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Abstract: During social interaction, humans recognize others’ emotions via individual features and
interpersonal features. However, most previous automatic emotion recognition techniques only
used individual features—they have not tested the importance of interpersonal features. In the
present study, we asked whether interpersonal features, especially time-lagged synchronization
features, are beneficial to the performance of automatic emotion recognition techniques. We explored
this question in the main experiment (speaker-dependent emotion recognition) and supplementary
experiment (speaker-independent emotion recognition) by building an individual framework and
interpersonal framework in visual, audio, and cross-modality, respectively. Our main experiment
results showed that the interpersonal framework outperformed the individual framework in every
modality. Our supplementary experiment showed—even for unknown communication pairs—that
the interpersonal framework led to a better performance. Therefore, we concluded that interpersonal
features are useful to boost the performance of automatic emotion recognition tasks. We hope to raise
attention to interpersonal features in this study.

Keywords: affective computing; classification; communication; deep neural networks; emotion
recognition; interpersonal features; multimodal

1. Introduction

During communication, emotion recognition skills help us understand the attitude,
feeling, and intention of the partner, and therefore guide our behavior to make the commu-
nication successful. However, the ability of emotion recognition is different from person to
person, and we sometimes fail to recognize the emotion of the interlocutor. This kind of
mistake can lead to mutual misunderstandings, impeded communication, and deteriora-
tion in relationships [1]. To avoid such failures and improve communication, one solution
here is to use the power of machine learning.

Thanks to the significant development in the field of machine learning, recently
we have obtained many software programs that can automatically recognize human
emotion [2–5]. Although the methods of automatic emotion recognition emerge, their
performance is still unsatisfactory [6,7]. Therefore, we hope to propose a possible method
to achieve a better performance.

As illustrated in Figure 1, humans recognize others’ emotions through both individual
features and interpersonal features. Studies [8–10] have shown that the individual features
such as facial expression [11,12], gesture [13,14], and tone of the voice [15] help us to
recognize others’ emotions. For example, if a man clenches his fist, it may mean he is angry.
If a man frowns, it may mean sorrow.
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Figure 1. Interpersonal and individual features help humans recognize emotion.

Studies also have shown that interpersonal features such as mutual gaze [16,17], body
synchronization [18] and the synchronization of speech [19] will help us to recognize others’
emotions. Here, the interpersonal features used in this study are defined as the interper-
sonal interaction activities (verbal or nonverbal) that happen consciously or unconsciously
during communication. It is important for the emotion recognition task because first- and
third-person emotion recognitions will be influenced by these features [20]. For example,
during an interaction, if you have a mutual gaze and touch your partner, greater positive
emotion will be observed [21]. If the partner synchronizes with your action, the positive
emotion will increase [18]. Furthermore, sometimes interpersonal features play a crucial
role in recognizing emotion. For example, when one interlocutor is not very expressive,
it will be hard to recognize his/her emotion from the individual features only. However,
the synchronization of body movement with the interlocutor may help humans recognize
the emotion. (E.g., if the synchronization is high, the possibility of positive emotion is high.
See [22] for a review.)

However, to the best of our knowledge, most current automatic emotion recognition
technologies either only use the individual features or just simply combine individual
features to capture interpersonal features (see Related Work below). They overlooked the
importance of synchronization features. Therefore, we aim to explore the following ques-
tions in this study: Are the interpersonal features, especially time-lagged synchronization
features, beneficial for automatic emotion recognition tasks? Here, time-lagged synchro-
nization includes both concurrent (i.e., zero-lag) interpersonal features such as mutual gaze
and mirroring of facial expressions, and action–reaction (i.e., lagged) interpersonal features
such as utterances and responses or smile to smile.

We addressed this question using the K-EmoCon [23] dataset, a publicly available
multimodal dataset of naturalistic conversations with continuous annotation of emotions
by the participant themselves, as well as external emotion annotation. Using visual,
audio, and audio-visual cross-modal features, respectively, we built two types of emotion
recognition models: an individual model and interpersonal model. The individual model
serves as a control condition using only individual features. The interpersonal model
serves as an experimental condition, using both the individual and interpersonal features.
We compared the performance of the models to judge whether interpersonal features are
beneficial or not. Based on the findings on the importance of interpersonal features, we
hypothesized that the interpersonal models would outperform the individual models with
either unimodal or cross-modal features.

2. Related Work

Emotion recognition is a challenging task due to the difficulty of discrimination [24]
and diverse expression modalities [25]. To solve the challenge of abstraction of emotion,
researchers tried to use different features to discriminate different emotions. However,
most of them are individual features.
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A common feature used in visual modalities is facial expression [26–32]. Given a raw
image, researchers used face detection methods [33–35] to find the position of the face first.
Then, they cropped the face and extracted the feature of facial expressions. Finally, they
fed these features into the classifier [36,37] to obtain the emotion. Some popular methods
include DTAGN [38], FN2EN [39], LPQ-SLPM-NN [32], and so on. In addition to facial
expression, gestures are also a common feature [40–43]. The researchers first used pose
estimation methods [44–46] to obtain the pose of humans. Then, they fed the pose into a
classifier to obtain the emotion. Pupil size [47] and gaze [48] are also important features
used for recognizing emotion.

For the audio modality, the speech features [49–53] include qualitative features, such
as voice quality, harshness, tense and breathy; continuous features, such as energy, pitch,
formant, zero-cross rate (ZCR), and speech rate; spectral features, such as Mel-frequency
cepstral coefficients (MFCC), linear predictor coefficients (LPC), perceptual linear prediction
(PLP), and linear predictive cepstral coefficients (LPCC); Teager energy operator (TEO)-
based features, such as TEO-decomposed frequency modulation variation (TEO-FM-Var),
normalized TEO autocorrelation envelope area (TEO-Auto-Env), and critical band based
TEO autocorrelation envelope (TEO-CB-Auto-Env). Similar to the visual modality, given
the raw speech signal, researchers first extracted their desired features such as above, then
fed them into the classifier. Different from the above individual features methods, Lin [54],
Lee [55], and Yeh [56] tried to use interpersonal features in audio modality to boost the
performance of automatic emotion recognition. However, they did not explore whether
synchronization will be beneficial or not, which is the main target of this study.

