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Abstract

Recent neural ensemble recordings have established a link between goal-directed spatial

decision making and internally generated neural sequences in the hippocampus of rats. To

elucidate the synaptic mechanisms of these sequences underlying spatial decision making

processes, we develop and investigate a spiking neural circuit model endowed with a combi-

nation of two synaptic plasticity mechanisms including spike-timing dependent plasticity

(STDP) and synaptic scaling. In this model, the interplay of the combined synaptic plasticity

mechanisms and network dynamics gives rise to neural sequences which propagate ahead

of the animals’ decision point to reach goal locations. The dynamical properties of these for-

ward-sweeping sequences and the rates of correct binary choices executed by these

sequences are quantitatively consistent with experimental observations; this consistency,

however, is lost in our model when only one of STDP or synaptic scaling is included. We fur-

ther demonstrate that such sequence-based decision making in our network model can

adaptively respond to time-varying and probabilistic associations of cues and goal locations,

and that our model performs as well as an optimal Kalman filter model. Our results thus sug-

gest that the combination of plasticity phenomena on different timescales provides a candi-

date mechanism for forming internally generated neural sequences and for implementing

adaptive spatial decision making.

Author summary

Adaptive goal-directed decision making is critical for animals, robots and humans to navi-

gate through space. In this study, we propose a novel neural mechanism for implementing

spatial decision making in cued-choice tasks. We show that in a spiking neural circuit

model, the interplay of network dynamics and a combination of two synaptic plasticity

rules, STDP and synaptic scaling, gives rise to neural sequences. When a model rat pauses

around a decision point, these sequences propagate ahead of the animal’s current location

and travel towards a goal location. The dynamical properties of these forward-sweeping

sequences and the rate of correct responses made by them are consistent with experimen-

tal data. In addition, we demonstrate that STDP when complemented by slower synaptic
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scaling enables neural sequences to make adaptive choices under probabilistic and time-

varying cue-goal associations. The adaptive performance of our sequence-based network

is comparable to a mathematical model, namely the Kalman filter, which is optimal for

this adaptive task. Our results thus shed new light on our understanding of neural mecha-

nisms underlying goal-directed decision making.

Introduction

Neural sequences have been widely observed in many brain areas including the cortex [1, 2,

3, 4], and the hippocampus [5, 6, 7, 8, 9, 10, 11]. Based on how sequences are initialized, they

can be placed into two broad categories, namely externally and internally generated sequences

[12]. Externally generated sequences (EGS) are those which directly reflect an ongoing beha-

vioural sequence such as actions [13] or positions visited [12, 14]; whilst internally generated

sequences (IGS) arise either spontaneously or by being triggered by non-sequential external

cues [12]. IGS have been argued to underlie predictions [15], goal-directed planning and deci-

sion making [6, 12, 16, 17].

One area where IGS have been extensively examined is the rodent hippocampus during

navigational tasks [6, 18, 11, 15]. Most of these tasks follow a similar basic procedure; rodents

are introduced to a maze and must navigate towards goal locations [6, 18, 15]. Recent experi-

mental studies with multi-electrode array recordings have revealed that when the animals rest

between goal-directed spatial navigation episodes, neural ensemble activity propagates forward

towards potential goal locations [15]. Such recordings of rodents trained on spatial decision

tasks have also found that when rodents paused around the decision point, forward sweeping

IGS were formed [6]. Reconstructed locations from these IGS were found predominately for-

ward of the animal’s position, indicating that these IGS are related to representation of future

paths rather than pinpointing the current location or being a replay of recent history. Further-

more, the IGS appears to be used for making a goal-related choice, as the path chosen by the

animal through the T-maze was strongly correlated with the path reconstructed from the IGS.

Despite the importance of IGS for goal-directed behaviours such as spatial decision making,

the neural mechanism underlying the formation of these IGS and their general computational

roles remain unclear.

To address these issues, we build a spiking neural circuit model endowed with a combina-

tion of STDP and synaptic scaling, and show that the model is able to reproduce the dynamical

properties of IGS and the behavioural response of correct rates of binary choices as reported in

[6]. As in previous modelling studies [19], STDP in our model can learn the paths taken by

moving rodents. Synaptic scaling, however, can prevent a positive feedback loop caused by

STDP, and provides a separation of temporal scales needed for adaptive choice under uncer-

tainty. We show that STDP complemented with slower homeostatic synaptic scaling is neces-

sary to account for the properties of forward sweeping IGS recorded in [6], thus unravelling a

mechanism for IGS propagation in the spatial decision making circuit.

To further study the general computational role of IGS in spatial decision making, we go

beyond the deterministic association of cue and goal as used in [6], considering cases where

the association between cue and goal is stochastic and varies over time. For these cases, our

results are primarily focused on correct decisions on a trial basis; we find that the correct

choice made by the model based on IGS can effectively track the time-varying cue-goal associ-

ation, and that this process can be described as a recursive probabilistic inference. We show

that the performance of this inference process implemented by our spatial decision making
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neural circuit is comparable to that of a Kalman filter [20], which is optimal for the cases we

consider. In our model, the interplay of spiking sequences and the combined synaptic plastic-

ity rules lead to constant changes of synaptic strengths which are proportional to the probabil-

ity of cue-goal association. These changes can serve as a posterior for test trials which can then

be exploited by IGS to make a choice; the IGS, combined with plasticity mechanisms, are

essential for implementing this optimal inference. Our model offers an explicit formal charac-

terization of probabilistic inference involved in the IGS-forming spiking neural circuit, thus

establishing a link between such an inference and spatial decision making [12, 21].

Results

T-maze spatial decision tasks

We begin by briefly describing the T-maze based decision task used in [6], which we aim to

reproduce in a spiking neural circuit. In this task, rats were made to run laps through a T-

maze, augmented with return arms, as shown in Fig 1. When the rats approached the decision

point of the T-maze (A in Fig 1), one of two sound cues was played. These two cues were dif-

ferentiated by their frequencies, and provided information to the rats about the location of a

reward within the T-maze. For example, when the low or high-frequency cues were applied,

the reward was on the left or right arm of the T-maze, respectively. Training began with a

directed pre-training phase, in which the rats were prevented from choosing the incorrect arm

of the T-maze. Training then continued following a similar procedure, except that the rats

were free to travel down the incorrect arm of the T-maze. The rate at which the rats correctly

identified the rewarded arm corresponding to the applied cue was monitored during this sec-

ond training phase, and the activity of neural ensembles from the CA3 region was recorded.

Analysis of the neural activity revealed a transient, but repeatable, phenomenon: as a rat

approached the decision point, the neural representation of the rat’s location swept forward,

creating a sequence of neural activity. These sequences were coherent and preferentially swept

ahead of the animal rather than behind, implying that they represented future choices rather

than recently travelled paths [6, 12].

Fig 1. Schematic of the cued-choice task in a T-maze. A rat starts at D and then travels towards the

decision point, A. When it enters the region marked by the hatched rectangle, a sound cue is played.

