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Abstract
Purpose: To evaluate dose-volume histogram (DVH) prediction from prior radiation therapy data.
Methods and Materials: An Oncospace radiation therapy database was constructed including images, structures, and dose
distributions for patients with advanced lung cancer. DVH data was queried for total lungs, esophagus, heart, and external body
contours. Each query returned DVH data for the N-most similar organs at risk (OARs) based on OAR-to-planning-target-volume
(PTV) geometry via the overlap volume histogram (OVH). The DVHs for 5, 20, and 50 of the most similar OVHs were returned for
each OAR for each patient. The OVH(0cm) is the relative volume of the OAR overlapping with the PTV, and the OVH(2cm) is the
relative volume of the OAR 2 cm away from the PTV. The OVH(cm) and DVH(%) queried from the database were separated into
interquartile ranges (IQRs), nonoutlier ranges (NORs) (equal to 3 £ IQR), and the average database DVH (DVH-DB) computed from
the NOR data. The ability to predict the clinically delivered DVH was evaluated based on percentiles and differences between the
DVH-DB and the clinical DVH (DVH-CL) for a varying number of returned patient DVHs for a subset of patients.
Results: The ability to predict the clinically delivered DVH was excellent in the lungs and body; the IQR and NOR were <4% and
<16%, respectively, in the lungs and <1% and <5%, respectively, in the body at all distances less than 2 cm from the PTV. For 21/23
patients considered, the differences in lung DVH-DB and DVH-CL were <4.6% and in 14/23 cases, <3%. In esophagus and heart, the
ability to predict DVH-CL was weaker, with mean DVH differences >10% for 12/23 esophagi and 10/23 hearts. In esophagus and heart
queries, the NOR was often 10% to 100% volume in dose ranges between 0% and 50% of prescription, independent of the number of
patients queried.
Conclusions: Using prior data to predict clinical dosimetry is increasingly of interest, but model- and data-driven methods have
limitations if based on limited data sets. This study’s results showed that prediction may be reasonable in organs containing tumors
with known overlap, but for nonoverlapped OARs, planning preference and plan design may dominate the clinical dose.
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article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Radiation therapy (RT) treatment planning is evolving
from a subjective process that relies on planner and physi-
cian expertise1 toward automation.2 The planning process
uses sets of population- or model-derived DVH objectives
and plan quality may be improved through manual effort
and the planner’s level of experience.3 Recently, quantita-
tive approaches to predict dose and dose-volume histo-
grams (DVHs) based on models,4,5 previous patient
r
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data,2,6-10 geometric relationships,11-13 and other factors
are being used to simplify (or automate) the planning pro-
cess. There is significant ongoing effort in treatment plan-
ning automation based on prior data and big data2,6;
however, dose or DVH prediction may not show achiev-
able dosimetry. As an example, consider a dataset trained
on arc-based delivery; a very low dose (or 0-dose) in an
organ at risk (OAR) may not be achievable. However, a
fixed-beam approach can conformally avoid this OAR
and trivially achieve0-dose. A tangible example is heart
dose in modern breast RT. A model trained on arc deliv-
ery will not show the achievable minimum heart dose.
Similarly, anterior posterior (AP-PA) 3-dimensional (3D)
conformal RT often maximizes the 0 dose-volume (and
minimizes the irradiated volume) in photon therapy. If
AP-PA plans are not included in data- or model-driven
prediction, cognitive bias is introduced. The concept of
standardizing treatment plans via predicted dosimetry
has the potential to introduce cognitive bias in clinical
plan selection and may blind clinicians to achievable
dosimetry if models are constructed based on limited
data. This work shows DVH prediction in an array of
plan techniques for advanced lung cancer.

Wu et al14 used a database of geometric and dosimetric
data to estimate achievable DVH objectives for new
patients, and in previous work introduced the overlap vol-
ume histogram (OVH).12 OVH defines the spatial rela-
tionship between OARs and the planning target volume
(PTV) in a method analogous to the DVH and was shown
to be a powerful predictor of achievable dose.12 Yuan
et al11 used an array of patient anatomic features and their
relation to asses OAR dose sparing in intensity modulated
RT (IMRT) using the distance-to-target histogram (DTH).
DTH was previously introduced by Zhu et al15 and is sim-
ilar to OVH; it is the fractional volume of an OAR as a
function of distance from the PTV. If an OAR voxel is
within the PTV, the distance is negative. The DTH and
OVH are equivalent when the Euclidean form of the dis-
tance function is used. Yuan et al11 found that the median
distance between the OAR and PTV, the portion of the
OAR volume within distance-range, and other volumetric
factors were correlated to dose.

