical composition [3].

Differences in the chemical composition of grass over the course of the trial as well as between
the continuous grazing system [1,2] and the rotational grazing system could also be documented in
fermentation pattern of the different molar proportions of VFA. Compared to the indoor housing the
average sugar intake during fulltime grazing was three times greater (weeks 0 and 1: 380 g vs. week 5 to
11: 1183 g), while the NDF intake was 7% higher (weeks 0 and 1: 7586 g vs. week 5 to 11: 8152 g) within
the PG. Related to the average DMI (week 0 to 11: 21.1 kg·day−1 (DM); week 5 to 11: 17.8 kg·day−1

(DM)) the proportion of NDF to DMI was greater (45%) during fulltime grazing compared to TMR
feeding. Based on the results of chemical composition of the feeding system, we observed an increase
of C2% and a decrease of C3% and C4%. For the PG the change of feeding was related to a higher
NGR value (non-glucogenic to glucogenic VFA ratio, [24]; Equation 2), mainly caused by the larger
differences in feeding regimen and chemical composition after transition. The increase in NGR was
influenced by the pronounced decrease of C3% and strong increase of C2% and C4%, as main fatty
acids. The decrease of the proportion of C3 and its positive correlation to blood glucose concentration
would explain why the blood glucose concentration (r = 0.787, p = 0.007) was most of the time lower
compared to that of the CG. Leng et al. 1967 [37] observed that in the liver more than half of the
synthesized glucose was converted from C3, which underlines the importance of C3 regarding blood
glucose level. In contrast, De Menezes et al. 2011 [38] found a high abundance of propionate producing
bacteria in cows fed pasture. The influences on molar proportions of VFA are also a result of the
adaption of rumen microbiota throughout dietary and environmental condition changes. Schären et al.
2017 [8] illustrated that the rumen microbiota requires days to weeks to adapt to new conditions.

The change in feeding system is mirrored in total VFA concentrations, which decreased
continuously with increasing time on pasture. Apart from that, we also assume the influence of
temperature on the VFA concentration. It is thought that animals reduce feed intake to decrease
metabolic heat production [1,39]. At noon when temperatures reach the highest level, most of the
time the lowest VFA concentration could be documented in both groups, especially in week 9 and
10 when the THI got higher than 60. Taweel et al. 2004 [40] documented diurnal fluctuations of
VFA. They recorded the highest concentrations especially in the dusk. In the present trial, with the
beginning of week 8 a two-phase curve could be documented for the PG, reaching the highest total
VFA concentrations at 8:00 a.m. and 4:00 p.m. At 6:30 a.m. and 3:00 p.m. the PG was supplemented
with concentrate, which could explain the two phase curve. Filho et al. 2012 [31] showed in their
grazing study the effect of young and old sward characteristics on ruminal fermentation. While the
chemical composition of the feed of the CG was nearly constant, the chemical composition of grass
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changed during the day. Plant sugar was stored and used for respiration during daytime. A higher
sugar concentration during the night combined with a higher DMI during dusk could be another
reason for the high VFA concentrations at 8:00 a.m. Because of this, rotation to another plot should
always be practiced in the afternoon better than in the morning. Rumen fluid collection at night would
give further hints on VFA concentration and grazing behavior. During transition to another plot we
observed a higher rumen pH in the last 24 h before rotation, compared to the daytime after transition
when the pH was 0.5 pH-units lower. These results confirm our observation of a higher intensity of
grazing after rotation increasing the VFA production and as a consequence the short time decrease of
rumen pH.

4.4. Development of NH3-N Concentration in Rumen During Ration Change and Fulltime Grazing

As already reported in Schären et al. 2016 [2] the NH3-N concentration as well as serum urea
and milk urea concentrations increased more or less as soon as the PG had access to pasture [3].
The pronounced elevation of NH3-N concentration during fulltime grazing could not be documented
because of the low average concentration of CP compared to confinement feeding (TMR: 159 g·kg−1 vs.
(pasture week 5 to 11): 138 g·kg−1). During fulltime grazing the daily pattern of NH3-N concentration
showed no pronounced changes, as expected in Schären et al. (2016 b). Filho et al.,2012 [31] observed
that young and old swards lead to a different daily pattern of ruminal fermentation except of NH3,
while offering different sward types resulted in diurnal fluctuations of NH3. Carruthers and Neil [41]
found that the supplementation of non-structured carbohydrates (NSC) lead to reduced ammonia
concentrations, suggesting that NSC was limiting microbial synthesis on high nitrogen pasture
(CP: 176 g·kg−1 (DM)).