Depending on the frequency of the cue, the goal is located at either B or C, indicated with grey circles. The rat

then returns to D, when the next trial starts. The decision modelled in our neural circuit occurs in the shaded

rectangle.

https://doi.org/10.1371/journal.pcbi.1005669.g001
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We use a two-dimensional spiking neural circuit to reproduce the forward-sweeping

sequences observed in [6]. In our model, we consider synaptic plasticity dynamics, which are

determined by a combination of STDP and synaptic scaling. The external cues are applied by

activating the cue neurons, which are randomly coupled to the other neurons in the two-

dimensional network. For a full description of our neural circuit model, see Materials and

methods. To investigate the neural mechanisms of forward-sweeping neural sequences and

their functional roles in learning and implementing goal-directed choice, we apply the same

task and training protocol as in [6].

During training, when a model rat moves along a T-maze, as in Fig 1, a localized activity

pattern surrounding its position is initialized, corresponding to the behaviour of place fields in

the hippocampus [22]. As the model rat approaches the decision point of the T-maze, one of a

pair of cues is activated. The cue corresponding to the low-frequency sound signal is denoted

by C1 and that for the high-frequency by C2, with C1 and C2 indicating that the goal is located

on the left and right arm of the T-maze, respectively. As the model rat is restricted to move

along the T-maze, we similarly restrict neurons from firing if their place fields are outside the

T-maze.

For a training trial in our neural circuit model, as in [6], one arm of the T-maze is blocked.

This is implemented by fixing the potential of the neurons in one arm of the T-maze; this

forces the EGS to travel down the non-blocked arm. For instance, when the cue C1 is applied,

the right arm of the T-maze is blocked, i.e., the model rat can only take the left arm. On each

training trial, the sequence reaches the goal location, i.e., the end of the arm. After each train-

ing trial, a test trial is run, in which neither arm of the T-maze is blocked. By running a test

trial after each training trial, it is possible to monitor in detail the behaviour of the neural cir-

cuit during the training process. For a test trial, the cue is activated as the model rat approaches

the decision point. Under this protocol, if a forward-sweep sequence is formed and then travels

down the arm of the T-maze corresponding to the goal location associated with the applied

cue, whilst not reaching the goal location associated with the other cue, a successful choice is

made by the network. In our scheme, we do not model reward explicitly. Fig 2 shows such a

forward-sweeping sequence shortly after the activation of the cue C2; this sequence in not

related to the sequential movement of the model rat, so it is an IGS [12]. Note that the EGS is

similar to the IGS except that the EGS is achieved by forcing the sequence to travel along a spe-

cific path.

For the training trials, both STDP and synaptic scaling are enabled, whilst test trials are run

with both synaptic rules disabled to prevent the test trials from affecting the training process.

Fig 2. Forward-sweeping neural sequences at the decision point. Each frame is 2 ms after the previous one during a test trial

and shows a snapshot of the membrane potentials of the excitatory neurons from a region of the network near the intersection of the

T-maze. These snapshots are taken from the network with synaptic scaling, although without synaptic scaling, similar behaviour is

seen on successful trials, but the proportion of successful trials is reduced. Neurons are located at integer locations along both axes.

https://doi.org/10.1371/journal.pcbi.1005669.g002
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As in [6], the number of trials with the goal on the left and right is equal; this is achieved by

alternating between C1 and C2 on successive training trials.

Goal directed choices executed by IGS

We now demonstrate that our model is able to reproduce forward-sweeping neural sequences

as observed in [6], and that such sequences can be used to make a correct choice of the goal

location based on an external cue. In experimental studies, multiple animals were typically

used to obtain average response rates [6, 18, 11]. In a similar way, we use multiple realizations

of our neural circuit model and track average response rates during the training process. For

each realization of the neural circuit, the connections between the cue neurons and the neu-

rons with the 2D network and their coupling weights are randomly selected.

As shown in Fig 3, in our models, the proportion of correct responses increases rapidly dur-

ing the initial period of the training process. It eventually saturates at a threshold which is

close to, but less than 1, meaning that even after extensive training, the neural circuit does not

always make a correct choice; in other words, the IGS does not always travel to the goal loca-

tion associated with the cue. In experimental studies in which rats learn to navigate a maze

under a similar training paradigm, the rate at which rats correctly identify the rewarded arm of

Fig 3. Proportion of correct choice versus trial number. In this case, cue C2 is always applied as the test

cue. The blue curve shows the proportion of correct choices for the spiking neural circuit model with both

STDP and synaptic scaling, whilst the red curve shows the neural circuit model without synaptic scaling. The

bars show the standard error of the mean. Initially, both models show similar behaviour, namely an initial

proportion of correct choice rate which is very low. After continued training, the accuracy of the model without

synaptic scaling then begins to decrease. This decrease is due to an increase in the proportion of neural

circuits in which the propagating wave pattern splits and travels along both arms of the T-maze. This decrease

in accuracy is not observed in the full model, which maintains accuracy even as training continues. The final

success rate of 80% is similar to that observed in experimental studies (75% in [6]).

https://doi.org/10.1371/journal.pcbi.1005669.g003
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a T-maze shows similar behaviour, with an initial low correct response rate which increases

before saturating at a level slightly under 1 (see Figure 4 in [6]). There are three possible ways

in which the neural circuit fails to makes a correct choice of the goal location. In the first fail-

ure type, the sequence fails to propagate down either arm of the T-maze; this failure occurs

most commonly in the early trials because the model rat has not learned the environment, in

particular the goal location. For the second failure type, there are sequences propagating down

both arms of the T-maze simultaneously, indicating that the network has been unable to make

a correct choice about the goal location; this failure mode only occurs rarely in our model. In

[6], it was found that the place fields of cells involved in an IGS tended to belong to one arm or

the other, and IGS which activated neurons corresponding to both arms was rare. Finally, the

sequence may simply propagate along the wrong arm of the T-maze; in experimental studies

this failure type has been reported and has been correlated with the animal choosing the non-

rewarded arm of the T-maze [6].

Formation mechanisms of IGS

We now consider how forward-sweeping IGS can emerge from the network and why they can

generate correct responses as shown in Figs 2 and 3. To this end, we consider a simple case, in

which a spiking sequence is evoked by a model rat moving along a straight line, as shown in

Fig 4a; i.e. neurons y1, y2, . . ., y7 are activated sequentially. Without loss of generality, we use a

representative neuron, y4, to study the change of coupling strength to the other neurons due to

the interplay between this evoked sequence and STDP. Later, we will discuss the effect of syn-

aptic scaling. We let Δti be the time between when neuron yi spikes and when our reference

neuron (y4) spikes. Based on the propagation of the evoked spiking sequence, it is clear that

Δt1 < Δt2 < Δt3 < Δt4 = 0< Δt5 < Δt6 < Δt7. The change in coupling strengths, ΔWi, from

y4 to the other neurons can be calculated by using the STDP window function (see Eq 22 in

Materials and methods):

DWi ¼ sgn ðDtiÞA exp ð� jDtij=tÞ; ð1Þ

where the sign function, sgn(x) = −1 if x< 0, sgn(0) = 0 and sgn(x) = 1 if x> 0. It follows that

ΔW5 > ΔW6 > ΔW7 > ΔW4 = 0> ΔW1 > ΔW2 > ΔW3. In other words, connection strengths

in the direction in which the model rat moves are increased while those in the reverse direction

are decreased. Suppose then that this procedure is repeated many times, so that the path taken

by the model rat is learned by the network: when neuron y4 is activated again, due to the direc-

tionality of the coupling strength changes, the membrane potential of neuron y5 will be greater

than y3, and so on.

