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Simple Summary: Our research team has identified the cholecystokinin-B receptor (or CCK-BR) as
a novel target for treatment of pancreatic cancer. CCK-BRs are over-expressed in pancreatic cancer
and activation stimulates growth in cell culture and in animal models. CCK-BRs are also expressed
on pancreatic stellate cells—or the fibroblasts that are responsible for the dense fibrosis in the
tumor microenvironment that impedes the penetration of chemotherapy. We show strong evidence
that treatment with a CCK receptor antagonist, proglumide, decreases fibrosis in the pancreatic
tumor microenvironment and increases the influx of T-cells rendering chemotherapy-resistant cancer,
sensitive to gemcitabine. Mice treated with the combination therapy had fewer metastases and
greater survival. Tumors from these mice had higher gemcitabine levels and novel differentially
expressed genes by RNA-Seq. Proglumide is an older drug that was developed many years ago for
peptic ulcer disease but is no longer in use. Repurposing this older drug may improve survival from
this recalcitrant malignancy.

Abstract: Pancreatic cancer is resistant to chemotherapy in part due to the dense desmoplastic fibrosis
surrounding the tumor, the immunosuppressive cells in the tumor microenvironment (TME), and
the early rate of metastases. In this study, we examined the effects of a CCK receptor antagonist,
proglumide, alone and in combination with gemcitabine in murine models of pancreatic cancer.
Tumor growth rate, metastases, and survival were assessed in mice bearing syngeneic murine or
human pancreatic tumors treated with PBS (control), gemcitabine, proglumide, or the combination
of gemcitabine and proglumide. Excised tumors were evaluated histologically for fibrosis, immune
cells, molecular markers, and uptake of chemotherapy by mass spectroscopy. Peripheral blood was
analyzed with a microRNAs biomarker panel associated with fibrosis and oncogenesis. Differentially
expressed genes between tumors of mice treated with gemcitabine monotherapy and combination
therapy were compared by RNAseq. When given in combination the two compounds exhibited
inhibitory effects by decreasing tumor growth rate by 70%, metastases, and prolonging survival.
Proglumide monotherapy altered the TME by decreasing fibrosis, increasing intratumoral CD8+

T-cells, and decreasing arginase-positive cells, thus rendering the tumor sensitive to chemotherapy.
Proglumide altered the expression of genes involved in fibrosis, epithelial–mesenchymal transition,
and invasion. CCK-receptor antagonism with proglumide renders pancreatic cancer susceptible to
chemotherapy.

Keywords: metastases; pancreatic cancer; tumor microenvironment; epithelial-to-mesenchymal
transition; fibrosis; CCK receptor; chemotherapy
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1. Introduction

In spite of the success in the diagnosis and treatment of other cancers over the years,
little improvement has occurred in the survival of pancreatic ductal adenocarcinoma
(PDAC) [1], which carries the poorest prognosis of all gastrointestinal malignancies [2].
The reasons for the poor survival rates reported for PDAC include the inability to diagnose
this disease at early stages, its propensity to metastasize quickly, and its relative resistance
to both standard chemotherapy [3] and immunotherapy regimens [4]. Although pancreatic
cancer cells may respond to chemotherapeutic agents in cell culture, many of these drugs
are less effective in vivo. One probable explanation for the resistant nature of PDAC
in the clinic is the dense fibrotic tumor microenvironment (TME) associated with this
malignancy [5]. Pancreatic stellate cells (PSCs) have been identified as the specific cellular
source of extracellular matrix (ECM) proteins in the PDAC TME [6]. When PSCs are
stimulated, they produce collagen and the resultant dense stroma compresses blood vessels,
leading to reduced perfusion that ultimately impedes the delivery of drugs to neoplastic
cells and prevents the influx of cytotoxic killer T cells [7].

Gemcitabine (2′,2′-difluorodeoxycytidine; dFdC) combined with nab-paclitaxel [8] or
the FOLFIRINOX regimen (folinic acid, fluorouracil, irinotecan, and oxaliplatin) [9] are the
current standard first-line therapies for advanced PDAC; however, the median survival
with these therapies is still less than one year. Since fibrosis and the immunosuppressive
nature of the TME have been the major focus for impaired uptake and lack of efficacy of
chemotherapeutic agents in PDAC, investigators have turned their attention to strategies
that remodel the TME to render tumors more susceptible to chemotherapy. Investiga-
tors used hyaluronidase in an attempt to decrease tumor-associated fibrosis and improve
chemotherapy delivery [10]. Unfortunately, PEGylated recombinant human hyaluronidase
(PEGPH20) combined with nab-paclitaxel and gemcitabine compared to the chemother-
apy alone recently failed in the phase 3 HALO-301 clinical trial, and the PEGPH20 arm
was associated with significant increase in toxicity, especially venous thromboembolic
events [11]. Others have tried to alter the immune cell signature or immunosuppressive
TME of PDAC with compounds that block the CCL2-CCR2 chemokine axis from tumor-
associated macrophages (TAMs), but these agents have not improved efficacy over standard
of care [12]. Recently another immune/cytokine alternating therapy using PEGylated IL-10
and FOLFOX (SEQUOIA trial) also failed as second-line therapy in PDAC [13]. Therefore,
novel therapeutic approaches are needed to treat this disease.

Pancreatic cancer and its TME are very complex, and these clinical investigations
have revealed to us that interruption of one component of the TME alone is not adequate
to inhibit growth and metastases of this aggressive tumor. The various cells of the TME
crosstalk through signaling mechanisms and metabolic pathways [14], and blockade of just
one cell type seems to enhance immune escape mechanisms, which makes pancreatic cancer
very difficult to treat [15]. We have been studying the role of a G-protein coupled receptor,
the cholecystokinin-B receptor (CCK-BR), and its signaling pathways in pancreatic cancer.
Two classic CCK receptors, the CCK-A (or CCK1) and CCK-B (or CCK2) receptors [16] have
been identified. The CCK-AR has a high affinity for only sulfated CCK and a low affinity
for gastrin; however, the CCK-BR has equal binding affinity (KD~1 nM) for both CCK and
gastrin [16]. A number of CCK receptor-specific antagonists have been developed that have
affinity to either the CCK-AR or CCK-BR [17]. Proglumide [18] is a nonselective CCK recep-
tor antagonist with properties that inhibit activity for both the CCK-AR and the CCK-BR.
CCK receptors become overexpressed in precancerous pancreatic intraepithelial neoplasia
(PanIN) lesions [19] and are markedly overexpressed in cancer [20]. Growth of pancreatic
cancer in vitro and in vivo is blocked by CCK receptor antagonists [21,22]. CCK receptors
have also been identified on fibroblasts [23] and pancreatic stellate cells (PSCs) [24,25].
When the CCK receptors on these cells are stimulated, the cells become activated to pro-
duce desmoplastic stroma characteristic of the TME in pancreatic cancer [6,26]. Using the
mutant KRAS transgenic mouse model (Pdx1-Cre/LSL-KrasG12D) [19], we showed that
proglumide-treated mice exhibited regression and failure of PanIN lesions to progress to
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cancer, when compared to mice treated with vehicle control. Furthermore, mice treated
with proglumide had significantly less fibrosis in the TME attributed to blockade of the
CCK-receptor on the PSCs. Since CCK receptors are overexpressed and involved with
PDAC growth and expressed on fibroblasts of the TME, we hypothesized that CCK re-
ceptor blockade would improve the efficacy of gemcitabine in PDAC by modifying the
pro-tumorigenic characteristics within the TME.