5. Conclusions

Transition from confinement to pasture plus moderate concentrate supplementation of 4.5 kg
DM·cow−1·day−1 showed changes in rumen fermentation variables but less pronounced compared to
other trials. However, unlike papillae surface area, the VFA fractional absorption rate was not affected
by transition from confinement to pasture or fulltime grazing. This suggests only a limited effect of
papillae surface area on VFA absorption rate. We could also show that a rotational grazing system
compared to a trial with a continuous grazing system resulted in different VFA fermentation profiles.
Our results additionally demonstrate the influence of transition feeding and fulltime grazing on the
pattern of ruminal fermentation during the day. The characteristics of the rotational grazing system,
like higher grass height and higher fiber concentrations, led to an increase in molar proportions of
acetate, whereas a decrease of propionate and butyric acid was observed. Continuous rumen pH and
LPS concentration assessment at no time revealed an increased risk for SARA despite concentrate
feeding during fulltime grazing. Changing ratio of starch to sugar during transition showed no critical
influence on rumen pH for the PG. These results were confirmed by a less pronounced degree of
inflammation of papillae surface area. Further studies are needed to describe rumen fermentation
patterns during a more frequent rotation to a new paddock and its result on SARA risk as well as
during night. Further research needs to be done to describe gene associated adaptions in rumen
papillae in more detail.
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Figure A1. Effect of ration change from an indoor-based TMR to pasture on rumen total VFA
concentration between 8 a.m. to 8 p.m. (pooled SEM = 3.3). = pasture group (PG, green); � =
confinement group (CG, orange). Significance: group (G): p < 0.435, daytime (Dt): p < 0.000 time (T):
p < 0.000, G × T: p < 0.000, G × T × Dt: p < 0.000. Different symbols indicate significant differences
between groups, in particular week († p ≤ 0.1, * p ≤ 0.05, ** p ≤ 0.01); different letters (a–e) indicate
significant differences between weeks within particular groups (p ≤ 0.05). The CG stayed on a
TMR-based diet during the entire trial, while the PG was slowly introduced to a pasture−based
ration: weeks 0 and 1 = TMR, week 2 = TMR and 3 h pasture·day−1, weeks 3 and 4 = TMR and 12 h
pasture·day−1, week 5 to 11 = pasture and 4.5 kg DM concentrate·cow−1· day−1.
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Figure A2. Effect of ration change from an indoor-based TMR to pasture on rumen total VFA
concentration (pooled SEM = 3.3). =pasture group (PG, green); � = confinement group (CG, orange).
Significance: group (G): p < 0.435, time (T): p < 0.000, G × T: p < 0.000. Different symbols indicate
significant differences between groups in particular week († p ≤ 0.1, * p ≤ 0.05); different letters (a−e)
indicate significant differences between weeks within particular groups (p ≤ 0.05). The CG stayed
on a TMR-based diet during the entire trial, while the PG was slowly introduced to a pasture-based
ration: weeks 0 and 1 = TMR, week 2 = TMR and 3 h pasture·day−1, weeks 3 and 4 = TMR and 12 h
pasture·day−1, week 5 to 11 = pasture and 4.5 kg DM concentrate·cow−1· day−1.
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Figure A3. Effect of ration change from an indoor-based TMR to pasture on rumen acetic acid (C2%)
proportion (pooled SEM = 0.99). = pasture group (PG, green); � = confinement group (CG, orange).
Significance: group (G): p < 0.200, time (T): p < 0.000, G × T: p < 0.000. Different symbols indicate
significant differences between groups in particular week (* p ≤ 0.05, ** p ≤ 0.01); different letters (a–e)
indicate significant differences between weeks within particular groups (p ≤ 0.05). The CG stayed
on a TMR-based diet during the entire trial, while the PG was slowly introduced to a pasture-based
ration: weeks 0 and 1 = TMR, week 2 = TMR and 3 h pasture·day−1, weeks 3 and 4 = TMR and 12 h
pasture·day−1, week 5 to 11 = pasture and 4.5 kg DM concentrate·cow−1· day−1.
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Figure A4. Effect of ration change from an indoor-based TMR to pasture on rumen Propionic acid
(C3%) proportion (pooled SEM = 0.84). = pasture group (PG, green); � = confinement group (CG,
orange). Significance: group (G): p < 0.372, time (T): p < 0.000, G × T: p < 0.001. Different symbols
indicate significant differences between groups in particular week (* p ≤ 0.05); different letters (a–e)
indicate significant differences between weeks within particular groups (p ≤ 0.05). The CG stayed
on a TMR-based diet during the entire trial, while the PG was slowly introduced to a pasture-based
ration: weeks 0 and 1 = TMR, week 2 = TMR and 3 h pasture·day−1, weeks 3 and 4 = TMR and 12 h
pasture·day−1, week 5 to 11 = pasture and 4.5 kg DM concentrate·cow−1· day−1.
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Figure A5. Effect of ration change from an indoor-based TMR to pasture on rumen Butyricacid (C4%)
proportion (pooled SEM = 0.35). = pasture group (PG, green); � = confinement group (CG, orange).
Significance: group (G): p < 0.168, time (T): p < 0.001, G × T: p < 0.001. Different symbols indicate
significant differences between groups in particular week (* p ≤ 0.05, ** p ≤ 0.01); different letters (a–e)
indicate significant differences between weeks within particular groups (p ≤ 0.05). The CG stayed
on a TMR-based diet during the entire trial, while the PG was slowly introduced to a pasture-based
ration: weeks 0 and 1 = TMR, week 2 = TMR and 3 h pasture·day−1, weeks 3 and 4 = TMR and 12 h
pasture·day−1, week 5 to 11 = pasture and 4.5 kg DM concentrate·cow−1· day−1.