Now, consider a group of neurons arranged as in the decision making task shown in Figs 1

and 4b: neurons y1, . . ., y4 are placed along the center stem of the T-maze, while neurons y5,1,

y6,1, y7,1 are along the left arm, and y5,2, y6,2, y7,2 are along the right arm. As outlined earlier, an

equal number of training trials go along each arm. As a result, the connections from y4 to y5,1

and y5,2 must have their strengths changed in an identical way by STDP. This means that the

connection strengths from neurons in the center stem to those on the left and right arm of the

T-maze are equal, resulting in no preference for either path. To show that this is indeed the

case in the full spiking network, we calculate the bias of connections strengths from neurons in

the center stem to all other neurons (see Materials and methods); Fig 5a shows that this bias

value is small for neurons in the center stem, indicating that changes in coupling strength for

these neurons are symmetric. These results indicate that the changes of coupling strengths due

to STDP can learn the paths of the model rat, but that these changes have not broken the sym-

metry between the two paths in the network.

Goal-directed choices by internally generated sequences
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Fig 4. Schematic illustration of the changes of coupling strengths caused by STDP. Connection

strengths from the black neuron to the neurons in blue are decreased, whilst those in red are increased. Color

intensity is proportional to the magnitudes of the changes in coupling strengths. Thick arrows show the path of

a neural sequence, and thin grey arrows show the connections of interest. (a) The effect of propagation of a

sequence and STDP on recurrent connections. Connections in the direction of propagation of the sequence

Goal-directed choices by internally generated sequences
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The changes of coupling strengths between the cue neurons and the neurons within the 2D

spiking neural circuit, however, are asymmetrical, with connections to one arm of the T-maze

increased whilst those to the other arm are unchanged. As before, we consider a group of neu-

rons which are activated sequentially by a moving rat, but we now examine the changes of the

connection strengths from the cue neuron C2 to the neurons in the two-dimensional network

(Fig 4c), with the cue neuron firing at the same time as the neuron y4. For this case, the inter-

play between STDP and the evoked firing sequence changes the coupling strengths in an asym-

metrical way, as shown in Fig 4c; this occurs because for each training trial as C2 fires, the

model rat is forced to travel along the right arm of the T-maze. As a result, the connection

strengths from C2 to the neurons along the right arm of the T-maze are increased, whilst con-

nections from C2 to the neurons along the left arm are unmodified by STDP and maintain

their original values.

Likewise, the connections from C1 to the neurons along the left arm of the T-maze will

have their strengths increased, whilst connections from C1 to the neurons along the right arm

of the T-maze are not changed. On each successive training trial, this symmetry breaking

becomes stronger as these differences in the connection strengths to the two different paths

are magnified. We have verified that this mechanism indeed results in such asymmetric

changes to the coupling strengths from the external cue neurons to the neurons within the 2-D

spiking neural circuit (Fig 5b).

These changes in synaptic coupling strengths due to the interactions between the sequence

evoked by the moving rat and STDP can be shown to eventually result in the formation of a

forward-sweep IGS when the rat approaches the decision point. Suppose that the trained

model rat is at the decision point (Fig 1), and generates a bump of activity corresponding to

this location. As we have demonstrated above, the connections from the decision point to the

nearby neurons along both arms of the T-maze have had their strength increased by STDP

(Fig 5a). When an external cue is applied, the membrane potentials of the neurons along one

side of the T-maze are increased more than on the other side, because the connections from

the external cue are asymmetrical, as shown in Fig 5b. These increased membrane potentials

cause these neurons to fire before those on the other arm, therefore leading to the formation of

a spiking neural sequence sweeping away from the decision point of the T-maze towards the

goal location. We note that without training, the asymmetry in the connection strengths does

not exist, and the rat is unable to make a decision about which goal is correct given the cue.

In our model without STDP, the paths of the model rat cannot be learned and as a result

the IGS cannot make a correct choice. To understand the contribution of synaptic scaling to

the choice made by the neural circuit shown in Fig 3, we now study the behaviour of the net-

work in the absence of synaptic scaling. We find that for the first 40 trials the proportion of

correct responses when C2 is applied is almost identical in the model with and without synap-

tic scaling, as shown in Fig 3. However, after 40 trials, the synaptic behaviour of the two models

is no longer similar. The major difference is that in the model without scaling, it becomes

increasingly common for the neural sequence to split and travel along both paths. After 80 tri-

als, this has become the dominant response; this behaviour is inconsistent with experimental

are increased, whilst those in the reverse direction are decreased. (b) The effect of training in the T-maze on

recurrent connections in the T-maze. Connection strengths from the center stem to neurons along the left and

right arm are increased equally due to the symmetry in the training process which has an equal number of

training trials along each arm of the T-maze. (c) The effect of STDP on the connections from the external cue

neuron C2 to the other neurons in the spiking neural circuit. The cue is activated when the sequence is located

at neuron y4. The behaviour is similar to (b); however, only connection strengths along one path are

increased, breaking the symmetry in connection strengths as shown in (b).

https://doi.org/10.1371/journal.pcbi.1005669.g004
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results [6]. As described earlier, the strength of synapses along the direction of propagation of

sequences are increased. As training trials occur with the goal on both the left and right arm of

the T-maze, connections from neurons in the center stem to those on the left and right arm

are both increased, as in Fig 4b. After sufficient training, the additional excitation generated

from these synapses may be sufficient to cause a neuron on one of the arms of the T-maze to

spike without any input from the external cue. As a result, the sequence splits and travels down

both arms of the T-maze simultaneously. Synaptic scaling, however, causes coupling strengths

to gradually return to their original values, effectively reducing the excitation received by neu-

rons on the arms of the T-maze, and preventing the sequence from splitting and propagating

along both arms of the T-maze. In addition, due to synaptic scaling, recent changes to synaptic

strength have more impact on the current synaptic strength than those that occurred earlier in

the training process. As illustrated in the later sections, this temporal property is crucial for the

network to generate adaptive choices in response to time-varying and stochastic cue-goal

associations.

Recursive Bayesian inference and IGS

To study the general computational roles of the IGS that emerge from our spiking neural cir-

cuit model, we now consider the cases in which the cue-goal associations can be both

Fig 5. Changes to connection strengths after 20 training trials in the spiking neural circuit model.