Model-based predictions1,5 are derived from assump-
tions about achievable dose or from prior data. Several
studies have examined RapidPlan Knowledge-Based Plan-
ning (Varian Medical Systems, Palo Alto, California) for
varying numbers of patients,2,9,16 with a general consen-
sus that 30 to 60 patients are sufficient to construct a reli-
able model. However, the ability to predict probable dose
should be differentiated from achievable dose used for
quality assurance and plan optimization. The probable
dose is a function of the number of input patients with
data quartiles defined by the consistency of input (eg, all
patients in the model are treated via arc therapy). The
achievable dose can be shown with as few as 2 patients
(eg, AP-PA achieves a dose of 0 in an OAR, or arc
provides the most conformality). Labeling prior data as
similar or dissimilar in DVH prediction will introduce
cognitive bias in individual patients and across patient
populations if those data are used in plan optimization. It
is not surprising that 30 to 60 patients labeled as similar
generate a reliable model, but the inherent bias in that
model is unknown. Prior-data and model-based methods
of DVH prediction present powerful objective ways to
assess the quality of treatment plans through prior
RT.1,12,15,17,18 However, the underlying variables that
determine plan quality and optimality are unknown for
data-based methods. This study evaluated the accuracy of
DVH prediction based on anatomic similarity in a data-
base of patients with advanced lung cancer.
Methods and Materials
Oncospace construction and OVH

A database of 130 patients with advanced-stage lung
cancer were analyzed using an Oncospace database. Onco-
space is a big-data platform that organizes RT data includ-
ing segmentations, dose distributions, and clinical
data.19,20 The database has been shown through various
studies to help assess plan quality and even predict RT-
induced complications.13-17 We constructed a database for
advanced lung cancer, including various delivery types,
prescription doses, and adaptive strategies as performed
clinically from 2010 to 2018 at the University of Virginia
Health System Department of Radiation Oncology (Char-
lottesville, VA). Delivery types included AP-PA/oblique
3D plans, multibeam 3D conformal plans, multibeam
IMRT treatment plans, TomoTherapy helical plans (Accu-
ray Inc, Sunnyvale, CA), and arc delivery on Varian linear
accelerators (Varian Medical Systems). Prescription doses
ranged from 60 to 72 Gy, delivered at the conventional 2
Gy per fraction. Approximately 30% of the patients were
adaptively replanned owing to tumor regression; in these
cases, the composite dose was evaluated on the final com-
puted tomography scan. The database also included clini-
cally used segmentations of the PTV, the external body
contour, the lungs, esophagus, and heart for all patients.

To evaluate the predictive power of our database for a
variety of input parameters, we queried and compared
data for a 23-patient subset. These patients were chosen
to represent an array of tumor location and delivery tech-
niques. For each of the patient OAR and PTV segmenta-
tions, an input OVH was computed. The most similar
database OVH was identified via a similarity score
between the current patient and all patients in the data-
base. The similarity score was the sum of the Euclidean
distance between the input OVH and the database OVH
at 2 distances: 0 cm and 2 cm. The OVH at 0 cm defined
the volume overlap between the PTV and the OAR; the
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OVH at 2 cm defined the relative volume of the OAR
2 cm away from the PTV. A similarity score of 0 meant
an exact match between the current patient and the data-
base patient, and a similarity score of 2 meant there was
100% difference in the OVH at 0 cm and at 2 cm for the
current patient and the database patient. For each input
OVH, the N-most similar (Nsimilar) organ and PTV
OVHs and the corresponding delivered DVHs for those
structures were returned from the database.
Validating the OVH query

To validate the 2-point OVH query method, we
returned a varying number of the most similar organs
and reported the OVH variations between the input OVH
(the queried patient’s organ OVH) and the database OVH
(the returned OVHs of all similar organs). The results are
shown as the OVH variation as a function of Nsimilar = 5,
20, or 50 organs and the distance from the PTV, from
−2 cm (overlapping the PTV) to 10 cm away from the
PTV. Of note, the similarity was computed for organs,
not for patients, so the 20 most similar hearts were not
necessarily the same patients as the 20 most similar lungs.