2. Materials and Methods
2.1. Cell Lines and Animal Models

Murine pancreatic cancer cells, mT3-2D (mT3), were obtained from Dr. David Tuve-
son’s laboratory (Cold Spring Harbor, NY, USA) [27]. These cells are syngeneic to C57BL/6
mice; therefore, they can be used in immunocompetent PDAC model(s). The mT3-2D
murine tumor recapitulates human PDAC in that it grows rapidly, has mutant KrasG12D,
and develops the typical dense fibrotic stroma in the TME. PANC-1 human pancreatic
cancer cell lines (ATC; Manassas, VA, USA) were used in athymic nude mice. All cells were
cultured in DMEM media supplemented with 10% FBS and 1% pen/strep.

C57BL/6 mice and athymic nude mice were purchased from the Charles Rivers
(Frederick, MD, USA). All murine studies were performed ethically and approved by the
Institutional Animal Care and Use Committee (IACUC) at Georgetown University.

2.2. Study Design

Two different animal models were used. In the first model (Supplementary Materials
Figure S1A), 500,000 mT3-2D cells were injected subcutaneously into the right flank of
40 female C57BL/6 mice. Tumors were measured weekly using a caliper and the volumes
were calculated (L×W2 × 0.5). Mice were euthanized per the IACUC protocol when the tu-
mor diameter reached 20 mm. In the second model (Supplementary Material Figure S1B),
800,000 PANC-1 cells that were luciferase transfected were injected orthotopically into
the pancreas of 40 male athymic nude mice. Tumor size was monitored every two weeks
by measuring luciferase epifluorescence (after 10 mg/mL of luciferin IP) using an IVIS
Lumina III in Vivo Optical Imaging System (Perkin Elmer, Waltham, MA, USA). For both
experimental models, one week after the mice had measurable tumors (baseline), mice
were divided into 4 groups (n = 10 mice each) with equal mean tumor volumes. Treat-
ment groups included: PBS control (100 µL IP twice weekly); proglumide in drinking
water (0.1 mg/mL); gemcitabine (100 mg/kg, 100 µL IP twice weekly); and combination
of gemcitabine (100 mg/kg, 100 µL IP twice weekly) and proglumide in drinking water
(0.1 mg/mL).

2.3. Tissue Analysis by Histology and Immunohistochemistry (IHC)

Paraffin-embedded tumor sections (5 µm) from all treatment groups were mounted
on slides. Metastases were all confirmed by hematoxylin & eosin (H&E) staining. Slides
were reacted with Masson’s trichrome stain to assess fibrosis and images were taken on
an Olympus BX61 microscope with a DP73 camera (n = 10 per slide). Tissue sections were
incubated with primary antibodies for CD8+ T-cells (Cell Signaling Technology, Danvers,
MA, USA, Cat #98941; 1:25) overnight at 4 ◦C. Slides were then exposed to the appropriate
horseradish peroxidase (HRP) labeled polymer for 30 min and diaminobenzidine (DAB)
chromagen (Dako) for 5 min. Slides were counterstained with hematoxylin (Sigma-Aldrich,
St. Louis, MO, USA), blued in 1% ammonium hydroxide, dehydrated, and mounted with
Acrymount. Arginase-positive cells were identified with reacting tissue sections with
an arginase antibody (ThermoFisher, Waltham, MA, USA, Cat #PA5-29645) at a dilution
1:1800 for 1 h at room temperature. Slides were exposed to the appropriate HRP-labeled
polymer for 30 min. The antibody reaction was detected using DAB as chromogen. Sections
were counterstained with hematoxylin to assess arginase-positive cells. IHC images were
captured using a 10× objective lens on an Olympus BX61 microscope with a DP73 camera
(n = 10 per group). Analysis of fibrosis and arginase expression was completed using
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software by ImageJ. CD8+ T cells were counted by calculating the average counts in 4 high
powered fields (HPF).

2.4. Western Immunoblotting

Tumor tissue was homogenized in RIPA buffer (ThermoFisher) supplemented with
PierceTM Protease Inhibitor Tablets, EDTA-Free (ThermoFisher), and protein was isolated.
Protein (40 µg) was loaded per sample to assess the expression of fibroblast activated
protein (FAP). All protein samples were run on NuPAGE 4–12% Bis-Tris gels (Invitrogen,
Waltham, MA, USA). Gels were transferred onto nitrocellulose membranes overnight,
semi-dry, at 5 V. Blots were blocked for 30 min with 5% milk (in 1× TBST), then incubated
overnight at 4 ◦C with primary antibody FAP (1:1000; Abcam, Cambridge, UK, ab53066)
in 2.5% BSA, then at room temperature for one hour with a rabbit secondary HRP-linked
antibody (1:1000; ThermoScientific, Waltham, MA, USA, Cat #31430). For phospho-paxillin,
the blot was incubated overnight at 4 ◦C with primary antibody phospho-paxillin (Tyr118)
rabbit polyclonal antibody (1:1000 dilution; ThermoFisher, Cat #44-722G) in 2.5% BSA in
PBS, then probed at room temperature for one hour with a goat anti-rabbit secondary HRP-
linked antibody (1:1000 dilution in 2.5% BSA in TBST solution; ThermoScientific). For β-
catenin, the blot was probed over night at 4 ◦C with a primary monoclonal murine antibody
to β-Catenin (BD Transduction Laboratories; Franklin Lakes, NJ, USA, Cat. #610154, Lot:
25190) at a dilution of 1:2000. This blot was then reacted with HRP-conjugated goat anti-
mouse secondary antibody (1:1000 dilution; ThermoScientific; Cat #31430) for one hour
at room temperature. The membranes were stripped and probed with β-actin antibody
(1:5000, MA1-140; ThermoScientific) overnight at 4 ◦C followed by the secondary HRP-
antibody (1:1000; ThermoScientific, Cat #31430) for one hour at room temperature. Band
for FAP, phosphor-paxillin, β-catenin, and β-actin bands were quantified using the open
access Image-J software (NIH, Bethesda, MD, USA).

