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Abstract: The isolation of hematopoietic stem and progenitor cells (HSPCs) is critical for 
transplantation therapy and HSPC research, however current isolation techniques can be 
prohibitively expensive, time-consuming, and produce variable results. Selectin-coated 
microtubes have shown promise in rapidly isolating HSPCs from human bone marrow, but 
further purification of HSPCs remains a challenge. Herein, a biomimetic device for HSPC 
isolation is presented to mimic the acidic vascular microenvironment during trauma, which 
can enhance the binding frequency between L-selectin and its counter-receptor PSGL-1 and 
HSPCs. Under acidic pH conditions, L-selectin coated microtubes enhanced CD34+ HSPC 
adhesion, as evidenced by decreased cell rolling velocity and increased rolling flux. Dynamic 
light scattering was utilized as a novel sensor to confirm an L-selectin conformational change 
under acidic conditions, as previously predicted by molecular dynamics. These results suggest 
that mimicking the acidic conditions of trauma can induce a conformational extension of 
L-selectin, which can be utilized for flow-based, clinical isolation of HSPCs. 
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1. Introduction 

Human hematopoietic stem and progenitor cells (HSPCs) originating from the bone marrow (BM) 
play a critical role in treating many hematological malignancies due to their unique multipotent, stem 
cell quality [1,2]. In cancer patients with depleted immune cells, HSPCs transplantation is used to 
repopulate blood cell lineages [3,4]. On the other hand, increasing evidence has shown that 
mutagenesis which occurs during the development of HSPCs converts these cells to leukemic stem 
cells [5,6]. Therefore, a reliable and simple means for the acquisition and enrichment of HSPCs for 
both transplantation therapy and to better understand leukemia is needed. 

HSPCs routinely leave the BM to enter the circulatory system and distant tissues to establish  
and maintain hematopoiesis [7–10]. During embryogenesis, HSPCs migrate to the fetal liver and 
differentiate [11–13]. In adults, HSPCs participate in the innate immune response against foreign 
antigens [14–16]. HSPCs express a repertoire of surface ligands that include unique markers as well as 
markers shared with leukocytes and circulating tumor cells [17,18] that can bind the family of 
adhesion molecules called selectins (E-, L- and P-), which facilitates their migration from (and to) the 
BM and distant tissues [19–23]. In a recent study, we observed that acidic extracellular pH enhances 
L-selectin:PSGL-1 interactions under flow [24]. Extracellular pH becomes acidic during the early 
stages of wound healing and inflammation [25,26], which is also a period of elevated recruitment  
of HSPCs to target sites [27,28]. It follows that HSPCs may experience altered adhesion due to  
L-selectin:ligand binding in acidic environments. 

In this study, we determined that L-selectin ligands expressed on the surface of HSPCs bind with 
enhanced affinity to L-selectin under acidic extracellular pH. Furthermore, the enhanced L-selectin:ligand 
binding affinity is due to L-selectin undergoing conformational change in acidic pH as quantified by 
dynamic light scattering measurements of selectin-PEG-decocorated liposomes. Finally, by mimicking 
this physiological phenomenon, we demonstrate its potential use to capture and enrich HSPCs by 
perfusing a suspension of BM cells through L-selectin coated microtubes under acidic pH.  

2. Experimental Section 

2.1. Reagents and Antibodies  

Phosphate-buffered saline (PBS) and Hank’s balanced salt solution (HBSS) were purchased from 
Invitrogen (Grand Island, NY, USA). Recombinant human P-, L-, and E-selectin/IgG chimera were 
purchased from R&D Systems (Minneapolis, MN, USA). Phycoerythrin (PE)-conjugated mouse  
anti-human CD34 (clone 581) and PE-conjugated mouse IgG1 κ-isotype control were purchased from 
Biolegend (San Diego, CA, USA). APC-conjugated mouse anti-human L-selectin (clone DREG-56) 
was purchased from BD Biosciences (San Jose, CA, USA).  

2.2. Isolation of Bone Marrow Cells  

Bone narrow mononuclear cells (MNCs) were extracted from consenting adult donors following a 
protocol approved by the Research Subjects Review Board of the University of Rochester, as 
described previously [22]. Briefly, bone marrow samples were diluted 3-fold (vol/vol) in Ca2+ and 
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Mg2+-free PBS, with 35 mL of the diluted sample carefully layered over 15 mL Ficoll cell separation 
solution (GE Healthcare, Piscataway, NJ, USA) in 50 mL Falcon tubes. Samples were then centrifuged 
at 800 g for 20 min at RT to separate bone marrow MNCs from excess cells and tissue debris. The 
buffy coat of MNCs was extracted and place into a separate tube and washed twice in PBS. Bone 
marrow MNCs were quantified and placed in flow buffer (PBS supplemented with Ca2+) for  
flow-based assays. 