The 2-point OVH query was derived based on simple
radiation dosimetry concepts. At many radiation treat-
ment sites, in advanced lung cancer, the prescription dose
to the target is uniform. Therefore, the relative OAR vol-
ume at 100% dose, or DVH(100%), should be equal to
OVH(0 cm). Because the target dose was uniform, OVH
(<0 cm) did not provide additional information about the
OAR-DVH. The OVH(2 cm) was the relative volume
2 cm away from the PTV. This value should be predictive
of low dose-volume levels, eg, DVH(30%) to DVH(70%),
based on varying target volume size and other factors. We
anticipated that the OVH(2 cm) would be heavily influ-
enced by planning parameters including beam arrange-
ments and preferential sparing of OARs.

The similarity metric used to define the most similar
patients in the database was the sum of Euclidean distan-
ces at 0 cm and 2 cm with equal weighting. Variations in
OVH as a function of varying Nsimilar for each of the 4
OARs are reported in the results.
Predicting DVH

The ability to predict the DVH from the database
based on OVH similarity is also reported in the results.
The clinically planned DVH (DVH-CL) and the predicted
database DVH (DVH-DB) based on a query of the N-
most similar organs were compared. An algorithm was
developed to simplify the DVH-DB from the N-most sim-
ilar organs to interpret the potentially large amount of
data compared with a single clinical plan. For a return of
20 patients, there were thousands of DVH points with
variable prescription dose to evaluate for each OAR. To
address variable prescription doses in the database (rang-
ing from 60-72 Gy with various PTV levels), all DVHs
were converted to relative dose via normalization at PTV-
D50 = 100%. The D50 was chosen owing to stability
across patient populations. Other metrics such as D95 or
D5 can vary substantially owing to minor changes in the
DVH shoulder or tail. To further simplify the data and
create a meaningful and clinically useful presentation, the
N-most similar DVHs were combined using box-and-
whisker plots on fixed dose-bin sizes. The use of big data
and of quartiles to create weighted experience scores is
discussed in Mayo et al.6
Combining prior DVH data to create predicted DVH
To create a predicted DVH by combining prior DVH

data, each DVH was first normalized based on the PTV-
D50. Ten dose bins were created on the relative dose
interval 0% to 120%. For each bin, the 25th and 75th per-
centile data and the interquartile range (IQR) of all DVH
data were computed (IQR = 75th − 25th percentile). The
upper and lower whiskers were defined as 1.5 times the
IQR above the 25th percentile and below the 75th percen-
tile. Outliers, defined as all data points above or below the
whiskers, were removed. The average DVH was computed
from the nonoutlier data. The 10 box plots and the aver-
age DVH on the relative volume versus the relative dose
DVH plot were displayed.

This algorithm allowed for simplification and an intui-
tive understanding of the current DVH compared with
data from Oncospace including statistical analysis. Com-
pared with clinical treatment plans, this method allows
for visual comparison of the current plan compared to
prior data in terms of quartiles.

The numerical difference between the DVH-CL and
DVH-DB at the intervals of the 10 dose bins is given in
the results. We evaluated the ability to predict the DVH-
CL based on quartile data and the error between the
DVH-CL and DVH-DB.
Results
Variations in OVH

The OVH variation as a function of increasing Nsimilar

patient orgnas and distance from the PTV for the 4 OARs
is shown in Figure 1. Intuitively, the variation of the data-
base OVH should increase as the distance from the PTV
increases and the number of patients queried increases.
Using an Nsimilar of 5 or 20 resulted in OVH differences
of less than 10% for distances up to 2 cm for all OARs
considered. However, increasing the Nsimilar to 50 (about
40% of the database) resulted in deviations of more than
10% in the OVH at 2 cm from the PTV, and in some



Fig. 1 The variation in overlap volume histogram (OVH) returned from the Oncospace database, as a function of increasing number
of similar patients returned. The esophagus OVH (top left) had the most variation, with interquartile ranges of 25% to 75% exceeding
5% volume at distances greater than 1 cm from the planning target volume (PTV). The external OVH is the most consistent, which
reflects similar patient and PTV sizes in the database.
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cases, variations of more than 10% in the OVH at 0 cm to
1 cm from the PTV. In our database of 130 patients, using
5 to 20 of the most similar organs returned a reasonably
small OVH variation and therefore should result in a rea-
sonable DVH estimation.