2.5. RNA Isolation and Analysis by Quantitative Reverse Transcription PCR (q-RT-PCR) and
RNA Sequencing (RNAseq)

Tumor tissue was homogenized in QIAzol Lysis reagent (Qiagen, Germantown,
MD, USA) solution then RNA was isolated using miRNeasy mini kit (Qiagen). Syn-
thesis of cDNA was performed using a qScript cDNA Synthesis Kit (Quanta Biosciences,
Gaithersburg, MD, USA). Real-time PCR was performed using a PerfeCTa SYBR Green
FastMix ROX kit (Quanta Biosciences, Gaithersburg, MD, USA) with an Applied Biosys-
tems 7300 Real Time PCR System machine to assess the expression of Vimentin, Zeb1, Zeb2,
SNAIL, β-CATENIN, and TGFβR2. Samples were run for 40 cycles with an annealing
temperature of 60 ◦C. HPRT served as the normalizer control. The primer and normalizer
sequences are provided in Supplementary Materials Table S1.

For RNAseq, RNA integrity and quantitation were assessed using the RNA Nano 6000
Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA)
and RIN values > 7.0 were used. Library preparation for transcriptome sequencing was
performed by Novogene Co., Ltd. with 1 µg RNA per sample. PCR was performed with
Phusion High-Fidelity DNA polymerase, Universal PCR primers and Index (X) Primer.
Then, PCR products were purified (AMPure XP system, Beckman Coulter, Brea, CA, USA).
Raw data (raw reads) of FASTQ format were firstly processed through fastp. Paired-end
clean reads were aligned to the reference genome using the Spliced Transcripts Alignment
Reference (STAR) software. Differential expression analysis between the pancreatic tumors
from gemcitabine monotherapy were compared to tumors of mice receiving the combi-
nation therapy (three biological replicates per condition) was performed using DESeq2 R
package. Several of the differentially expressed genes (DEGs) identified were confirmed
by PCR.

2.6. Mass Spectrometry

A multiple reaction monitoring based Mass Spectrometry method was developed to
measure Gemcitabine by UPLC-MS system. The samples were resolved on an Acquity
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UPLC BEH C18, 1.7 µm, 2.1 × 100 mm2 column online with a triple quadrupole mass
spectrometer (Xevo-TQ-S, Waters Corporation, Milford, MA, USA). Analysis was per-
formed with a 9-point calibration curve. Gemcitabine showed limit of detection as low
as 0.5 pg/mL and was quantifiable in the range 2.5 pg/mL to 1.2 ng/mL. To nullify the
matrix effects, calibration curve samples were prepared by spiking standard in blank tissue.
Standards were injected twice, at the start and in the end of the batch to check if there is any
fall in drug response (due to degradation) during data acquisition. The linearity of drug
response in calibration curve points was ascertained by including two quality control (QC)
samples in the batch at the start and in the end of the batch. A standard QC and pooled
QC samples were injected after every three samples to monitor consistency in the response
at a particular drug concentration and ensure minimal instrumental variance. The sample
queue was randomized and solvent blanks were injected to assess sample-to-sample carry-
over. MRM data were processed using Target Lynx 4.1. The relative quantification values
of analytes were determined by calculating the ratio of peak areas of transitions of samples
normalized to the peak area of the internal standard. A calibration curve for gemcitabine
and the representative LC for the drug and internal standard (DBQ) have been included in
the Supplementary Materials Figure S2A,B. (See Full Details in Supplementary Methods).

2.7. Blood Biomarker miRNA Panel

At euthanasia, murine blood was collected via cardiac puncture and assayed for
selective miRNA biomarkers for fibrinolysis: miR-185-5p, miR-346-5p, miR-378a-3p, and
miR-708-5p; and for invasion: miR-141, miR-200b, miR-205. Blood serum samples were
mixed at a ratio of 1:10 with Qiazol lysis reagent (Qiagen) and vortexed [28–30]. The lysate
was then extracted with CHCl3 and the aqueous phase was further processed for total RNA
using the miRNeasy Mini Kit (Qiagen). miRNA was reverse transcribed to cDNA using
miScriptII RT kit (Qiagen). miRNA expression profiling for specific miRNAs was performed
using miScript primer assays (Qiagen) and miScript SYBR green PCR kit (Qiagen) on an
ABI 7300 Real-Time PCR system (Applied Biosystems, Waltham, MA, USA) following
manufacturer’s instructions [29,30]. A dissociation curve analysis of PCR products was
carried out to confirm the specificity of amplification. Data were normalized using U6 as
endogenous controls. The relative differences between two groups were calculated using
∆∆CT method. Significance between data from two groups will be determined with Prism
GraphPad Version 5.03 by using unpaired Student t-test (p < 0.05).

2.8. Statistical Analysis

All statistical analyses were performed using GraphPad Prism software. Tumor
growth was calculated by regression analysis and t-test between the slopes of the lines.
Survival analysis was performed with a Kaplan-Meier Survival Curve of mice. Log-
rank analysis was performed comparing controls to each treatment group by applying
a Cox proportional hazard model. Differences between groups of PANC-1 final tumor
mass were analyzed by two-way ANOVA. The mean number of metastases, number of
arginase-positive cells, number of CD8+ T-cells and fibrosis density scores per group were
compared to PBS controls by paired Student’s t-test and Bonferroni correction for multiple
comparisons. The blood biomarker miRNA analysis was performed with two-way ANOVA
followed by Tukey multiple comparison test was used for the analysis compared to PBS.