Animals 2018, 8, 205 22 of 25
Animals 2018, 8, x 14 of 25 

 

 484 

Figure A6. Effect of ration change from an indoor-based TMR to pasture on ammonia concentration 485 
of rumen liquid samples, measured weekly during week 1 to 10, at different time points (8:00 a.m., 486 
1200 p.m., 4:00 p.m., 8:00 p.m.). ●, dashed line (green) = pasture group (PG); ■, solid line (orange) = 487 
confinement group (CG). Ammonia concentration (NH3-N), ventral. Pooled SEM = 5.3. Significance: 488 
group (G): p = 0.435, time (T): p ≤ 0.001, time point (Dt): p ≤ 0.001 G × T: p≤0.001, G × T × Dt: p ≤ 0.001. 489 
Different symbols indicate significant differences between groups, in particular week († p ≤ 0.1, * p ≤ 490 
0.05, ** p ≤ 0.01); different letters (a–c) indicate significant differences between weeks within particular 491 
groups (p ≤ 0.05). The CG stayed on a TMR-based diet during the entire trial, while the PG was slowly 492 
introduced to a pasture-based ration: weeks 0 and 1 = TMR, week 2 = TMR and 3 h pasture·day−1, 493 

b

a

b

b
b

a

b b

0

5

10

15

8 am 12 pm 4 pm 8 pm

c

ab

bc

ab

b

a **
a

0

5

10

15

8 am 12 pm 4 pm 8 pm

Daytime (h) Daytime (h)

c *

a *

b

a

c*
b c

a

0

5

10

15

8 am 12 pm 4 pm 8 pm

b

a

b

a

b

a

b

ab *

0

5

10

15

8 am 12 pm 4 pm 8 pm

c

a

bc

ab

b
b ** b

a

0

5

10

15

8 am 12 pm 4 pm 8 pm

c

a

bc

ab

b

a

a *
a

0

5

10

15

8 am 12 pm 4 pm 8 pm

b

a **

b

b

0

5

10

15

8 am 12 pm 4 pm 8 pm

b

a †

b *

b

0

5

10

15

8 am 12 pm 4 pm 8 pm

c

a

c

b

a †
a ** a * a 

0

5

10

15

8 am 12 pm 4 pm 8 pm

c

a **

c

b **

0

5

10

15

8 am 12 pm 4 pm 8 pm

N
H

3-
N

, 
 v

e
n

tr
a

l 
w

e
e

k
 1

(m
m

o
l·

L
-1

) 

N
H

3-
N

, 
 v

e
n

tr
a

l 
w

e
e

k
 2

(m
m

o
l·

L
-1
)

N
H

3-
N

, 
 v

e
n

tr
a

l 
w

e
e

k
 3

(m
m

o
l·

L
-1
)

N
H

3-
N

, 
 v

e
n

tr
a

l 
w

e
e

k
 4

(m
m

o
l·

L
-1
)

N
H

3-
N

, 
 v

e
n

tr
a

l 
w

e
e

k
 5

(m
m

o
l·

L
-1
)

N
H

3-
N

, 
 v

e
n

tr
a

l 
w

e
e

k
 6

(m
m

o
l·

L
-1
)

N
H

3-
N

, 
 v

e
n

tr
a

l 
w

e
e

k
 7

(m
m

o
l·

L
-1
)

N
H

3-
N

, 
 v

e
n

tr
a

l 
w

e
e

k
 8

(m
m

o
l·

L
-1
)

N
H

3-
N

, 
 v

e
n

tr
a

l 
w

e
e

k
 9

(m
m

o
l·

L
-1
)

N
H

3-
N

, 
 v

e
n

tr
a

l 
w

e
e

k
 1

0

(m
m

o
l·

L
-1
)

Figure A6. Effect of ration change from an indoor-based TMR to pasture on ammonia concentration
of rumen liquid samples, measured weekly during week 1 to 10, at different time points (8:00 a.m.,
1200 p.m., 4:00 p.m., 8:00 p.m.). , dashed line (green) = pasture group (PG); �, solid line (orange) =
confinement group (CG). Ammonia concentration (NH3-N), ventral. Pooled SEM = 5.3. Significance:
group (G): p = 0.435, time (T): p ≤ 0.001, time point (Dt): p ≤ 0.001 G × T: p≤0.001, G × T × Dt:
p ≤ 0.001. Different symbols indicate significant differences between groups, in particular week
(† p ≤ 0.1, * p ≤ 0.05, ** p ≤ 0.01); different letters (a–c) indicate significant differences between weeks
within particular groups (p ≤ 0.05). The CG stayed on a TMR-based diet during the entire trial,
while the PG was slowly introduced to a pasture-based ration: weeks 0 and 1 = TMR, week 2 = TMR
and 3 h pasture·day−1, weeks 3 and 4 = TMR and 12 h pasture·day−1, week 5 to 11 = pasture and
4.5 kg DM concentrate·cow−1· day−1.
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