Although researchers have spent decades on emotion recognition tasks using uni-
modal features, the performance is still not satisfactory. To achieve a better performance,
researchers proposed to fuse visual and audio modalities [57,58]. To further improve the
performance, others tried to fuse not only the audio and visual modality but also the context
modality [59,60]. This fusing strategy improved the performance of the emotion recogni-
tion task further, because multimodality can give mutually supplementary information
that is missed in the unimodal approaches.

Despite all these efforts, we believe that there still is room for improvement. We
were motivated by psychological studies that indicated that humans also use interper-
sonal features to recognize others’ emotions [16–19]. According to our best knowledge,
although the previous automatic emotion recognition research paid great attention to
the individual features, most studies did not pay attention to the interpersonal features,
especially the time-lagged synchronization. Therefore, we constructed an interpersonal
model in the present study to explore whether interpersonal features are beneficial for
emotion recognition or not.

3. Methods

The present study has two aims. First, we aimed to establish the usefulness of
interpersonal features for an emotion recognition task. To achieve this, we constructed
two models for comparison. One is the individual model using only individual features.
Another one is the interpersonal model using both individual and interpersonal features.
The only difference in structure between the two models is that the interpersonal model
includes the synchronization model (the red block in Figure 2). Second, we aimed to show
the power of interpersonal features in multiple modalities. Therefore, we built the models
that use visual, audio, and audio-visual cross-modality features, respectively. Figure 2
shows the general framework of our individual and interpersonal models using visual
(Figure 2a), audio (Figure 2b), and cross-modality (Figure 2c). We note that we detected
the emotions of both individuals (person A and B) in dyadic communication using visual,
audio, and cross-modality. However, to explain our methods concisely, we use the scenario
of predicting person A’s emotion as an example.
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Figure 2. Individual and interpersonal models in visual, audio, and cross-modality.

3.1. K-EmonCon Dataset

To compare the individual model with the interpersonal model in different modalities,
and to perform our experiments with minimum human intervention, we decided to use
the K-EmoCon dataset [23] to test the usefulness of interpersonal features because, to our
best knowledge, the K-EmoCon is the only dyadic dataset in which the subjects show
spontaneous emotions during naturalistic conversations.

Other datasets are not suitable for our experiments due to posed or induced emotions
and limited situation. For example, the IEMOCAP [61] is a popular dataset used for the
emotion recognition task. However, IEMOCAP was considered to contain induced emotion
and posed emotion by actors. As we aim to achieve the recognition of natural (spontaneous)
emotions during dialogue communication, containing induced emotions and especially the
posed emotions violates our purpose. Unlike IEMOCAP, the content in K-EmoCon is the
natural debate between individuals without professional training in acting, which means it
is more like an in-the-wild challenging situation.

Figure 3 shows scenario and a sample image in the K-EmoCon dataset. The original K-
EmoCon dataset includes 32 participants. However, for the complete audiovisual recording,
there are 16 participants (Person IDs: 3, 4, 7, 8, 9, 10, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30)
available in the dataset. The 16 participants are paired into eight sessions. For example,
Person IDs 3 and 4 are in one session. Each session contains an approximately 10-min-
long paired debate on a social issue. The video (frame rate (NV): 30 fps) is re-sized into
112 × 112 and records participants’ facial expressions, upper body, and speeches (sampling
rate: 22 kHz).

Figure 3. Scenario (left) and Sample image (right) in K-EmoCon dataset [23].
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The original K-EmoCon dataset contains emotion annotations by the subjects them-
selves, by the partner, and by external raters. Since our purpose in this study was to test the
utility of interpersonal feature in recognizing subjectively experienced emotions rather than
the observed/inferred emotions by others, we decided to use self-reported annotations as
the label. Although the K-EmoCon dataset also contains the labels of “cheerful”, “happy”,
“angry”, “nervous”, and “sad”, their values are heavily imbalanced (see Figure 3 in [23])
compared to the more normally distributed arousal and valence. Furthermore, arousal and
valence are the two affective dimensions of the well-known circumplex model of emotion
by James Russell [62] , which can cover more subtle changes in emotions. Thus, we used
the arousal and valence labels for our emotion recognition task.

Specifically, we chose to use the self-reported arousal and valence which were rated
on a five-level scale (from 1: very low to 5: very high) for every 5 s as emotion labels.
Therefore, for the recognition of each 5 s segment of emotional state, the original input
size of individual video clips ([TV × NV , CV , WV , HV ]) was [5× 30, 3, 112, 112], and the
original size of individual speech data ([TA, CA, FA]) was [5, 2, 22050]. In extracting MFCC
features for audio data, we framed the audio data into the same temporal size as the visual
data. That is, the temporal dimension for audio data after MFCC was 150, which is equal
to TV × NV (visual temporal dimension). We formalized the emotion recognition as a
classification task, similarly to [63], because the annotated emotion labels in K-EmoCon are
limited to five-level scale instead of continuous values in an interval. Moreover, the labels
changed by steps at intervals of every 5 s instead of changing continuously frame by frame,
which made the task more like qualitative task rather than quantitative task.

3.2. Visual Modality
3.2.1. Individual Model

Let us begin with the individual model for the visual modality. In general, our
individual model includes three stages (Figure 2a).

• The first stage is to feed the individual video clips (IA
Video or IB

Video) into the backbone
to extract spatial information and obtain individual features;

• The second stage is to feed the individual features into the Temporal Net to extract
temporal information;

• The final stage is to feed the output from the Temporal Net into a fully connected
layer to predict the value of arousal or valence. Now, we explain the detail of
each component.

The backbone (Figure 4) for visual modality includes a convolutional neural network
(CNN) [64] and transpose CNN [65]. It is a structure similar to Resnet [66]. A CNN was
used to extract the local information first. A transpose CNN was used to extract further
information and reshape the output to make its size equal to the size of the input. To obtain
the general information, max-pooling was used to down-sample and summarize the local
information. In the backbone, CNN plus transpose CNN were used for a total of four times.
The first three times were used in the Resnet structure (purple line in Figure 4) to deepen
our network because the mapping from the input features to emotional states requires
heavy nonlinear transformation. The fourth time is slightly different from the first three
times. The CNN was not connected with the transpose CNN directly. The max-pooling
was inserted between the CNN and transpose CNN to reduce computing complexity. The
Temporal Net (Figure 5) here is a structure similar to the temporal CNN [67]. Dilation
CNN and Resnet were used to extract temporal information. As the backbone for visual
modality is deep enough, only one layer was used in Temporal Net to prevent overfitting.
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Figure 4. Backbone for visual modality.