3. Results
3.1. Combination Therapy with Gemcitabine and a CCK Receptor Antagonist Significantly Slows
Pancreatic Tumor Growth, Prolongs Survival, and Decreases Metastases

The mT3-2D murine tumor recapitulates human PDAC in that it grows rapidly, has
mutant KRASG12D, and develops the typical dense fibrotic stroma in the TME [27,31]. Using
this immunocompetent model, we found that therapy with the CCK receptor antagonist,
proglumide, slowed the growth of pancreatic tumors by the same magnitude as gemcitabine
treatment compared to PBS-treated controls (Figure 1A). The growth rate, as measured
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by the mean slope of tumor volumes for proglumide, was decreased by 59.4% when
compared to that of PBS-treated control mice (p < 0.005). Similarly, the tumor growth rate
in gemcitabine-treated mice decreased by 60% compared to that of control mice (p < 0.005).
These results demonstrate that monotherapy with proglumide is effective in slowing
pancreatic cancer growth and is similar to that of gemcitabine. The combination therapy
with gemcitabine and proglumide (Figure 1A) resulted in a 70% reduction in tumor mT3-2D
pancreatic tumors’ growth (p < 0.005) compared to PBS-treated control mice and a further
26% reduced growth rate compared to gemcitabine monotherapy. The reduced growth
rates with combination therapy suggest that the two drugs may have an inhibitory effect,
and that proglumide improves the efficacy of gemcitabine. The Kaplan–Meier survival
curve (Figure 1B) shows that the combination therapy group had significantly greater
survival compared to controls calculated by log-rank test (p < 0.001). The median survival
was best for the combination group followed by gemcitabine, and then proglumide; the
PBS control mice exhibited the poorest survival. By day 62, all of the control PBS-treated
mice had been euthanized since the tumors reached the maximum allowed size of 20 mm
in diameter (Figure 1B). At this same time point (day 62), three mice in the proglumide
monotherapy-treatment group had died, one mouse in the gemcitabine-only group had
died, and none in the combination group died. On day 87, survival analysis by Kaplan–
Meier curve of the other groups was as follows: proglumide 40% (p = 0.01); gemcitabine
50% (p = 0.001), and combination group 70% (p < 0.0001). The survival data demonstrate
a significant advantage of utilizing combination therapy in the treatment of pancreatic
cancer. There were three complete responses with loss of tumor in the proglumide group,
one complete response in the gemcitabine monotherapy group, and one complete response
in the group treated with the combination therapy of both gemcitabine and proglumide.

Similar inhibitory effects were observed when proglumide was administered in com-
bination with gemcitabine in the second murine model, using an orthotopic gemcitabine-
resistant human pancreatic tumor (PANC-1) in immune deficient mice. One week after
tumor inoculation, (week 0, baseline) the luciferase flux was equal in all four treatment
groups using the IVIS; (Figure 1C), and therapy was initiated. Tumor size was measured
by luciferase flux every 2 weeks up to week 6, and the size of the tumors was less in
the combination-therapy mice at weeks 4 and week 6 than that of controls (Figure 1C;
p < 0.05) and gemcitabine treated mice had less luciferase flux at week 6 when compared to
PBS-treated control mice (p < 0.05). After 6 weeks, when the mice were ethically euthanized,
the tumors of proglumide-treated mice were 14% less in mass compared to PBS controls;
and was not significant. Tumors of gemcitabine treated mice weighed 42.5% less than PBS
controls (Figure 1D; p < 0.05). Tumors of mice treated with the combination therapy were
59% less in mass than PBS treated tumors (p = 0.0017); however, these tumors were not
significantly different from the mass of the tumors from the gemcitabine-monotherapy
treated mice.

One of the most noteworthy findings in this orthotopic model, however, was that
the total number of histologically confirmed PANC-1 pancreatic cancer metastases was
significantly decreased in the mice with orthotopic tumors treated with the combination of
gemcitabine and proglumide (Figure 1E). The mean number of metastases identified per
mouse was reduced by 89% in mice treated with the combination therapy compared
to PBS-treated control mice (Figure 1E; p = 0.0004). The total number of metastases
counted in PBS mice were 45, whereas the number of metastases in gemcitabine and
proglumide-treated mice were slightly less at n = 30 each (Figure 1E). The effect of com-
bining gemcitabine and proglumide was inhibitory on reducing the number of metastases
and only n = 6 total metastases were counted in this treatment group. The number of
metastases according to location is shown in Supplementary Materials Table S2 with the
most metastases located in the peritoneal cavity or mesentery. All of the metastases were
counted upon dissection and confirmed by histology and representative photos shown in
Supplementary Figure S3A–H, which include metastases to the abdominal wall, the liver,
the spleen, mesentery, and peritoneum.
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Figure 1. Combination therapy with gemcitabine and a CCK receptor antagonist significantly slows pancreatic tumor
growth, prolongs survival, and decreases metastases. (A) Tumor volumes for the first eight weeks while all mice were alive
are shown for the mT3-2D tumors in C57BL/6 immunocompetent mice. The slope of the growth curve for PBS-treated
control mice was the greatest (184.7 ± 2.0). Gemcitabine (slope = 75 ± 19) and proglumide (slope = 72 ± 13.9) growth
rates were comparable. The mice treated with a combination of gemcitabine and proglumide had the slowest growth rate
(slope = 55.6 ± 11.6). Statistically significant compared to control (* p < 0.05, ** p < 0.005). (B) Kaplan–Meier survival curve
of mice in all treatment groups. By day 62, all of the PBS-treated (control) mice died. The median survival was significantly
increased for combination therapy, followed by gemcitabine, proglumide, and then the PBS-control group. Log-rank was
significant compared to controls (* p = 0.01, ** p = 0.005, *** p < 0.0005). (C) Primary tumor size of human PANC-1 orthotopic
tumors were measured by luciferase flux and show equal flux at baseline (week 0) when treatment was initiated. Over
time, the luciferase flux of the tumors was less in the mice receiving combination therapy with gemcitabine and proglumide
compared to PBS controls. By week 6, the tumors of mice receiving gemcitabine monotherapy also exhibited less flux
compared to controls (* p < 0.05). (D) Final PANC-1 tumor mass at the end of the experiment shows significantly smaller
tumors in gemcitabine treated mice (* p = 0.042) and tumors in the mice receiving combination therapy had even smaller
primary tumors (** p = 0.0017, *** p < 0.0005, # p < 0.05). (E) Metastases are decreased by the combination of gemcitabine and
proglumide. Columns represent the means± SEM of the number of metastatic lesions identified and confirmed by histology
per mouse in each group. Combination therapy significantly reduce the total number and mean number of metastases per
mouse (*** p < 0.0005, # p < 0.05).
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These two murine models of pancreatic cancer indicate that when proglumide is
administered concomitantly with gemcitabine there is a beneficial effect, with smaller
primary tumor size, prolonged survival, and decreased metastases. The beneficial effect
observed by combining proglumide and gemcitabine is consistent regardless of the immune
status or gender of the animals.