Coordinates of the x-axis are centered on the center stem to more clearly show the level of symmetry present

in connection strength changes. We note that after 20 trials, these values are quite stable. (a) The bias

(calculated using Eq 27) in connections from neurons in the center stem to other neurons in the 2D spiking

neural circuit is small. For neurons on the two arms, the values are close to the theoretical maximum value,

slightly larger than 3. (b) Changes to coupling strength from the external cue neuron are not symmetric. The

average change in coupling strength for connections from the external cue neuron, C2 in this case, shows a

clear bias towards the right hand side of the T-maze.

https://doi.org/10.1371/journal.pcbi.1005669.g005
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probabilistic and time-varying. We introduce gn, which is the probability that on trial n, the

goal location is on the right arm when C2 is the supplied cue. To maintain symmetry between

C1 and C2, whilst ensuring that the number of left and right trials is the same, the probability

that on the nth trial the goal location is on the left arm when C1 is the supplied cue is also gn;

note that for the cue-goal association considered in the previous section, gn = 1 for both C1

and C2.

We first consider a simple case of time-varying cue-goal association in which an initial asso-

ciation between the cue and the goal is first learned and then switched. This switch takes the

form of a step-like change in gn after a certain number of trials; in this study, we have gn = 0

when n� 100, followed by gn = 1 for n> 100. Such a switching change has been used to study

the behaviour of rats in a T-maze goal-directed choice protocol [23], similar to ours. Fig 6

shows the correct response rate (blue line) when C2 is used as the test cue under this protocol.

When we compare the results from the experimental study [23] to our modelling study, we

find that significant similarities exist. In particular, after the switch of the cue-goal association,

Fig 6. A comparison of estimation methods in the switching task in the T-maze. After 100 training trials,

the association between cues and goals was switched. We note that the neural circuit adapts to this change,

with rapid adaptation of the response rates to be more consistent with the new relationship between cue and

goal. The neural circuit is shown by the blue curve, the simple Bayesian method (Eq 3) shown by the red

curve, and the modified Bayesian method (Eq 7) shown by the black curve. The green curve shows the

proportion of trials in which the propagating wave pattern travelled down the left arm of the T-maze, rather

than the right arm.Alternatively, it follows from a simple symmetry argument that the green curve shows the

proportion of trials in which the propagating wave pattern travelled down the right arm of the T-maze, but with

the order training trials reversed. The fact that the green and blue curves are separated at trial 200 indicates

that the neural circuit model is sensitive to the order of trials, as in both cases, 100 L and 100 R trials have

occurred. For the neural circuit, error bars show the SEM, and for the Bayesian methods (Eqs 3 and 7)

shading shows the 95% confidence interval. We note the responses from the neural circuit are similar to that

given by Eq 7, and the estimate from Eq 3 is poor.

https://doi.org/10.1371/journal.pcbi.1005669.g006
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in both cases the correct response rate increases quickly. This increase then slows before a satu-

ration level is reached. In our study this takes around 60 trials, whilst in [23], 40 training trials

were necessary for all rats to learn the cue-goal relationship. The similarity between the correct

response rate from the neural circuit model and the experimental data provides further evi-

dence that our IGS-based model is able to respond to the switching change in the cued-choice

task. Again, we find that the model without synaptic scaling cannot respond to this change, in

particular, after 200 trials, responses almost exclusively consist of the non-physiological split-

ting behaviour and the correct response rate is very low.

It has been proposed that goal-directed decisions and planning can be understood as an

implementation of probabilistic inference [21, 12]. We shall show how such probabilistic infer-

ence can be related to our IGS-based decision making model. In general, the problem of prob-

abilistically estimating the value of gn is an example of a hidden variable problem, since the

variable of interest (i.e., gn) cannot be measured directly, but instead its value is estimated

based on observations. In the context of the problem we are considering, these observations

come from the training trials. We label the observation obtained on the nth training trial as yn,

which may take one of two values, namely L and R, corresponding to the goal location being

on the left and the right arm of the T-maze, respectively. We assume that yn is a martingale,

i.e., it is unaffected by the value of y1, . . ., yn−1, so that p(yn|y1, . . ., yn−1) = p(yn). The sequence

of these observations is denoted by Yn = y1, y2, . . ., yn. In a Bayesian context, to solve the hid-

den variable problem, we need to calculate the conditional posterior distribution function

(pdf) p(gn|Yn). We now provide a brief overview of how this calculation can be performed.

Using the notation we have outlined above, the conditional pdf can be calculated in the follow-

ing way [24]:

pðgnjYnÞ ¼
pðYnjgnÞpðgnÞ

pðYnÞ

¼
pðyn;Yn� 1jgnÞpðgnÞ

pðyn;Yn� 1Þ

¼
pðynjYn� 1; gnÞpðYn� 1jgnÞpðgnÞ

pðynjYn� 1ÞpðYn� 1Þ

¼
pðynjYn� 1; gnÞpðgnjYn� 1ÞpðYn� 1ÞpðgnÞ

pðynjYn� 1ÞpðYn� 1ÞpðgnÞ

¼
pðynjgnÞpðgnjYn� 1Þ

pðynjYn� 1Þ
;

ð2Þ

where p(yn|gn) is the likelihood function, p(gn|Yn−1) is the prior and p(yn|Yn−1) is a normalizing

factor. Calculating p(gn|Yn) gives the conditional probability density function for the goal

being located on the right arm when C2 is applied, for the sequence of observations Yn. Assum-

ing that gn is constant, i.e. gn = gn−1, Eq 2 can be simplified to:

pðgnjYnÞ ¼ bnpðynjgnÞpðgn� 1jYn� 1Þ; ð3Þ

where βn is an appropriate normalization constant which is independent of gn. This recursive

formula for the posterior pdf treats the posterior pdf from the previous trial as a new prior,

which is then updated by the observation on the current trial. To complete this formulation,

we require both the initial prior and the likelihood function p(yn|gn). We choose p(g0) = 1 as a

simple uninformative prior. The likelihood function calculates the likelihood of the
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observation L or R, given a value of gn. The likelihood function is then given by:

pðLjgnÞ ¼ gn;

pðRjgnÞ ¼ 1 � gn:
ð4Þ

From this formulation, it can be shown that [25]:

pðgnjYnÞ ¼
ðaþ b � 1Þ!

ða � 1Þ!ðb � 1Þ!
ga� 1

n ð1 � gnÞ
b� 1
; ð5Þ

where α is the number of L observations and β is the number of R observations. To make a

concrete choice for the goal location, we use a maximum likelihood estimator, which gives

an estimate ĝn for gn by choosing the gn that maximizes the value of p(gn|Yn). For the case

gn = gn−1, it can be shown that

ĝn ¼ b=ðaþ bÞ ¼ b=n: ð6Þ

It is clear that as n increases, ĝn will tend towards gn, at least in the case where gn is constant.