The variation in the esophagus was the largest
among all organs considered, but the OVH IQR
remained less than 20% for an Nsimilar of 20 or fewer
organs at all distances. The esophagus OVH nonoutlier
range (NOR) increased to more than 40% at 1.0 cm
from the PTV and remained greater than 40% for the
remainder of the distance for all values of Nsimilar con-
sidered. The OVH IQR at a distance of 0.0 cm
increased from less than 1% for 5 organs returned to
1% for 20 organs returned and to 5% for 50 organs
returned. The IQR at a distance of 2.0 cm increased
from 5% for 5 patients to 8% for 20 patients and to
25% for 50 patients. Beyond 2.0 cm, the IQR for 5
patients increased to approximately 10%; for 20
patients, to 20%; and for 50 patients, to approximately
35%. These results imply that a query of 5 to 20 of
the most similar organs in this database gives a rea-
sonable OVH similarity at distances between 0 to
2 cm from the PTV with values in the range of 10%
to 20%.

Heart and lung OVH variations were similar and cor-
related with the increasing Nsimilar and distance from the
PTV, but the IQR was less than 20% for distances ranging
from −2 cm to 10 cm when Nsimilar was 20 or less, and
the NOR was less than 40% at 2 cm with an Nsimilar of 20
or fewer patients. The IQR of the OVH variation at dis-
tances of 0 to 2 cm remained less than 5% for an Nsimilar

of 5 patients or 20 patients. Like the results for the esoph-
agus, these data support returning 5 to 20 of the most
similar hearts and lungs in the database to possibly pre-
dict DVH accurately.

The external body OVH variation was small, indepen-
dent of the number of patients queried. In external



Fig. 2 The clinically delivered dose-volume histogram (DVH) (red) is compared with the predicted database DVH (DVH-DB) for 3
patients (1 per row) and 4 organs at risk per patient. The top row shows a clinical plan superior to the average DVH-DB, the middle
row shows a clinical plan inferior to the average DVH-DB, and the bottom row shows a clinical DVH approximately equivalent to the
DVH-DB. However, when considering the nonoutlier range of the data from the database, it is clear that a significant reduction in the
heart and esophagus dose may be possible.
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contours, the NOR was less than 5% and less than 20% for
distances up to 5 cm from the PTV. The IQR at a distance
of 0.0 cm remained less than 1% for 5 patients and for 20
patients and increased to just 2% for 50 patients.
Prediction of DVH

In many cases, there were large discrepancies between the
clinically delivered DVH-CL and DVH-DB in the esophagus
and heart, but lung and external DVHs were predicted
robustly in all cases. The average difference between DVH-
CL and DVH-DB in external contour was less than 7% for
all cases, and less than 4.6% in 21 of 23. The average error in
the predicted DVH for the lungs was less than 3% for 14 of
23 cases. In the esophagus and heart, the average error was
more than 10% for 12 of 23 esophagi and 10 of 23 hearts.
The results indicate a strong predictive accuracy for DVH
prediction in organs that contain the PTV, such as the lungs
and the external contour, but not for organs that do not nec-
essarily overlap the PTV.

Three patient cases are shown in Figure 2 (1 in each
row), each comparing the DVH-CL and DVH-DB que-
ried with an Nsimilar of 20 organs. The quartiles for the
predicted DVH are shown via box plots; the mean pre-
dicted DVH (blue) and clinical DVH (red) are shown.
Figure 2 shows the ability to identify superior (top row),
inferior (middle row), and well-predicted (bottom row)
DVHs for 3 different patients compared with the average
DVH-DB. The top row shows a DVH-CL less than the
average DVH-DB for all OARs; the second row shows a
DVH-CL greater than the average DVH-DB for all OARs
(indicating inferiority); and the third row shows minimal
difference between the DVH-CL and the average DVH-
DB. However, the IQR and NOR in the predictions for
the esophagus and heart indicate there is an ability to
reduce the DVH toward 0-dose (or avoid the OAR
entirely). This is not the case for the external contour and
the lungs which encompass the PTV. The difference
between the achievable dose in OARs that contain the
PTV (lungs and external contour) and those that do not
(heart and esophagus) is apparent from Figure 2.