3.2. CCK Receptor Blockade with Proglumide Decreases Fibrosis in the Pancreatic TME

Pancreatic cancer characteristically develops a dense fibrotic microenvironment sur-
rounding the tumors’ cells that is thought to prevent the permeation of chemotherapy and
influx of CD8+ T cells. Intratumoral fibrosis was analyzed by Masson’s trichrome stain;
and a representative image of fibrosis in the mT3-2D tumors from each treatment group
is shown in Figure 2A. The intensity of the staining is most intense in the PBS-treated
control tumors (Figure 2A). Intratumoral fibrosis was visibly decreased in the tumors of
mice receiving proglumide either as monotherapy or in combination with gemcitabine.
Quantitative morphometric densitometry analysis revealed that intratumoral fibrosis was
significantly decreased in proglumide-treated mice (Figure 2B; p < 0.0001) compared to
PBS-treated or gemcitabine monotherapy-treated mice. Gemcitabine treatment exhibited
no decrease in tumoral fibrosis.

PANC-1 tumors grown orthotopically in immune deficient mice also showed intra-
tumoral fibrosis (Figure 2C), but the staining was not as intense as the mT3-2D tumors
from the immune competent mice. Quantification of the fibrosis showed that gemcitabine
therapy did not decrease fibrosis in the TME (Figure 2D) compared to PBS-treated control
mice bearing PANC-1 tumors. Similar to the mT3-2D pancreatic tumors grown in immune
competent mice, PANC-1 orthotopic tumors from mice treated with proglumide monother-
apy or combination proglumide therapy with gemcitabine also showed decreased fibrosis
compared to PBS-treated controls and also compared to gemcitabine alone (Figure 2D).
The marked decrease in tumoral fibrosis observed in both murine models is only seen
in the mice treated with proglumide implying that the anti-fibrotic effect is attributed to
proglumide.

Fibroblast activation protein (FAP) is generally highly expressed in PDAC tumors;
therefore, we also measured FAP protein expression by Western blot in the mT3-2D sub-
cutaneous tumors (Figure 2E). Proglumide monotherapy and its use in combination with
gemcitabine exhibited decreased FAP expression when evaluated by densitometry and
normalized to β-actin (Figure 2F), suggesting that FAP-positive fibroblasts are inhibited by
proglumide treatment.

3.3. Proglumide Therapy Alters the Tumor Immune Cell Signature

Tumor-infiltrating lymphocytes (TILs) in the pancreatic TME, particularly T cells,
have been positively associated with patient prognosis [32]. Tumor sections from all the
groups in the syngeneic mT3-2D tumors of immunocompetent mice were stained for CD8+

T lymphocytes by immunohistochemistry (IHC) and images scanned by microscope as
described above. Representative tumor images from PBS and gemcitabine-treated mice had
a paucity of CD8+ TILs (Figure 3A, top). In contrast, CD8+ T cells were visibly increased in
the tumors of all the mice treated with proglumide (Figure 3A, bottom). The number of
CD8+ T lymphocytes per slide was counted and mean values from each group revealed
a statistically increased number of T cells in the tumors of mice treated with proglumide
(Figure 3B; p < 0.0001).
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Figure 2. CCK receptor inhibition with proglumide decreases fibrosis in the pancreatic TME. (A) 
Representative images from each treatment group of tumors from the mT3-2D subcutaneous murine 
pancreatic cancer reacted with Masson’s trichrome stain to demonstrate fibrosis in the pancreatic 
tumor microenvironment. Images shown are at magnification 10× (bar = 200 µm). (B) Quantitative 
analysis of fibrosis for the murine syngeneic mT3-2D tumors was determined by ImageJ. Mean ± 
SEM from n > 50 images. Significantly less fibrosis was detected in the proglumide and combination-
treated tumors (# compared to gemcitabine, * compared to PBS controls; ## p < 0.005, *** p < 0.005, ### 
p < 0.001). (C) Representative images from each treatment group of PANC-1 orthotopic tumors 
reacted with Masson’s trichrome stain to demonstrate fibrosis in the pancreatic tumor 
microenvironment. Images shown are at magnification 10×. (D) Quantitative analysis of fibrosis in 
PANC-1 tumors was determined by ImageJ. Mean ± SEM from n ≤ 50 images. Significantly less 
fibrosis was detected in the proglumide and combination treated tumors (* p < 0.05). (E) Western 
blot of protein from (n = 2) representative homogenates of the mT3 = 2D tumors examining the 
protein expression of FAP and normalized with β-actin. (The whole western blot is shown in the 
Figures S4). (F) Western blot quantification of FAP by densitometry and each sample normalized by 
corresponding β-actin performed on ImageJ, n = 2/group. 
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Figure 2. CCK receptor inhibition with proglumide decreases fibrosis in the pancreatic TME.
(A) Representative images from each treatment group of tumors from the mT3-2D subcutaneous
murine pancreatic cancer reacted with Masson’s trichrome stain to demonstrate fibrosis in the
pancreatic tumor microenvironment. Images shown are at magnification 10× (bar = 200 µm).
(B) Quantitative analysis of fibrosis for the murine syngeneic mT3-2D tumors was determined by
ImageJ. Mean ± SEM from n > 50 images. Significantly less fibrosis was detected in the proglumide
and combination-treated tumors (# compared to gemcitabine, * compared to PBS controls; ## p < 0.005,
*** p < 0.005, ### p < 0.001). (C) Representative images from each treatment group of PANC-1 ortho-
topic tumors reacted with Masson’s trichrome stain to demonstrate fibrosis in the pancreatic tumor
microenvironment. Images shown are at magnification 10×. (D) Quantitative analysis of fibrosis
in PANC-1 tumors was determined by ImageJ. Mean ± SEM from n ≤ 50 images. Significantly less
fibrosis was detected in the proglumide and combination treated tumors (* p < 0.05). (E) Western
blot of protein from (n = 2) representative homogenates of the mT3 = 2D tumors examining the
protein expression of FAP and normalized with β-actin. (The whole western blot is shown in the
Figure S4). (F) Western blot quantification of FAP by densitometry and each sample normalized by
corresponding β-actin performed on ImageJ, n = 2/group.
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Figure 3. Proglumide therapy alters the tumor immune cell signature. (A) A representative tumor section from each
treatment group showing immunoreactivity for CD8+ tumor-infiltrating lymphocytes from mT3-2D tumors. The 5 µm tissue
sections were imaged with a 10× objective, 200 µm. (B) Analysis of the number of tumor-infiltrating CD8+ T-lymphocytes
is shown. Columns represent means per group ± SEM (# compared to gemcitabine, * compared to PBS controls; *** and ###

p < 0.001; **** and #### p < 0.0001). (C) Representative images from tumors of each treatment group of the mT3-2D tumors
shows immunoreactivity for arginase indicating immune suppression within the TME in each tumor section. (D) Analysis
of the percentage of arginase positive cells per area examined on each tumor section. Columns represent means per group
± SEM (# compared to gemcitabine, * compared to PBS controls; ** p < 0.005; *** and ### p < 0.001; #### p < 0.0001).