2.3. Isolation of CD34+ Population using Microbeads 

To characterize the rolling characteristics of CD34+ HSPCs in acidic pH, CD34+ bone marrow 
HSPCs were isolated using EasySep Human CD34 Positive Selection Kit by StemCell Technology 
(Vanvouver, BC, Canada) per manufacturer’s instructions. Briefly, a solution of mononuclear cells 
was incubated with tetrameric antibody complexes against CD34 for 15 min, followed by incubation 
with dextran-coated magnetic nanoparticles (MNP) for 10 min. The cell-containing tube was then 
placed in an EasySep® magnet for positive selectin, allowing the MNP-conjugated CD34+ cells to 
remain in the tube while the supernatant was poured off. The cell population was washed and the 
magnetic separation was repeated until the desired purity was achieved. 

2.4. Microtube Functionalization 

Micro-renathane (MRE) tubes (300 µm inner diameter, 50 cm long; Braintree Scientific, Braintree, 
MA, USA) were sterilized with 80% ethanol for 10 min. The tubes were then washed (3×) with PBS 
buffer (Ca2+-free). The inner surface was functionalized with recombinant human L-selectin/Fc at 
specified concentration for 2 h. The microtubes were then incubated in PBS supplemented with dry milk 
(5% w/v; Sigma-Aldrich, St. Louis, MO, USA) for 1 h to prevent nonspecific adhesion. All steps were 
performed at room temperature (RT). In several experiments microtubes were labeled with APC 
conjugated mouse anti human L-selectin for 30 min. Microtubes were washed three times with buffer 
and images were acquired on an inverted research microscope (Olympus America, Melville, NY, USA).  

2.5. Flow-Based Cell Adhesion Assay 

Cells suspended in PBS buffer (supplemented with 2 mM Ca2+) at a specified pH (6.6 or 7.4) were 
perfused through functionalized microtubes using a syringe pump at a wall shear stress of 2.0 dynes 
(dyn)/cm2. Videos of rolling cells were captured and analyzed using ImageJ (US National Institutes of 
Health, Bethesda, MD, USA). Cell rolling velocity was determined by measuring the displacement of a 
rolling cell over time, while rolling flux was determined by quantifying the number of rolling cells 
entering the image frame over the course of 1 min. 

2.6. CD34+ HSPC Flow-Based Isolation 

A cell suspension of bone marrow MNCs (5 × 106 cell/mL) in PBS buffer (supplemented with 2 mM 
Ca2+) at specified pH was perfused through L-selectin functionalized microtubes at a wall shear stress of 
1.0 dyn/cm2. To collect captured cells, the microtube was incubated with fresh PBS buffer (Ca2+ free 
and supplemented with 2 mM of EDTA) for 15 min, and then the cell gently collected into a 1.5 mL 
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Eppendorf tube. Captured cells were also detached from the surface via air embolism. An air bubble is 
introduced into the microtube using an empty syringe. The bubble is then slowly pushed through the 
entire length of the microtube to dislodge any remaining captured cells into the collecting tube at the 
opposing end.  

2.7. Preparation of Selectin-Conjugated Liposomes  

Multilamellar liposomes were prepared using a thin lipid film hydration method as previously 
described [29,30]. Briefly, lipids were hydrated in 125 mM ammonium sulfate (Sigma-Aldrich)  
to form multilamellar liposomes, followed by 10 freeze-thaw cycles and then extrusion as  
previously described [31,32] to prepare unilamellar liposomes. Recombinant human E-, L-, and  
P-selectin/Fc chimera (rhE/Fc) (R&D Systems, Minneapolis, MN, USA) was conjugated to  
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-maleimide 2000 (DSPE-PEG2000 maleimide) 
(Avanti Polar Lipids, Alabaster, AL, USA) via thiolation, and PEG or selectin-PEG conjuguates were 
covalently attached to diluted unilamellar liposomes as described previously [33]. All liposomes were 
stored at 4 °C for no more than one week until usage. 

2.8. Dynamic Light Scattering 

To detect changes in selectin protein conformation, freshly prepared selectin-conjugated liposomes 
(<24 h) were diluted (1,000×) in buffer at specified pH. To remove aggregates, samples were filtered 
through a 0.45 µm filter (MicroLiter Analytical Supplies, Inc., Suwanee, GA, USA). Samples were 
analyzed for changes in particle size and polydispersity index (PDI) using a Malvern Zetasizer  
Nano-ZS (Malvern, Worcestershire, UK).  