We now compare the choices made using IGS in our neural circuit model with a recursive

Bayesian inference approach outlined above. We find that estimated values of gn based on Eq 3

do not match the true values; for example, the prediction ĝ200 ¼ 0:5 compares poorly to the

true value of g200 = 1. However, our neural circuit generates a more accurate estimate of gn
(Fig 6).

To understand how this discrepancy between the result from this probabilistic inference

and our neural circuit model occurs, we consider whether both models are sensitive to the

order of the training trials. As we described in Eq 6, the estimate ĝn made by recursive Bayesian

inference depends only on the total number of trials with the goal location on the left and right

arm, and is independent of their temporal order. In contrast, we have found that our neural

circuit model is sensitive to the order of the training trials; that is, if we reverse the order of the

training trials (i.e. 100 R, which is followed by 100 L), the resulting estimate for gn on the 200th

trial is significantly different than the original case (i.e. 100 L, which is followed by 100 R), as

shown in Fig 6. This sensitivity to the order of training trials in our spiking neural circuit hap-

pens because synaptic connection strengths learned by STDP can be gradually reset by synap-

tic scaling. This gradual resetting process means that more recent trials have a more significant

effect on the coupling strengths than those in the distant past.

As accurate predictions for a changing gn require sensitivity to the order of the training tri-

als, we propose an extension to Eq 3; inspired by the effect of synaptic scaling on synaptic cou-

pling strengths, we incorporate a similar resetting mechanism to Eq 3 and obtain the

following:

pðgnjYnÞ ¼ bnpðynjgnÞpðgnjYn� 1Þ
a
; ð7Þ

where 0< α< 1 is a parameter that controls the contribution of the previous probabilistic esti-

mate for gn (i.e. p(gn|Yn−1)) to the new one (i.e. p(gn|Yn)). Expanding this formula, it becomes

clear how this change is sensitive to the order of trials, similar to the effect of synaptic scaling:

pðgnjYnÞ ¼ bnpðynjgnÞpðyn� 1jgnÞ
apðyn� 2jgnÞ

2a
. . . pðy0jgnÞ

na
: ð8Þ

Eq 8 indicates that p(gn|Yn) can be viewed as a product of the likelihood functions from the

previous trials i.e., p(yn−1|gn)α for the n − 1th trial, p(yn−2|gn)2α for the n − 2th trial, etc. As α<
1, we have p(yn|gn)< p(yn|gn)α< p(yn|gn)2α< � � �< 1. This relationship indicates that more

recent trials have a more significant contribution to the estimate of the current value of gn; this

is necessary for capturing the temporal order effect of responding to the switching change in
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the cued-choice task. We find that by choosing an appropriate value of α (α = 0.99 in this

case), the estimated value of gn calculated using a maximum likelihood method from the modi-

fied recursive Bayesian inference method indeed matches that generated from our spiking

neural circuit and the true value of gn (Fig 6).

Adaptive spatial decision making by using IGS

We have shown that our neural circuit model with IGS is able to adaptively respond to a switch

in the cue-goal association, and that this behaviour is well approximated by a simple approach

based on probabilistic inference. Now, we demonstrate that our IGS-based model can make

real-time choices when gn changes randomly, and that the performance of our model is close

to the optimal choices implemented by a Kalman filter.

We first describe a Kalman filter in the context of our problem and then compare its perfor-

mance with that from our IGS-based model. The basic operation of the Kalman filter can be

understood as follows: the Kalman filter contains some internal state which incorporates the

history of past measurements, each new observation is then incorporated into this internal

state and used to make a prediction of the hidden variable; for a detailed discussion see [24].

The 1-dimensional Kalman filter for estimating gn is given by the following set of equations:

ĝnþ1 ¼ ð1 � KðnÞÞĝ n þ KðnÞyn; ð9Þ

Snþ1 ¼ ð1 � KðnÞÞ2Sn þ KðnÞ2Qþ Z; ð10Þ

KðnÞ ¼
Sn

Sn þ Q
; ð11Þ

where ĝnþ1 is the estimate of the hidden variable, i.e. the estimate for the current value of gn+1,

yn is the nth measurement as defined above, Q is the covariance of the measurement error, Z is

the covariance of the variation in gn, Sn is the estimate of the covariance of ĝnþ1 and K(n) is the

Kalman gain. In several cases, it can be shown that the estimate ĝnþ1 given by the Kalman filter

is optimal. One of these cases is the Gaussian random walk, where the dynamics of the hidden

variable and the measurement process are given by the following equations:

gnþ1 ¼ gn þ x1ðnÞ;

yn ¼ gn þ x2ðnÞ;
ð12Þ

where ξ1(n) and ξ2(n) are independent zero-mean Gaussian noise processes, with variance Q
and Z, respectively. In the Kalman filter, the Kalman gain, K(n), controls how much each indi-

vidual observation, yn affects the internal state of the Kalman filter. If each individual observa-

tion is unreliable due to noise, i.e., Z is large, the Kalman gain is small and it takes many trials

for the Kalman filter to change its estimate of gn. On the other hand, if each observation is

accurate, i.e., Z is small, the Kalman gain is large and the Kalman filter will quickly change its

estimate. In our study, to be consistent with the Gaussian random walk, we use gn given by

Eq 12 and g0 = 1/2. As our neural circuit adapts slowly to changes in gn, it is necessary that

Q is small; we have used Q = 2 × 10−5. Satisfying the condition on yn is more complex, to

this end we must verify that the measurement error, gn − yn has a Gaussian distribution with

mean 0. Numerically, we have found that the distribution of measurement errors is well

approximated by a Gaussian distribution. As a result, we have shown that when gn is given by

Eq 12, the requirements for the Kalman filter to produce optimal estimates of gn have been

satisfied.
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As noted earlier, the neural circuit estimates of gn saturate at a level below 1, even when

gn = 1, as shown in Fig 3. To allow for a direct comparison with the Kalman filter, we thus use

a linear map that scales the estimate of gn to match the scale of the output of the Kalman filter;

namely, we use ĝ0n ¼ aĝn þ b, where ĝn is the proportion of correct responses on the nth trial

from our network model, with a and b chosen to minimize the mean squared difference

between g(n) and ĝn. Fig 7a shows the estimated values of gn from the spiking neural circuit,

the modified recursive Bayesian inference procedure described by Eq 7 and the Kalman filter.

We note that the parameters of the Kalman filter must be tuned to match both the measure-

ment noise and the noise in the random walk, as they are crucial parameters describing the

behaviour of the Kalman filter. The parameters of the neural circuit, however, are identical to

those used in the earlier sections. It is apparent that all methods closely follow the changes in

gn when it undergoes a Gaussian random walk.