Figure 5. Temporal Net for visual modality.

3.2.2. Interpersonal Model

Next, we used the task of predicting Person A’s emotion as an example to explain
the process to obtain interpersonal feature Y I

Video. (When predicting person B’s emotion,
the process is symmetrical.) In general, the interpersonal feature Y I

Video was obtained by
feeding the respective individual features (XA

Video and XB
Video) into the synchronization

model MS as shown in Figure 6. Specifically XA
Video as shown in Equation (1). As for person

B, we obtained XB
Video with a different backbone model MB

Video as shown in Equation (2).
Then, the pair of individual features (XA

Video and XB
Video) were fed into the synchronization

model MS (Equation (3)) to obtain interpersonal features Y I
Video. Finally, the interpersonal

features were combined with individual features and fed into the fully connected layer to
predict the value of emotion.

XA
Video = MA

Video(IA
Video) (1)

XB
Video = MB

Video(IB
Video) (2)

Y I
Video = MS(XA

Video, XB
Video) (3)

We note that MVideo processed the spatial dimension, which means it conserves
the temporal order of video clips. For example, the size of the original input IVideo is
[T, C, W, H], where T represents the time length of clips, C represents the RGB channel,
W represents the frame image width, and H represents the frame image height. After the
processing of MVideo, the size of XVideo is [T, F], where T keeps the same and F represents
the length of the individual feature vector. The specific values used in the experiment are
specified in Section 3.1.
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Figure 6. Synchronization model for visual modality.

The synchronization model consists of two parts. The first part is the computation
of time-lagged synchronization similarly to the time-lagged detrended cross-correlation
analysis (DCCA) cross-correlation coefficient computing process [68]. The second part is to
use 1D CNN to further extract information.

The detailed algorithm is shown in Algorithm 1. When computing time-lagged
synchronization YS

Video, the individual features (XA
Video and XB

Video) were first divided into
several temporal blocks (R and R′). The number of blocks is nblock. Then the cosine sim-
ilarity was computed with R and R′ as shown in Equation (4). During this computing,
the decay weight β was used for the output to emphasize the time-lagged feature. We de-
sign α = 1− iτ

nblock
β, because as iτ increases, the α decreases, which is similar to our memory

that will forget information along with time. Finally, the mean of the output (Outblock) was
calculated. The calculated Means (Outblock) were combined as YS

Video. Specifically, the size
of YS

Video is [No, L], where No represents the number of calculated Outblock and L represents
the features length for each Outblock.

Algorithm 1 Time-Lagged Synchronization

Input: Individural Features XA
Video, XB

Video
Parameters: Time block size n, Time lag length τ, Decay weight β, Clips time length N

YS
Video = {}

for i init 0 to N − τ − n by n do
Outblock = {}
R = XA

Video(i : i + n)

nblock =
N−(i+n)

τ
for iτinit 0 to nblock by 1 do

R′ = XB
Video(i + τ × iτ : i + τ × iτ + n)

α = 1− iτ
nblock

β

Outblock = Outblock ∪CosineSimilarity(R, R′)× α
end for
YS

Video = YS
Video ∪Mean(Outblock)

end for
return YS

Video

CosineSimilarity(R, R′) =
R · R′
‖R‖‖R′‖ (4)

To further extract the information between each Outblock, the 1D CNN was used to
obtain interpersonal features Y I

Video.
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3.3. Audio Modality
3.3.1. Preprocess

The mixture of speech from two speakers in a single audio data file brings a chal-
lenge to the audio modality. To overcome this challenge, several preprocessing steps were
performed to obtain individual speech features. Given the obtained speech features, we
shifted them by different time lengths, because we aimed to capture the action–reaction
relationship between the speaker and interlocutor. We predicted Person A’s emotion here as
an example. (When predicting person B’s emotion, the process is symmetrical.) Specifically,
first, we manually segmented the raw audio data (IAudio) to obtain each speaker’s data
(IA

Audio and IB
Audio) as shown in Equation (5).

IAudio = IA
Audio ∪ IB

Audio

∅ = IA
Audio ∩ IB

Audio

(5)

Then, to synthesize the interpersonal features between IA
Audio and IB

Audio, we shifted
person B’s individual speech data IB

Audio with different time lengths τi. For example, IA
Audio

represents the audio data from time 0 to 5 s, and the IB
Audio is from time 0 s to 5 s. If we shift

time-lagged length τi, the shifted I
Bτi
Audio will be the data from time 0− τi to 5− τi. Finally,

we extracted MFCC features for IA
Audio and I

Bτi
Audio to obtain individual speech features

(FA
Audio and F

Bτi
Audio) in Figure 2b.

3.3.2. Individual Model

Similar to the visual modality, we built both the individual model and interpersonal
model (Figure 2b). The individual model is similar to the visual modality. The rough
information is extracted by the backbone. Then, the temporal information is further
extracted by the Temporal Net (Figure 5). The backbone here is CNN plus Transformer [69]
as shown in Figure 7. Specifically, we use da kernel size of (3, 1) for the first layer, and the
kernel size of (1, 1) for the second layer. The different kernel size helps our model extract
more different degree local information. With a two-layer CNN, the max-pooling was used
to summarize the local information. The output was fed into the Transformer to extract
further information. The Temporal Net is the same as the visual modality.

Figure 7. Backbone for audio modality.

3.3.3. Interpersonal Model

For the interpersonal model, first, the backbone MA
Audio was used to obtain XA

Audio
individual features of the target speaker (Person A in Figure 2b). Then, the backbone

M
Bτi
Audio was used to obtain X

Bτi
Audio. X

Bτi
Audio are different time-lagged individual speech

features of the interlocutor (Person B in Figure 2b). Next, the cosine similarity between the
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speaker feature vector XA
Audio and different time-lagged interlocutor vectors X

Bτi
Audio was

computed to obtain similarity vectors Y
Sτi
Audio as shown in Equation (6).