Another feature of the pancreatic TME is the abundance of arginase expression, in-
dicative of a more immunosuppressive TME. IHC staining of tumor sections from PBS-
or gemcitabine-treated immune competent mice had an abundance of arginase-positive
cells within the TME (Figure 3C, top). In contrast, arginase-positive cells were sparse
within the TME of mice treated with proglumide monotherapy or proglumide in combi-
nation with gemcitabine (Figure 3C, bottom). The number of arginase-positive cells was
counted, and the mean numbers were statistically greater in the tumors of both the PBS-
and gemcitabine-treated mice (Figure 3D). Tumors of the mice treated with proglumide
had 73% fewer arginase-positive cells in the TME (Figure 3D; p < 0.001). The increase in
TILs and decrease in arginase-positive cells within the proglumide-treated groups rendered
the TME more immune responsive.
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3.4. Combination Therapy with Gemcitabine and Proglumide Decreases Metastases by Preventing
Epithelial-to-Mesenchymal Transition (EMT)

Cancer invasion and metastasis are preceded by a phenotypic transformation in
cancer cells through a process called epithelial-to-mesenchymal transition (EMT) [33] that
is regulated by a network of cytokines, transcription factors, growth factors and signaling
pathways in the TME [34]. Vimentin is a constituent of the intermediate filament family of
proteins expressed in mesenchymal cells and a canonical marker of EMT [35]. Increased
vimentin expression in PDAC has been associated with a poor outcome with shorter
survival [36]. Vimentin mRNA expression by qRT-PCR was high in tumors of control mice
treated with PBS (Figure 4A) and was significantly decreased in tumors of mice treated
with the combination of proglumide and gemcitabine. Zeb1 or Zinc finger E-box binding
homeobox 1 (ZEB1) is a transcription factor involved in EMT and functions as a repressor of
the tumor suppressor protein E-cadherin [37]. Zeb1 expression was markedly suppressed
in tumors of mice treated with the combination therapy (Figure 4B) compared to PBS or
monotherapy with proglumide or gemcitabine. Zeb2 is another zinc finger transcription
factor that is increased in EMT and functions as a DNA-binding transcriptional repressor
that interacts with activated SMADs [38]. Similarly, Zeb2 expression was significantly
decreased in tumors of mice treated with the combination therapy compared to control
mouse tumors (Figure 4C).

Expression of the transcription factor SNAIL is also increased in PDAC, and increased
levels are associated with advanced disease and metastasis [39]. Expression of SNAIL
was decreased in PANC-1 tumors of mice treated with the combination of gemcitabine
and proglumide (Figure 4D). High expression of β-catenin is also associated with EMT
in many tumor types [40]. PANC-1 tumors from mice treated with the combination of
gemcitabine and proglumide had decreased expression of β-catenin compared to that of
the tumors of control mice (Figure 4E). EMT can be induced by the activation of the TGFβ
signaling pathway to promote metastasis [41] and recently signaling and upregulation of
the TGFβ2 receptor (TGFβR2) has been associated with cancer invasiveness and increased
metastasis [42]. mRNA expression of TGFβR2 was found to be downregulated in tumors
of mice receiving the combination therapy that exhibited fewer metastases (Figure 4F).
Western blots of PANC-1 tumor protein extracts that were reacted with an antibody to
phospho-paxillin were decreased in tumors of mice treated with the combination therapy
(Figure 4G,H). Gastrin has been shown to promote the reorientation of the Golgi appa-
ratus and directional migration of pancreatic cancer cells by inducing the activation of
paxillin [43]. Paxillin is a focal adhesion protein that when activated promotes cell motility
and migration. Similarly, β-catenin protein expression was also decreased in tumors of
mice treated with the combination therapy (Figure 4I,J); however, this difference did not
quite reach significance. β-catenin is involved in cell–cell adhesion through interaction
with the E-cadherin cell-adhesion complex [44], and gastrin has been shown to increase
metastases by inducing β-catenin nuclear translocation [45]. These results support that
evidence that the therapy with proglumide and gemcitabine in combination decreased
metastases by downregulating proteins and transcription factors of the EMT pathway.

3.5. Analysis of Tumors by RNAseq

Differentially expressed genes (DEGs) were analyzed by RNAseq between the tumors
of mice treated with gemcitabine monotherapy or tumors of those treated with the combi-
nation of gemcitabine and proglumide. A volcano plot of the 85 genes that are upregulated
Log2-fold in the combination therapy group compared to gemcitabine monotherapy and
the 156 genes that are downregulated with addition of proglumide are shown in Figure 5A.
All of the data on the 241 DEGs examined in the two groups are shown in Supplementary
Materials Table S3. Thirteen novel genes were identified that previously have not been
reported to be altered by proglumide therapy and a heat map of these highlighted genes
is shown (Figure 5B). A description of these 13 genes and their function is described in
Figure 5C.
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Figure 4. Combination therapy with gemcitabine and proglumide decreases metastases by preventing epithelial to
mesenchymal transition (EMT). Quantitative PCR analysis for mRNA expression of transcription factors and proteins
from PDAC tumors (n = 4 per group) with relative gene expression (2−∆∆Ct ± SEM) for: (A) Vimentin, (B) Zeb1, (C) Zeb2,
(D) SNAIL1, (E) β-CATENIN, and (F) TBFβR2. Unpaired t-test was used for analysis (* p = 0.05; ** p < 0.01) and GAPDH was
used as the loading control. (G) Western blot for phospho-paxillin for tumor protein extracts of each group normalized
with β-actin. (The whole western blot is shown in the Figure S4). (H) Analysis of bands by densitometry show significant
differences in the groups * p < 0.05. (I) Western blot of PANC-1 tumor protein extracts reacted with an antibody for β-catenin
normalized with β-actin. (The whole western blot is shown in the Figure S4). (J) Analysis of the bands by densitometry
show a decrease in the intensity of the bands in the proglumide and combination groups although this did not quite reach
statistical significance.
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Figure 5. Differentially expressed genes (DEGs) in tumors of mice treated with gemcitabine therapy versus combination
therapy. (A) Volcano plot of 85 genes that are upregulated Log2-fold in the combination therapy group compared to
gemcitabine monotherapy are shown in red dots to the right of the midline. Those 156 genes that are downregulated
by the addition of proglumide to gemcitabine in pancreatic tumors are shown in green dots to the left. (B) Heat map of
13 novel genes that differentially expressed in pancreas tumors of mice treated with the combination therapy compared to
gemcitabine monotherapy. Scale bar is placed to the left with red and green representing highly versus lowly expressed
genes based on FPKM values, respectively. (C) Table of the 13 novel selected differentially expressed genes that are
significantly up or downregulated by combined therapy compared to gemcitabine monotherapy and their known function.
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3.6. Combination Therapy Increases Gemcitabine Uptake into Tumors and Alters microRNA Blood
Biomarker Profile