The underlying variables that determine the clinical
DVH may not be related to geometric similarity in OARs
that do not contain the PTV, as shown in Figure 2. In the
case of the heart, the OVH variation was very small (<5%
IQR for distances up to 5 cm from the PTV), but our abil-
ity to predict a useful DVH range was very limited at
doses less than 50% of prescription.

The clinical and predicted DVHs for 1 patient across var-
iable Nsimilar OARs pulled from Oncospace are shown in
Figure 3. Despite the large variation that was shown in OVH
for 50 patients, the difference displayed between the 5 most
similar DVHs versus the 50 most similar DVHs (including
4% vs 40% of the entire database) was minimal, with the
IQRs and NORs almost indistinguishable in this case.

With an Nsimilar of 5, the heart clinical DVH at a 50%
dose was in the 83rd percentile, and this increased to the



Fig. 3 The clinical dose-volume histogram (DVH) is compared with the database-derived DVH for a single patient. The columns
increase the number of patients included in the query of similar patient data from 5 (left column) to 50 (right column). In this case, the
clinical DVH is worse (or higher) than the average database DVH in the heart and esophagus.
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90th percentile when the Nsimilar was 50. This means that
83% of the DVH-DB datapoints were better than the clin-
ical plan at that dose level using 5 patients, and increasing
the amount of data tenfold increased the confidence that
potentially better plans may exist. Comparing the left col-
umn of Figure 3 to the right column (5 patients vs 50
patients), visually, there was little difference in the IQR
and NOR at all dose levels for all OARs. For this patient,
whether 4% or 40% of the database was queried, Figure 3
shows that the clinical plan (or the prospective clinical
plan, in the case of a new patient) was inferior to the data-
base averages.

A similar result is shown in Figure 4, but in this case,
the clinical DVH was superior to most of the database
DVH data, independent of the number of patients
included. In this case, the DVH-CL remained within the
IQR for all doses and all OARs. The DVH-CL of the
esophagus, with an Nsimilar of 5 and at 50% of the pre-
scription dose, was within the 18th percentile, indicating
a good clinical plan. For an Nsimilar of 50, the percentile of
the DVH-CL increased slightly to the 20th percentile. In
the case of the heart, which has the largest IQR and NOR,
the variation in the percentile was greater between Nsimilar

cases, with the percentile initially at 21% (at an Nsimilar of
5) but then increasing to 26% (at an Nsimilar of 50) com-
pared with the distribution of similar plans.
These 2 cases stand out to show the ease of identify-
ing clinical plans that were superior to database averages
(Fig 3) and inferior to database averages (Fig 4). In pro-
spective treatment planning and in the design of optimi-
zation objectives, these cases may support clinical
decision making. In both patients, the heart had the larg-
est initial IQR, but this was reduced as the percentage of
the prescription dose increased. The esophagus IQR was
relatively large at a low dose but remained constant until
the dose approached the Dmax. The large IQR for both
the heart and the esophagus shows that geometric simi-
larity between organs may be a weak surrogate for dose
prediction. Large variations were shown in the OVH for
the esophagus but not for the heart, so OVH variation
did not predict large deviation in the DVH. The lungs
and external contour had a larger IQR at low doses, and
this is indicative of planning technique. Simple 3D-beam
arrangements minimize low dose spread compared with
arc or helical delivery.
Discussion
Achievable dosimetry may not be directly related to the
geometric relationship between the PTV and OARs.
Instead, the dominant factor in OAR dosimetry may be



Fig. 4 The clinical dose-volume histogram (DVH) is compared with the database derived DVH for a single patient. The columns
increase the number of patients included in the query of similar patient data from 5 (left column) to 50 (right column). In this case, the
clinical DVH is better (or lower) than the average database DVH in the heart and esophagus.
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planning parameters, including optimization preference
and delivery techniques. The OVH variations found in
this study indicate that consistent interpatient OAR-PTV
geometry can be identified with 5 to 20 patients in a rela-
tively small database. However, the ability to predict
DVH does not appear to be predicated on geometric simi-
larity measured in the OVH. Whether 5 or 50 patients
were included in the DVH prediction, we found an ability
to predict dose in OARs that encompassed the PTV accu-
rately (in this case, lungs and external contours were con-
sistently predicted to within approximately 5%). For
organs that did not necessarily overlap the target, there
existed significant variations in achievable dosimetry at
low and intermediate dose levels in the patients consid-
ered.