Y
Sτi
Audio = CosineSimilarity(XA

Audio, X
Bτi
Audio) (6)

These similarity vectors were combined as YS
Audio with a decay weight α as shown in

Equation (8). The YS
Audio was fed into the CNN to obtain our target—interpersonal features

Y I
Audio. The decay weight α here was calculated with decay parameter β as Equation (7).

As τi increases the αi will decrease. We also used 1− β to represent the a priori knowledge,

which makes sure the 1− β percent of Y
Sτi
Audio will contribute.

αi = 1− β + βe−τi (7)

YS
Audio = α0Y

Sτ0
Audio ∪ α1Y

Sτ1
Audio ∪ ...∪ αnYSτn

Audio (8)

Finally, the interpersonal features were combined with extracted individual features
and fed into a fully connected layer to obtain the emotion value of the target speaker.

3.4. Cross Modality
3.4.1. Individual Model

The cross-modality is similar to visual and audio modality, including individual
models and interpersonal models (Figure 2c). For the individual model, individual features
were extracted from the structure of visual and audio modality as in Sections 3.2 and 3.3.
Then the two modality features were combined and fed into a fully connected layer to
predict emotion value.

3.4.2. Interpersonal Model

For the interpersonal model, we incorporated both the audio-visual interpersonal
feature YAV and visual-audio interpersonal feature YVA. We used the prediction of Person
A’s emotion as an example.

The audio-visual interpersonal features Y
Sτi
AV were obtained by computing cosine-

similarity between interlocutor visual modality XB
Video and time-lagged speaker audio

features X
Aτi
Audio as shown in Equation (9). Then, Y

Sτi
AV were combined together with decay

weight α to obtain visual-audio interpersonal feature YS
AV as shown in Equation (10).

Y
Sτi
AV = CosineSimilarity(XB

Video, X
Aτi
Audio) (9)

YS
AV = α0Y

Sτ0
AV ∪ α1Y

Sτ1
AV ∪ ...∪ αnYSτn

AV (10)

The visual-audio interpersonal features Y
Sτi
VA were obtained by computing the cosine-

similarity between speaker visual modality XA
Video and time-lagged interlocutor audio

features X
Bτi
Audio as shown in Equation (11). Then, Y

Sτi
VA were combined together with decay

weight α to obtain visual-audio interpersonal feature YS
VA as shown in Equation (12).

Y
Sτi
VA = CosineSimilarity(XA

Video, X
Bτi
Audio) (11)

YS
VA = α0Y

Sτ0
VA ∪ α1Y

Sτ1
VA ∪ ...∪ αnYSτn

VA (12)

Finally, these two interpersonal features (YS
AV and YS

VA) were combined with individual
features (XA

Video and XA
Audio) and fed into the final layer to predict emotion value.

We note that the computing of the cosine-similarity requires the data to share the
same shape in both temporal and feature dimensions. For example, the size of a visual
individual feature of speaker XA

Video is [TV , FV ], and the size of an audio individual feature
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of interlocutor XB
Audio is [TA, FA]. The temporal dimension of the individual feature is

the same (TV = TA) via the neural network that we built. The feature dimension of the
individual feature of different modalities was reshaped to the same size F with interpolating
methods such as Equation (13). Thus, the size of the feature (XA

Video and XB
Audio) satisfied

the required conditions TV = TA and Finterpolate
V = Finterpolate

A .

F = interpolate(FA) = interpolate(FV) (13)

4. Experiment
4.1. Methods Implementation

Table 1 shows the recommended hyperparameters used in the experiment. Specifically,
we used stochastic gradient descent (SGD) with momentum as an optimizer. As for the
learning schedule, we used cosine annealing (maximum learning rate is 0.01, the minimum
learning rate is 0.00001). The β is the decay parameter explained in Section 3. To avoid
overfitting, we also used a trick called the flood level [70], which was expressed by b. All
the models were trained from scratch.

Table 1. Recommended hyperparameters.

Learning-Rate Momentum Epochs Batch-Size b β

Value 0.01–0.00001 0.07 20 16 0.01 0.01

Both the main experiment and supplementary experiment were conducted on a laptop
with Intel Core i7-9750H CPU 2.60GHz, 16GB RAM, NVIDIA GeForce RTX 2070 with
Max-Q Design and with an operating system Ubuntu.

4.2. Main Experiment
4.2.1. Setup

In the main experiment, we split the dataset (985 segments) along with the emotion
value into train set and test set randomly. The percentage of train-dataset is 70% and
the number of emotion values is five. The main experiment is formulated as a speaker-
dependent task, which is similar to [71,72].

It is common that, during usual communication, the emotion value stays in a moderate
range most of the time and rarely gets into extreme states, which leads to the imbalanced
data problem in our experiment. To solve the imbalanced distribution, several methods
could be used such as data re-sampling approaches [73–75], class-balanced losses [76–78],
and so on. Some of the literature has proved that resampling methods can improve the
accuracy of class-imbalanced datasets [79]. Therefore, we chose to use data re-sampling
approaches to obtain a total of 1000 segments (200 segments × 5 scale value) as training
data, of which size is similar to the original dataset. For example, the number of the first
class in the total dataset is DTotal

C1 = 100. Then, the number of the first class in the training
dataset is DTrain

C1 = 70, and the number of the first class in the test dataset is DTest
C1 = 30.

Finally, after a random re-sampling, the number of the first class in the training dataset is
200.

To compare the interpersonal model with the individual model, we used accuracy
as an evaluation metric like most studies. However, due to the imbalance of the test
dataset, sometimes the accuracy cannot serve as a great evaluation method to compare the
performance. Therefore, we also used the macro-f1-score and unweighted average recall
(UAR) as additional evaluation metrics.

4.2.2. Baseline

Although our main purpose is to show the benefit of including interpersonal features,
we hope to evaluate our proposed models comprehensively. However, as K-EmoCon is
a new dataset, we cannot find suitable methods to compare with our methods directly.
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Therefore, we re-implemented a popular method called Hierarchical Fusion (HFusion)
proposed by Majumder et al. [59]. We compared our individual models with HFusion in
visual, audio, and cross (visual-audio) modality, respectively. To make the comparison fair,
the setup used for HFusion was the same as the setup used for our models.