2.9. Flow Cytometry 

Isolated cells were stained with mouse anti-human CD34 (clone 581), or mouse IgG1 κ-isotype 
purchased from Biolegend (San Diego, CA, USA). Cells were washed twice with PBS (supplemented with 
1% BSA) and then incubated with antibody at 4 °C for 30 min. Cells were washed twice with buffer and 
analyzed using a Guava EasyCyte flow cytometer (Millipore, Billerica, MA, USA). CD34+ post-isolation 
cell populations were quantified and plotted using FlowJo software (Treestar Inc., San Carlos, CA, USA). 

2.10. Statistical Analysis 

Cell rolling velocity and flux were plotted and statistically analyzed using Prism (GraphPad Software, 
San Diego, CA, USA). Two-tailed unpaired t-test was used to determine statistical significance.  

3. Results and Discussion 

3.1. CD34+ Human BM Cell Interaction with L-Selectin is Enhanced under Acidic Extracellular pH  

To characterize the influence of acidic extracellular pH on the interaction of human HSPCs and  
L-selectin, CD34+ cells were perfused through microtubes coated with L-selectin (Figure 1A) at  
2 dyn/cm2. This level of shear stress was chosen because it is within the physiological shear stress 
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range that mononuclear cells experience in the human circulatory system. CD34+ cells exhibited a 
significantly lower rolling velocity on L-selectin under acidic conditions (Figure 1D), when compared 
to L-selectin mediated CD34+ cell rolling at a pH of 7.4. At pH 6.6, CD34+ cells had an average 
rolling velocity of 22.14 ± 1.87 µm/s, compared to an average rolling velocity of 31.24 ± 3.23 µm/s at 
pH 7.4. This indicates that under acidic conditions, CD34+ HSPCs experience enhanced binding to  
L-selectin. To show that the observed interaction between the perfused cells and the coated microtube 
is L-selectin:ligand specific, cells were perfused through microtubes coated with milk alone. Cell 
adhesion was not observed in this case (Figure 1B). In contrast, microtubes coated with L-selectin showed 
extensive cell rolling and adhesion (Figure 1C). In addition, Ca2+-dependent cell rolling [34,35] was 
abrogated by perfusion with HBSS (Ca2+ free buffer supplemented with 2mM EDTA) (data not shown) 
thus confirming that cell interaction was mediated specifically by L-selectin:ligand adhesion. The 
average rolling velocity of CD34+ cells was significantly lower compared to MNCs from bone marrow 
(Figure 1E). This observation supports previous work, which suggested that CD34+ cells have stronger 
binding affinity to L-selectin than CD34- cells [36]. In contrast, no significant differences in CD34- cells 
were observed under physiological and acidic pH conditions (Figure 1E). An increase in cell rolling flux of 
MNCs in acidic pH was also found, in comparison to the cell flux measured at physiological pH (Figure 2). 
These results suggest that acidic pH can be utilized to enhance the number of cell interactions with the  
L-selectin coating, thus improving the number of cells captured. 

Figure 1. Enhanced adhesion of CD34+ cells to L-selectin at acidic pH. (A) Relative 
fluorescence intensity of L-selectin coated and blank microtubes labeled with APC-anti 
human L-selectin. (B–C) Images of perfused cells interacting with blank or functionalized 
microtubes, respectively. Scale bars are 100 μm. (D) Rolling velocity of CD34+ cells under 
normal (7.4) and acidic (6.6) pH. CD34+ cells at a concentration of 1 × 106 cells/mL were 
perfused through L-selectin coated (20 μg/mL) microtubes at a shear stress of 2.0 dyn/cm2 
in buffer at specified pH. (E) Comparison of rolling velocities of CD34+ cells and MNCs 
(unpaired t-test, error bars indicate standard error of the mean; * p < 0.05, **** p < 0.0001; 
n = 3). 
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Figure 2. MNCs isolated from bone marrow display higher binding affinity to L-selectin in 
acidic pH. A suspension of MNCs (1 × 106 cells/mL) was perfused through L-selectin 
coated (20 μg/mL) microtubes at a shear stress of 2.0 dyn/cm2 in buffer at specified pH. 
Cell rolling flux was measured by counting the number of rolling cells crossing into the 
image frame over 1 min (unpaired t-test, error bars indicate standard error of the mean;  
* p < 0.05; n = 3).  