Fig 7. Comparison of real-time decision making performance by the different models. (a) Direct

comparison of the models to the true values, given by gn. To enable a direct comparison a linear map has

been applied to the result from the spiking neural circuit model and the value of α used in the Bayesian model

(Eq 7) has been chosen by optimization as described in the main text. The green curve is for the true value of

gn, the light blue curve is for the output from the Kalman filter, the red curve is for the Bayesian model and the

black curve is for the neural circuit model. (b) Cumulative distribution functions for the errors of the various

methods, colors as in (a). The error distributions are similar for all three models, although the Kalman filter has

the best performance.

https://doi.org/10.1371/journal.pcbi.1005669.g007
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To enable a more quantitative comparison between the models, we calculate a cumulative

distribution function for the absolute error, i.e. jgn � ĝnj; as shown in Fig 7b, the neural circuit

model and Eq 7 have a similar accuracy to the Kalman filter, specifically, the estimate for gn
from the neural circuit was within 3% of the correct value on 50% of trials, within 5% on 80%

of trials and within 6% on 90% of trials. The fact that our neural circuit model achieves accu-

racy comparable to the Kalman filter suggests that our neural circuit model is indeed capable

of making a real time estimate of gn.

It may be possible to further increase accuracy by incorporating a reward signal. For exam-

ple, in [26], a synaptic update rule was obtained from the theoretical consideration of maxi-

mizing the probability of receiving a reward event, but in our study we use biologically

plausible plasticity mechanisms (i.e., STDP and synaptic scaling). Additionally, in our model

we study a general goal-location decision task by considering time varying cases of cue-goal

association, which was not studied in [26].

Changes of coupling strengths and time-varying cue-goal association

We now illustrate how the combined synaptic plasticity rules (i.e. STDP and synaptic scaling)

enable the changes to coupling strengths to encode time-varying cue-goal associations; this

mechanism underlies the adaptive choice results reported above.

In the previous sections, we showed that connections from the external cue to neurons on

the left or right arms of the T-maze such as y5,2 (Fig 4c) are crucial for determining which path

the neural sequence would choose to travel down. We now consider the dynamics of the syn-

apse connecting C2 to neuron y5,2, which are driven by both STDP and synaptic scaling, in

order to understand the choice mechanism within our neural circuit, although our analysis

does not crucially depend on the precise location of the neuron. In particular, the increase in

coupling strength due to STDP in a single trial is A+ exp(−Δt5/τ+) (Eq 22). However, it is not

necessarily true that on every training trial, the model rat travels along the right arm of the

maze, where the sample neuron is located. In fact, the probability of this event is given by gn,

by its definition. It follows that the average increase in coupling strength per trial is A+gn
exp(−Δt5/τ+).

As we described in the Materials and Methods section, synaptic scaling causes a gradual

resetting in coupling strengths towards their initial values. It follows that over the time period

of a learning trial, some fraction of the changes in coupling strength caused by STDP will be

lost by this resetting process. We can find the value of this loss as follows: if at the start of the

trial, the change in the connection strength from its initial value is ΔW; at the end of the trial,

synaptic scaling will have reduced it to rΔW (see Materials and methods). This decay occurs

on every trial, regardless of whether the rat travels down the left or right arm of the T-maze.

This gives a recursive equation for the change in coupling strength of the synapse from the

external cue to our sample neuron after the nth trial, ΔWn, as follows:

DWn ¼ Aþgn exp ð� Dt5=tþÞ þ rDWn� 1: ð13Þ

Analyzing this equation directly is difficult, so we consider a simplification based on the

assumption that gn is either constant or varying slowly, as in Figs 3 and 7. To this end,

rather than using the value of gn, we use �gn ¼
PN

i¼1
gn� i=N where N is chosen depending

on both the dynamics of gn and the neural circuit. We have chosen a value of N = 50 based

on the time it takes for the correct response rate to saturate, as shown in Fig 3. By setting

ΔWn = ΔWn−1 = ΔWss, we can find the value of the steady state coupling strength change ΔWss:

ð1 � rÞDWss ¼ �gnAþexpð� Dt5=tþÞ: ð14Þ
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This then gives an explicit description of ΔWss:

DWss ¼ �gnAþ
exp ð� Dt5=tþÞ

1 � r
: ð15Þ

As all variables other than �gn are fixed parameters of the model, we have:

DWss ¼ F�gn; ð16Þ

where F ¼ Aþ exp ð� Dt5=tþÞ

1� r .

It is clear from Eq 16 that the change in coupling strength is proportional to �gn; this point is

further illustrated in Fig 8 in which ΔWss and �gn are compared. These results thus indicate how

the synaptic strengths mediated by the combination of STDP and synaptic scaling to some

extent are able to adaptively trace the time-varying gn. As the synaptic strengths are the neural

basis for forming the IGS, as shown above, our model is able to respond correctly even when

gn is changing (Fig 7).

Discussion

In this study, we have developed a spiking neural circuit to study the formation mechanisms of

forward sweeping, internally generated sequences and their function in goal-directed spatial

decision making. We have demonstrated that in our spiking neural circuit, the interplay

between the network dynamics and the combined synaptic dynamics of STDP and synaptic

scaling is essential for the formation of such neural sequences. Our model can capture the

Fig 8. Coupling strength values closely trace gn. We compare ΔWss and gn to verify that they follow each

other closely. To enable this comparison, they are normalized so that they have identical means. All relevant

parameters for both the dynamics of gn and ΔWss are consistent with Fig 7.

https://doi.org/10.1371/journal.pcbi.1005669.g008
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salient properties of these sequences and yields behavioural performance comparable to data

obtained from behaving animals [6]. In addition, we have demonstrated that STDP when com-

plemented by slower synaptic scaling enables the neural sequences generated in the network

model to adaptively respond to changing cue-goal associations.

Our model of spatial decision making shares a resemblance with other spreading-activation

or propagating wave-based models for path planning [27, 28, 29] in that propagating sequen-

tial activity is a key feature used for making choices. However, unlike these models, but consis-

tent with experimental data, there is no backwards diffusion of activity from the goal to the

current state during the learning or planning process. Furthermore, by implementing goal

directed decision making in probabilistic terms, our model also extends to the cases in which

uncertainty in the cue-goal association exists, which has not been generally addressed by previ-

ous spreading activation models. Goal directed learning has previously been studied in spiking

networks [26, 30, 31, 32]. However in these studies, goal-directed decision making with time-

varying cue-goal association has not been considered, and how this can be implemented by

biologically realistic synaptic mechanisms has not been addressed.

As we have demonstrated, STDP causes the coupling strengths along the direction of the

model animal’s movement to increase and those in the opposite direction to decrease on each

training trial. Such positive feedback effects from STDP alone would eventually result in the

saturation of synaptic coupling strengths, so that the formed neural sequence propagates

towards all possible goals, rather than toward one goal at a time. As a result, the spiking net-

work neither can give rise to correct choice rates as reported in [6], nor make flexible, time-

varying choices of goal locations. The homeostatic synaptic scaling rule, however, plays a role

in preventing saturation of synaptic coupling strengths as the training process proceeds.In our

model, this scaling process happens at a temporal scale which is around 350 times longer than

that of STDP, therefore enabling the network to intrinsically possess distinct temporal scales.