Table 2 shows the comparison of results between our individual models and HFusion.
Except for the audio valence accuracy, all the results of the individual model were better
than HFusion. Moreover, the better f1-score and recall of individual model showed that the
better audio valence accuracy of HFusion is because it classified most samples as majority
class, which means the individual model was generally better even for predicting valence
using audio modality. Therefore, we concluded that our proposed models are effective in
the K-EmoCon dataset.

Table 2. Comparison in terms of accuracy, f1-score, and recall of HFusion [59] with our individual models for visual, audio,
and cross-modality.

Modality Accuracy F1-Score Recall
Arousal Valence Arousal Valence Arousal Valence

Visual HFusion 62.58± 1.51 66.57± 9.86 58.09± 3.85 60.05± 8.39 54.35± 6.41 57.02± 9.08
Individual Model 72.15 ± 2.01 73.63 ± 9.54 72.68 ± 1.57 68.76 ± 10.28 70.10 ± 6.04 64.69 ± 12.98

Audio HFusion 36.91± 2.68 49.74 ± 4.29 26.77± 1.04 27.73± 2.19 27.32± 0.69 27.24± 4.69
Individual Model 41.60 ± 7.04 42.04± 12.51 36.02 ± 1.57 36.22 ± 5.43 40.51 ± 0.64 39.99 ± 3.29

Cross HFusion 69.30± 2.18 71.28± 8.86 69.25± 0.12 65.39± 12.46 65.76± 2.42 61.76± 12.49
Individual Model 72.48 ± 4.36 79.17 ± 7.36 71.19 ± 5.18 70.03 ± 11.68 69.33 ± 5.05 70.50 ± 9.25

4.2.3. Result

Table 3 shows the test results of performance for the individual and interpersonal
models using visual modality to predict arousal and valence. The performance of the
interpersonal model was better than the individual model in all target variables and per-
formance metrics. More specifically, the superiority of the interpersonal model was not
restricted by the dimension of the emotion, because its performance was better than the
individual model both for arousal and valence dimension. The superiority of the inter-
personal model was also not restricted by the evaluation metrics because its performance
was better than individual model both in terms of accuracy, f1-score, and recall. Therefore,
we concluded that interpersonal features are beneficial for emotion recognition in the
visual modality.

Table 3. The main experiment result for visual modality.

Model
Accuracy F1-Score Recall

Arousal Valence Arousal Valence Arousal Valence

Individual 72.15± 2.01 73.63± 9.54 72.68± 1.57 68.76± 10.28 70.10± 6.04 64.69± 12.98
Interpersonal 73.83 ± 2.68 79.34 ± 6.86 74.21 ± 2.53 71.68 ± 11.13 72.46 ± 5.20 69.28 ± 12.25

Table 4 shows the performances of the individual and interpersonal models using
audio modality features. As the audio modality included many silent segments, which did
not provide useful information for the recognition task, the entire performance of the model
using audio modality was lower compared with the visual modality. However, the results
here showed that all of the performances of the interpersonal model was higher than the
individual model regardless of evaluation metrics and emotion dimension. Therefore,
we concluded that the interpersonal features are beneficial for emotion recognition in the
audio modality.
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Table 4. The main experiment result for audio modality.

Model
Accuracy F1-Score Recall

Arousal Valence Arousal Valence Arousal Valence

Individual 41.60± 7.04 42.04± 12.51 36.02± 1.57 36.22± 5.43 40.51± 0.64 39.99± 3.29
Interpersonal 53.02 ± 2.68 54.80 ± 6.81 49.61 ± 2.16 47.08 ± 14.60 47.29 ± 4.36 45.09 ± 14.71

Table 5 shows the performance results for the individual and interpersonal models
using audio-visual cross-modality. The results again showed that the interpersonal model
exhibited a better performance. However, some results of cross-modality were lower than
the visual or audio modality, which may violate our intuition. We thought it could be due
to two reasons. One is overfitting because we found that the training accuracy and f1-score
of cross-modality is higher than other modality. Another is the flaw of audio modality data
because the audio data included too much silence.

Table 5. The main experiment result for cross-modality

Model
Accuracy F1-Score Recall

Arousal Valence Arousal Valence Arousal Valence

Individual 72.48± 4.36 79.17± 7.36 71.19± 5.18 70.03± 11.68 69.33± 5.05 70.50± 9.25
Interpersonal 76.68 ± 1.17 80.52 ± 6.69 74.73 ± 4.58 71.45 ± 12.24 74.46 ± 3.02 79.07 ± 1.68

4.2.4. Discussion

To statistically test whether the interpersonal model significantly outperformed the
individual model, we used a two-tailed Wilcoxon signed-rank test, which was also used
in [80]. As shown in Figure 8, we pooled the accuracy and f1-score values for all the
modalities and emotional dimensions to compare them between the interpersonal model
and individual model. The p-value for accuracy and f1-score was less than 0.001. The p-
value of comparing recall between the interpersonal model and individual model was less
than 0.01. Thus, we concluded the outperformance of the interpersonal model is significant.

Figure 8. Comparison of the performance metrics between the individual and interpersonal models in the main experiment.

Taken together, we found that interpersonal features are beneficial for automatic
emotion recognition regardless of different modalities, different emotion dimensions,
and different evaluation metrics. However, in the main experiment, the same individuals
contributed to both the training and test data (speaker-dependent task), which means we
do not know whether interpersonal features are beneficial for new, unknown samples
(speaker-independent task). Therefore, to test the generalization of our hypothesis that
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interpersonal features are beneficial for even unknown communication groups, we cover
the supplementary experiment in the following section.

4.3. Supplementary Experiment
4.3.1. Setup

In the supplementary experiment, the percentage of the training dataset was around
75%. Specifically, the training dataset consisted of data from twelve people. The test dataset
consisted of the remaining four people. Specifically, the 12 participant IDs for training
data were 3, 4, 7, 8, 9, 10, 19, 20, 21, 22, 23, and 24. The remaining four participants, IDs
25, 26, 29, and 30, were used for the test data. We note that there was no particular rule
in assigning IDs to participants in the K-EmoCon dataset. Therefore, there is no obvious
cause to introduce selection bias.