 

3.2. Acidic pH Induces Extended Conformation of L-Selectin 

Previous work showed that L-selectin can adopt an “extended” (high affinity) conformation with a 
point mutation of an amino acid in the EGF domain of L-selectin [37]. This extended conformation 
results in decreased cell rolling velocity, and an increase in cell flux on the L-selectin ligand PSGL-1. 
Furthermore, it was previously established that pH can encourage L-selectin to adopt this extended, 
high affinity conformation due to the abolition of hydrogen bonding between the EGF and lectin 
domains of L-selectin which normally confines the protein in the “low affinity” conformation [24]. 
Therefore, we sought to determine whether acidic pH can induce a measurable, extended conformation 
of L-selectin. Dynamic light scattering (DLS) was utilized to determine changes in the protein size of 
selectins (E, P and L) presented on nanoscale liposomes in buffer at specified pH. While liposomes in 
the absence of selectin protein (Table 1) or conjugated with E- or P-selectin exhibited minimal,  
non-significant changes in hydrodynamic radius (Figure 3), L-selectin significantly increased its 
average length by 1.3 nm (Figure 3, Table 1) as evidenced by an increase in hydrodynamic radius.  

Together, these results indicate that, in comparison to physiological pH, L-selectin can extend its 
conformation under acidic pH, which is consistent with an observed enhancement in CD34+ cell 
adhesion. An extended conformation of L-selectin can allow the protein to bind to its ligands more 
strongly and at higher frequency, as evidenced by a lower CD34+ cell rolling velocity and increased 
flux (Figure 4). 
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Figure 3. Extension of E-, L-, and P-selectin protein size (in nanometers) upon exposure to 
acidic (pH 6.6) conditions. Changes in E-, L-, and P-selectin protein size were determined 
using dynamic light scattering by subtracting the mean particle radius of selectin-coated 
liposomes under neutral conditions from the mean particle radius of selectin-coated 
liposomes under acidic conditions. * p < 0.05. NS = not significant. 

 

Table 1. Mean particle radius and polydispersity index (PDI) measurements of  
selectin-coated liposome samples under neutral and acidic conditions. Data reported as 
mean ± standard deviation. Results recorded in triplicate. 

Lyposome Type Radius (nm) pH 7.4 Radius (nm) pH 6.6 PDI pH 7.4 PDI pH 6.6 
PEG only 52.33 ± 0.83 52.99 ± 0.95 0.103 ± 0.008 0.102 ± 0.013 
PEG + ES 74.06 ± 0.94 74.86 ± 1.18 0.101 ± 0.008 0.105 ± 0.007 
PEG + LS 61.10 ± 0.99 63.08 ± 0.94 0.102 ± 0.011 0.101 ± 0.007 
PEG + PS 83.65 ± 1.17 84.57 ± 0.83 0.108 ± 0.007 0.106 ± 0.009 

Figure 4. Schematic of increased HSPC adhesion to L-selectin in high affinity, extended 
conformation under acidic pH (B) compared to the lower affinity, bent conformation (A).  
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Figure 4. Cont. 

 

3.3. L-Selectin Coated-Microtube Captures Human BM CD34+ HSPCs 

Selectin-coated microdevices have been shown to effectively capture viable stem cells [38,39] and 
circulating tumor cells from whole blood with high yield [40]. To mimic the physiological 
phenomenon of L-selectin:ligand interaction under acidic conditions for the isolation and enrichment 
of CD34+ bone marrow cells, low-density bone marrow cells isolated from healthy adult donors  
using Ficoll were perfused at a concentration 5 × 106 cells/ml through L-selectin coated microtubes  
(50 µg/mL) at 1.0 dyn/cm2 in PBS buffer supplemented with 2 mM Ca2+. Adherent cells were 
dislodged from the surface using both buffer supplemented with 2 mM EDTA and air embolism. 
Isolated cells were stained using an anti-CD34 monoclonal antibody. L-selectin coated microtubes 
were found to capture and enrich CD34+ HSPCs from the bone marrow at >19% purity (Figure 5). 

Figure 5. L-selectin mediated isolation of CD34+ cells from patient bone marrow samples 
under acidic pH. Captured cells were labeled using a mouse anti-human CD34 monoclonal 
antibody. Flow cytometry plots are a representation of experiments done in triplicate.  
SSC = side scatter. 
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4. Conclusions 

During tissue inflammation, extracellular pH can become increasingly acidic. Furthermore, it is also 
known that HSPCs are recruited to sites of inflammation via selectin-mediated cell rolling. In this study, we 
showed that acidic extracellular pH enhances CD34+ HSPCs adhesion to L-selectin, consistent with a 
measurable extended conformational change of L-selectin to a “high affinity” orientation in acidic pH. This 
conformational change is taken to increase the frequency of L-selectin:ligand binding. These biophysical 
insights were applied to the isolation and enrichment of CD34+ HSPCs from bone marrow using an  
L-selectin coated microtube. The described biomimetic technique allows for both rapid and simple 
isolation of viable CD34+ HSPCs from patient bone marrow. 
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