Gemcitabine concentration was measured in the larger mT3-2D tumors of mice treated
with gemcitabine monotherapy or gemcitabine in combination with proglumide by Multi-
ple Reaction Monitoring (MRM) based ultra-performance liquid chromatography (UPLC)
coupled with Xevo-TQSmass spectrometer analytical assay. Mean gemcitabine levels
(pg/mL per mg of tumor tissue) were significantly higher in the tumors of mice treated
with the combination therapy (Figure 6A). These results indicate that proglumide therapy
enhances the uptake of gemcitabine into PDAC tumors possibly by decreasing the fibrosis
in the PDAC TME.

3.7. Measurement of Circulating microRNAs Confirm Decreased Fibrosis and Invasion upon
Gemcitabine and Proglumide Combination Therapy

The microRNAs (miR) miR-185-5p, miR-346-5p, miR-378-3p, miR-708-5p are known
to inhibit fibrosis from stellate cells [46–49]. These were significantly upregulated in the
peripheral blood of mice treated with the combination therapy in the mT3-2D immuno-
competent PDAC model (Figure 6B). miR-141, miR205, and miR-200b are members of the
miR-200 family, which are known to be negative regulators of EMT to maintain an epithe-
lial phenotype [50,51]. We found these three markers to be significantly upregulated in
combination treated mice compared to the gemcitabine monotherapy mice in the PANC-1
immune deficient PDAC model (Figure 6C).
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Figure 6. Combination therapy increases gemcitabine uptake into tumors and alters microRNA blood biomarker profile.
(A) Measurement of gemcitabine by mass spectrometry in mT3-2D tumors. Tumors of mice treated with the combination
of proglumide show increased uptake of measured gemcitabine (* p = 0.0264; two-tailed t-test). (B) Expression of miRNA
markers associated with: fibrinolysis measured from circulating blood from mice bearing mT3-2D immunocompetent
subcutaneous tumors; (* p < 0.05, ** p < 0.01). (C) Expression of miRNA markers associated with invasion measured from
mice bearing PANC-1 orthotopic tumors; (* p < 0.05, ** p < 0.01; *** p < 0.005).
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4. Discussion

The new finding from this investigation shows that monotherapy with a CCK receptor
antagonist, proglumide, is as effective as gemcitabine for treatment of pancreatic cancer
and the combination regimen may exhibit increased inhibitory effects. One reason for
the effectiveness of proglumide monotherapy in pancreatic cancer is in part related to its
receptor targeted-specific inhibition of the CCK receptor activation. When proglumide
and gemcitabine are administered in combination to mice bearing pancreatic tumors, there
is an inhibitory effect with decreased tumor growth, prolonged survival, and markedly
decreased metastases compared to when either drug is administered as a single agent.
Furthermore, tumors of mice treated with a combination regimen exhibited a significantly
greater uptake of intratumoral gemcitabine by mass spectroscopy as compared to gem-
citabine monotherapy. A possible explanation for this increased uptake of gemcitabine
into the tumors of mice treated with the combination therapy is that proglumide treatment
decreased intratumoral fibrosis. This dense desmoplastic reaction in the TME is thought
to impede the uptake of chemotherapeutic agents and is thus partially responsible for
increased drug resistance [52].

Pancreatic cancer is considered a “cold tumor”, lacking CD8+ TILs, and use of im-
mune checkpoint antibodies has thus far largely failed in PDAC [53]. Prior studies have
demonstrated arginase-positive cells contribute to immune suppression in cancer with
arginase also being a well-known marker for M2-polarized macrophages. These immuno-
suppressive cells also facilitate angiogenesis and tumor cell mobility by remodeling the
ECM [54–56]. Therapy with proglumide changed the immunologically “cold tumors” to
“hot” or sensitive tumors by allowing for the influx of CD8+ T lymphocytes and decreasing
arginase-positive cells. This change in the immune phenotype of the TME was a char-
acteristic feature only attributed to proglumide and not to gemcitabine. The alteration
in tumor immune cell signature from proglumide therapy improved the effectiveness of
gemcitabine.

Gemcitabine resistance is a common problem amongst pancreatic cancer patients. Previous
studies demonstrated that other gemcitabine metabolites, such as 2′,2′-difluorodeoxyuridine
(dFdU) compete with gemcitabine (dFdC) for entry into malignant cells [57]. A recent
study showed that TAMs could release other pyrimidine nucleosides to confer gemcitabine
resistance in malignant cells [58]. PANC-1 human pancreatic cancer is often used as a
model when studying gemcitabine resistance [59] and our results demonstrate that PANC-1
gemcitabine resistance can be overcome with a combination therapy with proglumide.
Along with the decrease in arginase-positive cells in our immunocompetent model, these
data further support the use of proglumide in combination with gemcitabine for potential
clinical use.