We faced a problem of imbalanced data in the supplementary experiment because the
distribution of emotion labels in the training data and testing data was imbalanced. As an
extreme situation, some emotion values in the testing data were not included in the training
data, which we did not face in the main experiment. For example, the arousal value 1 was in
the training data, while there was no arousal value equal to 1 in test data. To solve this, we
collapsed the emotion values into two levels (values from 1 to 3 were put into the low level;
values from 4 to 5 were put into the high level). However, even after collapsing into two
levels, the problem of imbalanced data still exists. Therefore, we also used the re-sampling
methods to obtain 800 samples as training data (400 segments × 2 levels). In addition, we
decided to use the F1-score and UAR as evaluation metrics here, because accuracy cannot
reflect the true performance of the classifier for such imbalanced data.

4.3.2. Result

Table 6 shows all the f1-score results of the interpersonal model is better than the
individual model regardless of modality. Table 7 shows the recall results of the interpersonal
model are better than the individual model except for the Visual-Valence and Cross-Arousal
results. We will discuss these result in detail according to each modality below.

Table 6. The Supplementary Experiment Result (F1-Score).

Model
Visual Audio Cross

Arousal Valence Arousal Valence Arousal Valence

Individual 55.76± 3.09 65.41± 3.61 56.62± 2.04 57.72± 3.57 53.63± 1.96 61.33± 5.49
Interpersonal 59.19 ± 5.88 71.70 ± 9.65 59.76 ± 4.33 59.94 ± 3.89 55.30 ± 2.68 70.37 ± 5.95

Table 7. The Supplementary Experiment Result (Recall).

Model
Visual Audio Cross

Arousal Valence Arousal Valence Arousal Valence

Individual 53.53± 0.42 73.41 ± 2.26 56.32± 4.61 63.18± 0.32 56.30 ± 5.53 65.12± 8.34
Interpersonal 57.40 ± 0.52 70.6 ± 10.29 69.46 ± 17.44 64.23 ± 1.37 55.54 ± 4.54 82.01 ± 5.91

For the visual modality, although the interpersonal model outperformed individual
model in terms of f1-score (Table 6), it showed a worse recall result for the valence dimen-
sion (Table 7). We inspected the distributions of the dataset to explore the cause of the
difference and found the distribution of valence labels was less balanced in training data
and test data.

For the audio modality, as Table 6 shows, all of the results of the interpersonal model
are better than the individual model. However, this time, the difference between the
valence dimension and arousal dimension was negligible. This can be explained by the
fact that the audio data included too much silent part, which would have suppressed the
performance of the interpersonal model. Too many silent parts may also have affected the
recall result in Table 7. Specifically, the variance of the recall for arousal of the interpersonal
model result was very high.
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For the cross-modality, Table 6 showed the power of interpersonal features again. We
found that the performance boost for the valence dimension was larger than that for the
arousal dimension. We also found, similarly to the main experiment, that the result of
cross-modality was sometimes lower than visual or audio modality. This could be due to
overfitting and the flaw in audio modality data. These two possible problems may also
explain the slightly lower recall result of the interpersonal model in the arousal dimension
in comparison to the individual model in Table 7.

4.3.3. Discussion

The lower recall result of the interpersonal model in Visual-Valence, and Cross-Arousal
may bring up the question regarding whether the interpersonal model outperformed the
individual model. We tested this question with a two-tailed Wilcoxon signed-rank test as
shown in Figure 9. When we pooled the recall values for all the modalities and emotional
dimensions and compared them between the interpersonal model and individual model,
the p-value was 0.076. Although it is slightly greater than 0.05, it is less than 0.1. Further,
comparing the f1-scores between the interpersonal model and the individual model, the p-
value was less than 0.001, which means that, according to the f1-score, the interpersonal
model significantly outperformed the individual model. Therefore, we concluded the
interpersonal model was overall better than the individual model, which means inter-
personal features are beneficial for automatic emotion recognition even with unknown
communication pairs.

Figure 9. Comparison of the performance metrics between the individual and interpersonal models in the supplemen-
tary experiment.

5. Conclusions

Inspired by the fact the humans recognize emotion via individual features and inter-
personal features, we explored whether interpersonal features are beneficial for automatic
emotion recognition in this study. Specifically, we constructed the individual model and
interpersonal model in visual, audio, cross-modality respectively. Then, we compared
these two models using the K-EmoCon dataset with the main experiment and supple-
mentary experiment. Our main experiment results showed that the performance of the
interpersonal model was higher than the individual model. Our supplementary experiment
results showed—even for unknown communication pairs—that the interpersonal model
outperformed the individual model. Therefore, we advocate incorporating interpersonal
features for automatic emotion recognition in communication settings.

The framework used in this study was a “black box”. We cannot identify what specific
synchronization contributed to better emotion recognition performance. The “black box”
nature impeded us from further improving the algorithm, and more importantly impeded
us from understanding the mechanism about how humans recognize emotion in nature.
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In the future, we hope to resolve this issue with the eXplainable Artificial Intelligence (XAI)
approach [81].
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36. Stąpor, K. Evaluating and comparing classifiers: Review, some recommendations and limitations. In Proceedings of the

International Conference on Computer Recognition Systems, Polanica-Zdrój, Poland, 20–22 May 2017; pp. 12–21.
37. Mohandes, M.; Deriche, M.; Aliyu, S.O. Classifiers combination techniques: A comprehensive review. IEEE Access 2018,

6, 19626–19639. [CrossRef]
38. Jung, H.; Lee, S.; Park, S.; Lee, I.; Ahn, C.; Kim, J. Deep temporal appearance-geometry network for facial expression recognition.

arXiv 2015, arXiv:1503.01532.
39. Ding, H.; Zhou, S.K.; Chellappa, R. Facenet2expnet: Regularizing a deep face recognition net for expression recognition. In

Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington,
DC, USA, 30 May–3 June 2017; pp. 118–126.