This study tried to correlate geometric similarity with
the ability to predict DVH. Previous approaches have
developed predictions based on models or prior data with
or without specific strategies to address anatomic similari-
ties in patients.2,4,8-10,13,15-17,21 However, none of these
methods (including those in the current study) have
accounted for clinical decision making including delivery
technique and optimization preferences among multiple
OARs. Multicriteria optimization considers the trade-offs
in OAR dosimetry inherently; therefore, a range in the
achievable dose is estimated based on variations in impor-
tance weighting.22−28 Trade-offs are inherently built into
current treatment planning and plan-selection
approaches, although these trade-offs are limited by deliv-
ery technique and patient-specific dose limits.29 Ulti-
mately, the optimal plan is defined by the patient’s
radiation oncologist with a complete depiction of the
patient condition; current algorithms do not incorporate
all of the relevant clinical variables in defining optimality.
This is a critical limitation of the current study. We used
OAR-PTV geometry for DVH prediction without simul-
taneously assessing the geometry of all OARs. Clinical
variables such as patient age and lung function were
completely ignored in our DVH lookup. In future work,
combining the geometry of multiple OARs with prior
data may reveal clinical preference between different
OARs.

This study demonstrated that data-driven prediction of
the DVH is reasonable for OARs that encompass the
PTV. This ability could be due to physical limits in dose
delivery and conservation of the integral dose around the
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target. Reese et al30 showed that independent of the deliv-
ery technique and organ preference, there is conservation
of the integral dose in concentric shells around a target.
In practice, however, significant integral dose variations
are observed in different modalities.31-33 The integral dose
can be represented by the external DVH, and this study’s
data showed large variations in the low-dose DVH in the
external contour. This result is an obvious one when heli-
cal-delivered tomotherapy plans are included with 3D
techniques including as few as 4 fixed beams.

Our approach did not explicitly account for variations
in delivery techniques. It may be more valuable to use
class-based prior dosimetry, with each class consisting
only of plans of similar delivery techniques. Knowledge-
based planning may only consider one delivery technique
and clinical site.2 However, such a technique is funda-
mentally flawed if the goal is to show achievable dosime-
try. For example, by only including helical or arc
delivered treatments, the ability to significantly reduce the
low dose will not be shown. This study’s results are based
on single-institution data and a modest sample of 130
patients with a similar diagnosis treated with photon ther-
apy. These factors will introduce cognitive bias in our
interpretation of quality treatment plans, which may vary
between clinicians and institutions. However, using our
method of data query and DVH data reduction, interphy-
sician and interinstitution plan quality may be readily
shown according to data quartiles.

As far as limiting prior data to subsets of similar
patients, we found that varying the number of patients
did not affect our ability to predict DVH and determine
whether a plan was acceptable or an outlier. Whether we
included the 5 or the 50 most similar patients, the study
findings showed consistent information. Other research-
ers have suggested that robust and larger databases are
needed during knowledge-based planning; Ge and Wu16

evaluated more than 70 articles on this topic and con-
cluded that “larger data sets collected through multi-insti-
tutional collaboration will enable the development of
more advanced models,” but this study’s data suggest
smaller, more focused models that capture variations in
planning strategies may be more valuable in showing
achievable dose than larger sets with similar planning
approaches. Specific to focused models, all models should
show that OARs that are adjacent to but not overlapping
the PTV can be completely avoided via beam placement
or preference weighting to within the geometric penum-
bra of the beam and energy.
Conclusions
Use of prior patient data for prospective patient treat-
ment is an area of increased interest, but there are several
hurdles and limitations that could affect the predictive
power of model and data-driven approaches. Assessment
of overall plan quality is reasonable using population
averages of prior RT data. Prospective planning (or treat-
ment plan optimization) based on prior data, however,
has the potential to adversely affect personalized patient
care and shift plans toward population averages. In plan
optimization, achievable dose is more important than
population averages. This study’s data showed that DVH
prediction is reasonable in organs that contain the tumor
and have a known overlap.
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