We have found that the behaviour of our model is not dependent on the precise values of the

time constants chosen, as long as the timescale of STDP is shorter than that of a single learning

trial and the timescale of synaptic scaling is much longer than both of these. In addition,

changing the size of the neural circuit and T-maze does not significantly change our results;

we have found that similar results can be found with T-mazes which are either twice or half

the size of the T-maze that we have used in this study.

A combination of plasticity rules with separate temporal scales enables the network to

maintain the trace of the moving paths of the model rat during the training process, and it pro-

vides the needed flexibility to allow the network to generate time-varying choices. Both STDP

[33, 34, 35] and synaptic scaling [36] have been widely observed in the brain, and our model

results show that the loss of either mechanism would impair the normal functions of the brain.

In previous modelling studies, the combination of STDP and synaptic scaling has been mainly

used to achieve specific network states, such as balanced states [37]. Our study, however,

relates this combination and the resultant separation of time scales to network dynamics in

terms of emergent IGS, and further to goal-directed spatial decision making. Other synaptic

mechanisms such as short-term depression [38] and homeostatic synaptic plasticity described

by the BCM rule [39] when combined with STDP may produce a similar behaviour, whilst

also avoiding the saturation of coupling strength.

The IGS in our model capture the characteristic dynamics of IGS as observed in [6], includ-

ing their forward propagation, and propagation toward one goal at a time rather than towards

all goals simultaneously. Some previous modelling studies used spreading activation or propa-

gating wave fronts to model path planning or goal directed decision making [27, 28, 29]; in

these models, however, neural activity propagates backwards from the goal to the current loca-

tion. Importantly, by reproducing animals’ behavioural responses, i.e., the correct decision
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rates as measured in [6], our modeling study directly demonstrates that such forward-

sweeping sequences could be the neural substrate for implementing learning and implement-

ing goal-directed decision making. In our study, this computational role of forward-sweeping

IGS has been further illustrated by extending the deterministic cued-choice task studied in [6]

to tasks with time-varying and probabilistic associations between cues and goals. This exten-

sion allows us to show that IGS-implemented functionality can be generally understood in

terms of probabilistic inference. The general computational role of IGS revealed in our model

is consistent with the proposal that IGS can implement probabilistic inference that optimizes

goal acquisition for real time choice and learning [12, 21]. Our study thus provides a basis for

further extensions considering reward learning and multiple choices.

In our model, when the probabilistic associations of the cues and goals undergoes a Gauss-

ian random walk, such IGS-based decision making works in a near optimal way; the estimates

are within 3% of the correct value for 50% of the time, largely comparable to those obtained by

a Kalman filter that is optimal for this case. The Kalman filter has been well studied in relation

to optimal decision making in prediction and motor control, however, neural representations

of Kalman filters are largely unknown. By comparing our model with the working mechanism

of the Kalman filter, we can understand how it is able to make accurate choices. In particular,

in our IGS-based model for the spatial decision task, the interplay of spiking sequences and the

combined synaptic rules lead to constant changes of synaptic coupling strengths. As we have

demonstrated, these changes are proportional to the probability of cue-goal associations, as

long as this probability varies slowly. Thus these changes to coupling strength can serve as the

posterior for test trials, which can then be exploited by the sequences to make a choice. The

ratio between the strength of STDP and synaptic scaling plays a similar role as the Kalman

gain, as it controls how quickly new training trials are incorporated into the internal model.

Specifically, STDP controls the strength of the trace left by the previous training trials, whilst

synaptic scaling controls the speed with which they are reset to their original values. This ratio

is fixed in our case, but Kalman gain is dynamical; this difference suggests that including other

synaptic mechanisms such as meta-plasticity to the model may give rise to a dynamical ratio

with multiple timescales [40], which may make the spiking model perform optimally like a

Kalman filter. Nevertheless, our spiking neural circuit model suggests that the IGS and the

combined synaptic plasticity rules are candidate neural implementations of a Kalman filter-

based estimation of the changing cue-goal associations.

Materials and methods

We consider a two dimensional, conductance-based integrate-and-fire neural network. In this

2D network, neurons are located at the integer intersections of a 200 × 200 grid, with inhibi-

tory neurons located at points where both coordinates are even and excitatory neurons located

at all other integer coordinates. The network has 30,000 excitatory neurons and 10,000 inhibi-

tory neurons (i.e. 75% excitatory and 25% inhibitory neurons). Every neuron within the net-

work connects with nearby neurons within 25 grid distance (arbitrary units). The 2D network

has periodic boundary conditions, meaning that neurons on the edge can connect to neurons

on the opposite edge to maintain an identical spatial arrangement of connectivity as the neu-

rons in the middle of the network. There are also 2 cue neurons that connect to the neurons

within the 2D network, with coupling weights chosen randomly from a distribution equivalent

to the distribution of the weights within the 2D network, and with the same synaptic plasticity

rules as in the 2D network. Code for this model is available at the following URL: https://

github.com/BrainDynamicsUSYD/spikegrid.
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We denote the membrane potential of a neuron at coordinates (i, j) at time t as Vij(t), with

dynamics governed by the following equation:

C
d
dt

VijðtÞ ¼ � gL½VijðtÞ � VL� � gE
ij ðtÞ½VijðtÞ � VE� � gI

ijðtÞ½VijðtÞ � VI�; ð17Þ

where the capacitance C = 1 μFcm−2, the leak conductance gL = 50 μScm−2 and the reversal

potentials are VL = −70 mV, VE = 0 mV and VI = −80 mV for the leak, excitatory and inhibi-

tory conductances, respectively. When the membrane potential of a neuron reaches a thresh-

old Vth = −55 mV, a spike is generated. Subsequently, the neuron remains at the reset potential

VR = −70 mV for a period of time corresponding to the refractory state τref = 5 ms. The dynam-

ics of a synaptic conductance gλ are given by:

gl
ij ðtÞ ¼ Fl þ

X

i0 j0
Kl

ij;i0 j0 ðtÞ
X

l
Glðt � Tl

i0 j0 Þ; ð18Þ

where λ is used to denote the two types of neurons, excitatory and inhibitory, represented by E
and I respectively, and Tl

i0 j0 is the time of the l-th spike emitted by the afferent neuron located

at (i0, j0). A constant inhibitory input is supplied to ensure that no spontaneous firing of neu-

rons occurs. This is achieved using FI = 15 μScm−2 whilst FE = 0 μScm−2. The time course of

the post-synaptic conductance is given by

GlðtÞ ¼
exp ð� t=tl

dÞ � exp ð� t=tl
r Þ

tl
d � tl

r

: ð19Þ

Here we set tI
d ¼ tE

d ¼ 2:0 ms, tI
r ¼ tE

r ¼ 0:5 ms,. The denominator ensures that the total post-

synaptic conductance is normalized such that
R1

0
GlðtÞ dt ¼ 1.

The coupling functions Kl
ij;i0 j0 have two parts, a static component Wl

ij;i0 j0 and a dynamic com-

ponent, ΔWij,i0j0(t) governed by STDP and synaptic scaling. The static coupling strength

between two neurons located at (i, j) and (i0, j0) is given by:

Wl
ij;i0 j0 ¼

Cle� d2
ij;i0j0=ðd

lÞ2 if dij;i0j0 � D;

0 if dij;i0j0 > D;

8
<

:
ð20Þ

where dij,i0j0 is the Euclidean distance between the neurons on a square lattice, taking into

account the periodic boundary conditions (i.e., neurons near the edge of the grid are coupled

to those on the opposite side of the grid), and CE = 5 × 10−7 and CI = 2.4 × 10−7. We have cho-

sen dE ¼
ffiffiffiffiffi
20
p

, dI ¼
ffiffiffiffiffi
90
p

and D = 25. As a result, each neuron is connected to 1470 excitatory

neurons and 490 inhibitory neurons. As in other models for path planning [41, 19], in our

model the position of the neuron is used as a stand-in for the position of the neuron’s place

field. In this case, a localized activity pattern is present surrounding the actual position of the

model rat. Such a regular arrangement of place fields, as often used in modelling studies, pro-

vides a simple way to study the mechanisms of moving-path related planning and decision

making tasks. The size of place fields has the same size as the excitatory coupling range, which

is 25 grid points. The T-maze environment has a width of 11 grid points, which is slightly

smaller than the place field. A trip through the T-maze takes approximately 100ms, and trials

are separated by 150 ms. Note that our results are not sensitive to these values; for instance, if

we change the trial separation time to 200 ms, we can obtain similar results.

The dynamic component of coupling comes from plastic synapses modulated by STDP and

synaptic scaling. We incorporate these plasticity mechanisms for all synapses. The form of the
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change in coupling strength is identical for excitatory and inhibitory synapses and is given by:

DWij;i0 j0 ðtÞ ¼

X

tkij<t

X

tl
i0 j0
<t

Hðtkij; t
l
i0j0 Þ þ

X

t0<t

SðDWij;i0 j0 ðt0ÞÞ if dij;i0 j0 � D;

0 if dij;i0 j0 > D;

8
><

>:
ð21Þ

where tkij is the kth firing time of the neuron located at (i, j) and tli0 j0 is the lth firing time of the

neuron located at (i0, j0) and S(ΔWij,i0 j(t0)) is the contribution from synaptic scaling, which we

discuss later. Hðtkij; t
l
i0j0 Þ is the STDP window function:

Hðtkij; t
l
i0 j0 Þ ¼

Aþexpð� Dt=tþÞ if Dt > 0;

� A� expð� Dt=t� Þ if Dt < 0;

0 if Dt ¼ 0;

0 if jDtj > 5t;

8
>>>><

>>>>:

ð22Þ

where Dt ¼ tkij � tli0 j0 is the time difference between the two spikes, τ+ and τ− are the timescales

for potentiation and depression respectively; A+ and A− are the magnitude of potentiation and

depression, respectively. In our study, τ+ = τ− = 20 ms and A+ = A− = 1.2 × 10−9; these values

are consistent with experimental data [33, 42].

Synaptic scaling has been often modelled by using a rule which changes coupling strengths

by an amount ΔW such as the following [43]:

DW ¼ �ðf � f �ÞW; ð23Þ

where f is the current firing rate, f� is a target firing rate, W is the current synaptic coupling

strength and � is a constant which controls the speed with which synaptic scaling acts. We use

an adaptation of this rule in our model in which the synapses are modulated by STDP and fir-

ing rates do not change significantly. Crucially we seek to maintain the ability of synaptic scal-

ing to scale coupling strengths both up and down, as commonly observed in experimental

studies [36, 35, 44]. We allow synaptic scaling to scale coupling strengths by making changes

proportional to ΔWij,i0j0(t) as follows:

SðDWij;i0 j0 ðtÞÞ ¼ CDWij;i0j0 ðtÞ; ð24Þ

where ΔWij,i0j0(t), caused by plasticity (Eq 21), can be negative or positive, so can S(ΔWij,i0j0(t)).
The constant C is chosen so that in the absence of any firing, coupling strengths reset toward

their original values with a characteristic time scale of 7 seconds. For simulation efficiency, we

only calculate S once every 100 time steps. We have found that the behaviour of our model is

not dependent on the precise values of the time constants chosen, as long as the timescale of

STDP is shorter than that of a single learning trial and that the timescale of synaptic scaling is

much longer than both of these.

Even with these values chosen from experimental data, pathological behaviour can be

observed, in which coupling strength changes caused by STDP can create unbounded positive

feedback loops. As synaptic scaling acts over a long time scale, it does not react fast enough to

prevent this from happening. In our model, as in [45], we use a hard limit on connection

strengths as follows:

jWij;i0 j0 ðtÞj � LjWij;i0j0 ð0Þj: ð25Þ

We set L = 0.12 which prevents connection strengths from being modified too significantly

from their initial values. Using the above formulation of STDP and synaptic scaling, we can
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calculate the time-dependent coupling term from Eq 21 as follows:

Kl
ij;i0 j0 ðtÞ ¼Wl

ij;i0 j0 þ DWij;i0 j0 ðtÞ: ð26Þ

To incorporate external cues in our network model, without loss of generality, we let the

external cue Ci have N = 40,000 synapses, with the post-synaptic neuron for each synapse cho-

sen at random with replacement, i.e., an average of one connection per neuron in the 2D net-

work. The initial strengths of these synapses are chosen at random so that the overall

distribution of coupling strengths from the external cue is identical to the distribution of con-

nections from a neuron in the 2D grid. Similarly, the synapses which connect the cue neurons

to the neurons in the spatially extended neural circuit are mediated by both STDP and synaptic

scaling, although as it is not possible for a feedback loop to form for a connection from the

external cue, the limit on connection strengths given by Eq 25 is not applied.

Bias in connection strengths

Analyzing the overall effect of plasticity is difficult due to the large number of synaptic connec-

tions in our model. To simplify this analysis, we construct a per-neuron measure which deter-

mines the bias in connection strengths emanating from that particular neuron. In particular

we are interested in the directional bias of connection strengths to understand how decisions

can be made in the cued-choice task. If an excitatory neuron in the center stem is more

strongly coupled to neurons on the left arm of the T-maze, the sequence will be more likely to

travel along the left arm of the T-maze. We construct the following measure of the bias in con-

nection strengths inspired by a center of mass calculation as follows:

BijðtÞ ¼
X

i0 j0
ði � i0ÞWij;i0j0 ðtÞ

�
�
�
�
�

�
�
�
�
�

ð27Þ

This measure will be small if connections from the neuron to the left and right have similar

strength, and large otherwise, allowing simple analysis of any bias present in the network.
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