40. Li, S.; Cui, L.; Zhu, C.; Li, B.; Zhao, N.; Zhu, T. Emotion recognition using Kinect motion capture data of human gaits. PeerJ 2016,
4, e2364. [CrossRef]

41. Senecal, S.; Cuel, L.; Aristidou, A.; Magnenat-Thalmann, N. Continuous body emotion recognition system during theater
performances. Comput. Animat. Virtual Worlds 2016, 27, 311–320. [CrossRef]

42. Glowinski, D.; Camurri, A.; Volpe, G.; Dael, N.; Scherer, K. Technique for automatic emotion recognition by body gesture
analysis. In Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops,
Anchorage, AK, USA, 23–28 June 2008; pp. 1–6.

43. Piana, S.; Stagliano, A.; Odone, F.; Verri, A.; Camurri, A. Real-time automatic emotion recognition from body gestures. arXiv
2014, arXiv:1402.5047.

44. Liu, Z.; Zhu, J.; Bu, J.; Chen, C. A survey of human pose estimation: The body parts parsing based methods. J. Vis. Commun.
Image Represent. 2015, 32, 10–19. [CrossRef]

45. Zhang, H.B.; Lei, Q.; Zhong, B.N.; Du, J.X.; Peng, J. A survey on human pose estimation. Intell. Autom. Soft Comput. 2016,
22, 483–489. [CrossRef]

46. Zheng, C.; Wu, W.; Yang, T.; Zhu, S.; Chen, C.; Liu, R.; Shen, J.; Kehtarnavaz, N.; Shah, M. Deep Learning-Based Human Pose
Estimation: A Survey. arXiv 2020, arXiv:2012.13392.

http://dx.doi.org/10.3389/frobt.2019.00116
http://www.ncbi.nlm.nih.gov/pubmed/33501131
http://dx.doi.org/10.1038/s41598-021-91831-x
http://dx.doi.org/10.1006/jrpe.1993.1012
http://dx.doi.org/10.1016/j.neubiorev.2017.05.013
http://www.ncbi.nlm.nih.gov/pubmed/28506927
http://dx.doi.org/10.1038/s41597-020-00630-y
http://dx.doi.org/10.3390/s18020416
http://www.ncbi.nlm.nih.gov/pubmed/29389845
http://dx.doi.org/10.1088/1742-6596/1193/1/012004
http://dx.doi.org/10.1016/j.jvcir.2018.12.039
http://dx.doi.org/10.1007/s42452-020-2234-1
http://dx.doi.org/10.1016/j.jvcir.2018.05.024
http://dx.doi.org/10.1007/s10462-018-9650-2
http://dx.doi.org/10.1109/ACCESS.2018.2813079
http://dx.doi.org/10.7717/peerj.2364
http://dx.doi.org/10.1002/cav.1714
http://dx.doi.org/10.1016/j.jvcir.2015.06.013
http://dx.doi.org/10.1080/10798587.2015.1095419


Sensors 2021, 21, 5317 17 of 18

47. Aracena, C.; Basterrech, S.; Snáel, V.; Velásquez, J. Neural networks for emotion recognition based on eye tracking data. In
Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Hong Kong, China, 9–12 October 2015;
pp. 2632–2637.

48. Wu, S.; Du, Z.; Li, W.; Huang, D.; Wang, Y. Continuous emotion recognition in videos by fusing facial expression, head pose and
eye gaze. In Proceedings of the 2019 International Conference on Multimodal Interaction, Suzhou, China, 14–18 October 2019;
pp. 40–48.

49. Swain, M.; Routray, A.; Kabisatpathy, P. Databases, features and classifiers for speech emotion recognition: A review. Int. J.
Speech Technol. 2018, 21, 93–120. [CrossRef]

50. Khalil, R.A.; Jones, E.; Babar, M.I.; Jan, T.; Zafar, M.H.; Alhussain, T. Speech emotion recognition using deep learning techniques:
A review. IEEE Access 2019, 7, 117327–117345. [CrossRef]

51. Chandrasekar, P.; Chapaneri, S.; Jayaswal, D. Automatic speech emotion recognition: A survey. In Proceedings of the 2014
International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA), Mumbai,
India, 4–5 April 2014; pp. 341–346.

52. El Ayadi, M.; Kamel, M.S.; Karray, F. Survey on speech emotion recognition: Features, classification schemes, and databases.
Pattern Recognit. 2011, 44, 572–587. [CrossRef]

53. Jahangir, R.; Teh, Y.W.; Hanif, F.; Mujtaba, G. Deep learning approaches for speech emotion recognition: State of the art and
research challenges. Multimed. Tools Appl. 2021, 80, 23745–23812. [CrossRef]

54. Lin, Y.S.; Lee, C.C. Deriving Dyad-Level Interaction Representation Using Interlocutors Structural and Expressive Multimodal
Behavior Features. In Proceedings of the INTERSPEECH, Stockholm, Sweden, 20–24 August 2017; pp. 2366–2370.

55. Lee, C.C.; Busso, C.; Lee, S.; Narayanan, S.S. Modeling mutual influence of interlocutor emotion states in dyadic spoken
interactions. In Proceedings of the Tenth Annual Conference of the International Speech Communication Association, Brighton,
UK, 6–10 September 2009.

56. Yeh, S.L.; Lin, Y.S.; Lee, C.C. An interaction-aware attention network for speech emotion recognition in spoken dialogs. In
Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, 4–8 May 2019; pp. 6685–6689.

57. Castellano, G.; Kessous, L.; Caridakis, G. Emotion recognition through multiple modalities: Face, body gesture, speech. In Affect
and Emotion in Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2008; pp. 92–103.