PSCs have been identified as the main cellular source of the ECM protein deposition
within the PDAC TME to stimulate tumor progression [6,26,60–62]. These cancer-associated
fibroblasts (CAFs) are believed to be derived from mesenchymal cells of different origins
that are either resident or recruited to the pancreas by neoplastic cells [63]. Two distinct
populations of CAFs have been identified: (1) inflammatory fibroblasts and (2) myofi-
broblasts [63]. The elimination of SHH signaling eliminates the myofibroblasts, which
predominately express alpha-smooth muscle actin (α-SMA), within the TME and rendered
PDAC more aggressive and metastatic [64]. Contrarily, strategies to decrease inflammatory
fibroblasts and FAP-positive fibroblasts are associated with decreased cancer growth and
metastases [65,66]. Our results demonstrate that the decrease in intratumoral fibrosis by
proglumide therapy is associated with a decrease in the expression of FAP. We previously
showed that immune competent mice bearing syngeneic mT5-2D pancreatic tumors also
exhibited decreased intratumoral fibrosis [21] when treated with proglumide, and analysis
of these tumors did not demonstrate any decrease in immunoreactivity to α-SMA. This
finding suggests that proglumide therapy preferentially decreases the expression of FAP
and inflammatory CAFs. Matrix metalloproteases (MMPs) comprise several tightly regu-
lated classes of proteases that play important roles in tumor progression and the metastatic
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process by facilitating ECM degradation [67–69]. We previously found that Mmp gene
expression was altered in tumor-bearing mice by proglumide [21]. Our current results
support previous findings that proglumide alters the fibrosis of the TME by decreasing
FAP-expressing CAFs and rendering the TME more susceptible to chemotherapy.

Histology confirmed that proglumide reversed inflammation and fibrosis in this model.
Differential expression of multiple miRNAs between the proglumide-treated and untreated
PBS vehicle control were identified, suggesting that miRNAs might be also involved in
regulation of a signaling pathway downstream from the CCK-B receptor. Strikingly, a
significant portion of miRNAs from the panel have been reported for their implication in
regulation of inflammation, fibrosis and oncogenesis. Among others, miR-185-5p, miR-346-
5p, miR-378a-3p, miR-708-5p [46–49] are upregulated by proglumide and have been clearly
shown to inhibit fibrosis. In the case of miR-185-5p, miR-378a-3p, miR-708-5p this effect
is through inhibition of stellate cell activation. In the prior study, the changes in fibrosis
associated miRNAs were analyzed in pancreatic tissue. The important finding in the
current study of increased circulating levels in the peripheral blood of selective microRNAs
associated with decreased fibrosis (miR-185-5p, miR-346-5p, miR-378a-3p) implies that
these miRNAs may have potential use as biomarkers for non-invasively monitoring the
effects of proglumide on fibrosis in pancreatic tumors.

An exciting new area of research involves the understanding and manipulation of
the circulating miRNAs in order to prevent metastases [70]. Within the primary tumor,
miRNAs have been shown to regulate EMT by phenotypic assays and via direct targets
known to be involved in the EMT pathway. Recently, the five member miR-200 family (miR-
141, -200a, -200b, -200c, and -429) and miR-205 have been identified as EMT-suppressive
or ‘tumor-suppressive’ miRNAs directly targeting ZEB1 and ZEB2 [71,72]. The miR-200-
ZEB1-E-cadherin axis has been clarified as a crucial pathway downstream of TGF-β in
EMT while reciprocal repression between ZEB1 and the miR-200 family has recently been
reported to promote EMT and invasion in cancer cells [71,73,74]. This new class of tumor-
suppressive miRNAs (TS-miRNAs) with in vitro or in vivo delivery technology along
with the development of EMT inhibitors may provide novel strategies for the prevention
and treatment of cancers. The transcription factors and proteins that regulate EMT were
significantly altered when gemcitabine and proglumide were co-administered, and this
result supports that this regimen decreases the potential of a primary tumor for metastasis.
An important finding from our work is that the miRNAs (miR-200b, miR-205, and miR-141)
that regulate these intratumoral transcription factors can be measured in the peripheral
blood and correlated with the metastatic potential of a tumor. An innovative finding
of our investigation is the potential to develop noninvasive miRNA biomarker panels
to evaluate response to therapy with markers that correlate with decreased EMT and
intratumoral fibrosis.

RNAseq results identified novel differentially expressed genes in tumors of mice
receiving combination therapy compared to gemcitabine monotherapy. The myosin heavy
chain (MyHC) expression is high in the tumors of gemcitabine monotherapy-treated mice
and this gene is significantly decreased with proglumide. MyHC overexpression has been
recently implicated in cancer cachexia [75]. The direct mechanism of how proglumide can
potentially help to prevent cancer cachexia is unknown, but proglumide can interact with
CCK receptors in the brain to prevent satiety and improve appetite. Another gene, parval-
bumin, that is a calcium-binding protein involved in pancreatic stellate cells activation and
proliferation, ref. [76] was significantly downregulated by proglumide therapy; perhaps
this in part contributed to the decreased fibrosis observed in our models. Interleukin-10
(IL-10) is an immunosuppressive cytokine that is thought to promote tumor ‘immune
escape’ by diminishing anti-tumor immune response in the TME [77]. Downregulation of
IL-10 expression by proglumide may explain the mechanism involved with the change
in the tumor immune cell signature we observed in the tumors. Xing et al. [78] have
shown that downregulation of IL-10 augments gemcitabine chemosensitization in human
pancreatic cancer cells. Four novel genes were up-regulated in tumors of mice treated with
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proglumide including claudin-7 (Cldn7), the vitamin D binding protein (Gc), regenerating
islet-derived 1 (Reg1), and protocadherin (Pcdhag7). Both claudin-7 [79] and protocad-
herin [80] are tumor suppressor genes that act on p53 and E-cadherin, respectively. The
third novel gene that was up-regulated by proglumide was GC, vitamin D binding protein.
The Reg1 gene has been described in pancreatic cancer, where it has recently been shown
to inhibit islet stellate cell activation [81]. An epidemiologic study showed that higher
vitamin D binding protein was associated with a significantly reduced risk of pancreatic
cancer (OR = 0.33, 95% CI 0.16–0.70) [82].

5. Conclusions

Our data demonstrate a novel combination therapeutic regimen for pancreatic cancer
that decreases metastasis and tumor growth by decreasing fibrosis and altering the immune
response. Since most subjects diagnosed with PDAC are not candidates for surgery and
are treated with chemotherapy, our approach provides rationale for possibly combining
standard of care chemotherapy with the CCK receptor antagonist, proglumide. Another
beneficial outcome of the combined regimen is the decrease in metastasis, which is the
cause of death in most patients with pancreatic cancer. Proglumide is an older orally
bioavailable drug with a broad safety profile that was originally developed for peptic ulcer
disease [83]; therefore, extending its therapeutic use to PDAC in combination with standard
gemcitabine-based chemotherapy is feasible to improve treatment of this disease.
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