58. Wang, X.; Chen, X.; Cao, C. Human emotion recognition by optimally fusing facial expression and speech feature. Signal Process.
Image Commun. 2020, 84, 115831. [CrossRef]

59. Majumder, N.; Hazarika, D.; Gelbukh, A.; Cambria, E.; Poria, S. Multimodal sentiment analysis using hierarchical fusion with
context modeling. Knowl. Based Syst. 2018, 161, 124–133. [CrossRef]

60. Pan, Z.; Luo, Z.; Yang, J.; Li, H. Multi-modal attention for speech emotion recognition. arXiv 2020, arXiv:2009.04107.
61. Busso, C.; Bulut, M.; Lee, C.C.; Kazemzadeh, A.; Mower, E.; Kim, S.; Chang, J.N.; Lee, S.; Narayanan, S.S. IEMOCAP: Interactive

emotional dyadic motion capture database. Lang. Resour. Eval. 2008, 42, 335–359. [CrossRef]
62. Posner, J.; Russell, J.A.; Peterson, B.S. The circumplex model of affect: An integrative approach to affective neuroscience, cognitive

development, and psychopathology. Dev. Psychopathol. 2005, 17, 715. [CrossRef]
63. Wiem, M.B.H.; Lachiri, Z. Emotion classification in arousal valence model using MAHNOB-HCI database. Int. J. Adv. Comput.

Sci. Appl. 2017, 8. [CrossRef]
64. LeCun, Y.; Haffner, P.; Bottou, L.; Bengio, Y. Object recognition with gradient-based learning. In Shape, Contour and Grouping in

Computer Vision; Springer: Berlin/Heidelberg, Germany, 1999; pp. 319–345. [CrossRef]
65. Zeiler, M.D.; Krishnan, D.; Taylor, G.W.; Fergus, R. Deconvolutional networks. In Proceedings of the 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2528–2535.
66. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
67. Lea, C.; Flynn, M.D.; Vidal, R.; Reiter, A.; Hager, G.D. Temporal convolutional networks for action segmentation and detection.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 156–165.

68. Shen, C. Analysis of detrended time-lagged cross-correlation between two nonstationary time series. Phys. Lett. A 2015,
379, 680–687. [CrossRef]

69. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
arXiv 2017, arXiv:1706.03762.

70. Ishida, T.; Yamane, I.; Sakai, T.; Niu, G.; Sugiyama, M. Do We Need Zero Training Loss After Achieving Zero Training Error?
arXiv 2020, arXiv:2002.08709.

71. Farooq, M.; Hussain, F.; Baloch, N.K.; Raja, F.R.; Yu, H.; Zikria, Y.B. Impact of Feature Selection Algorithm on Speech Emotion
Recognition Using Deep Convolutional Neural Network. Sensors 2020, 20, 6008. [CrossRef] [PubMed]

72. Haq, S.; Jackson, P.J.; Edge, J. Speaker-dependent audio-visual emotion recognition. In Proceedings of the AVSP, Norwich, UK,
10–13 September 2009; pp. 53–58.

http://dx.doi.org/10.1007/s10772-018-9491-z
http://dx.doi.org/10.1109/ACCESS.2019.2936124
http://dx.doi.org/10.1016/j.patcog.2010.09.020
http://dx.doi.org/10.1007/s11042-020-09874-7
http://dx.doi.org/10.1016/j.image.2020.115831
http://dx.doi.org/10.1016/j.knosys.2018.07.041
http://dx.doi.org/10.1007/s10579-008-9076-6
http://dx.doi.org/10.1017/S0954579405050340
http://dx.doi.org/10.1109/ICEMIS.2017.8272991
http://dx.doi.org/10.1109/ICEMIS.2017.8272991
http://dx.doi.org/10.1016/j.physleta.2014.12.036
http://dx.doi.org/10.3390/s20216008
http://www.ncbi.nlm.nih.gov/pubmed/33113907


Sensors 2021, 21, 5317 18 of 18

73. Ando, S.; Huang, C.Y. Deep over-sampling framework for classifying imbalanced data. In Proceedings of the Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, Skopje, North Macedonia, 18–12 September 2017;
pp. 770–785.

74. Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks.
Neural Netw. 2018, 106, 249–259. [CrossRef] [PubMed]

75. Pouyanfar, S.; Tao, Y.; Mohan, A.; Tian, H.; Kaseb, A.S.; Gauen, K.; Dailey, R.; Aghajanzadeh, S.; Lu, Y.H.; Chen, S.C.; et al.
Dynamic sampling in convolutional neural networks for imbalanced data classification. In Proceedings of the 2018 IEEE
Conference on Multimedia Information Processing and Retrieval (MIPR), Miami, FL, USA, 10–12 April 2018; pp. 112–117.

76. Cao, K.; Wei, C.; Gaidon, A.; Arechiga, N.; Ma, T. Learning imbalanced datasets with label-distribution-aware margin loss. arXiv
2019, arXiv:1906.07413.

77. Dong, Q.; Gong, S.; Zhu, X. Imbalanced deep learning by minority class incremental rectification. IEEE Trans. Pattern Anal. Mach.
Intell. 2018, 41, 1367–1381. [CrossRef]

78. Khan, S.; Hayat, M.; Zamir, S.W.; Shen, J.; Shao, L. Striking the right balance with uncertainty. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 103–112.

79. Lee, P.H. Resampling methods improve the predictive power of modeling in class-imbalanced datasets. Int. J. Environ. Res. Public
Health 2014, 11, 9776–9789. [CrossRef]

80. Zeng, H.; Li, X.; Borghini, G.; Zhao, Y.; Aricò, P.; Di Flumeri, G.; Sciaraffa, N.; Zakaria, W.; Kong, W.; Babiloni, F. An EEG-Based
Transfer Learning Method for Cross-Subject Fatigue Mental State Prediction. Sensors 2021, 21, 2369. [CrossRef]

81. Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins,
R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf.
Fusion 2020, 58, 82–115. [CrossRef]

http://dx.doi.org/10.1016/j.neunet.2018.07.011
http://www.ncbi.nlm.nih.gov/pubmed/30092410
http://dx.doi.org/10.1109/TPAMI.2018.2832629
http://dx.doi.org/10.3390/ijerph110909776
http://dx.doi.org/10.3390/s21072369
http://dx.doi.org/10.1016/j.inffus.2019.12.012

	Introduction
	Related Work
	Methods
	K-EmonCon Dataset
	Visual Modality
	Individual Model
	Interpersonal Model

	Audio Modality
	Preprocess
	Individual Model
	Interpersonal Model

	Cross Modality
	Individual Model
	Interpersonal Model


	Experiment
	Methods Implementation
	Main Experiment
	Setup
	Baseline
	Result
	Discussion

	Supplementary Experiment
	Setup
	Result
	Discussion


	Conclusions
	References

