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The events of the COVID-19 Pandemic forcedmany psychologists to abandon lab-based

approaches and embrace online experimental techniques. Although lab-based testing

will always be the gold standard of experimental precision, several protocols have

evolved to enable supervised online testing for paradigms that require direct observation

and/or interaction with participants. However, many tasks can be completed online in

an unsupervised way, reducing reliance on lab-based resources (e.g., personnel and

equipment), increasing flexibility for families, and reducing participant anxiety and/or

demand characteristics. The current project demonstrates the feasibility and utility

of unsupervised online testing by incorporating a classic change-detection task that

has been well-validated in previous lab-based research. In addition to serving as

proof-of-concept, our results demonstrate that large online samples are quick and

easy to acquire, facilitating novel research questions and speeding the dissemination

of results. To accomplish this, we assessed visual working memory (VWM) in 4- to

10-year-old children in an unsupervised online change-detection task using arrays of

1–4 colored circles. Maximum capacity (max K) was calculated across the four array

sizes for each child, and estimates were found to be on-par with previously published

lab-based findings. Importantly, capacity estimates varied markedly across array size,

with estimates derived from larger arrays systematically underestimating VWM capacity

for our youngest participants. A linear mixed effect analysis (LME) confirmed this

observation, revealing significant quadratic trends for 4- through 7-year-old children, with

capacity estimates that initially increased with increasing array size and subsequently

decreased, often resulting in estimates that were lower than those obtained from smaller

arrays. Follow-up analyses demonstrated that these regressions may have been based

on explicit guessing strategies for array sizes perceived too difficult to attempt for our

youngest children. This suggests important interactions between VWM performance,

age, and array size, and further suggests estimates such as optimal array size might

capture both quantitative aspects of VWM performance and qualitative effects of
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attentional engagement/disengagement. Overall, findings suggest that unsupervised

online testing of VWM produces reasonably good estimates and may afford many

benefits over traditional lab-based testing, though efforts must be made to ensure task

comprehension and compliance.

Keywords: visual working memory, child development, online assessment, cognitive development, capacity

estimates

INTRODUCTION

Infant research is difficult for many reasons. Access to public
records is increasingly restricted, contact information is often
unpublished, and in many areas, families and communities are
becoming wary of privacy concerns and university sponsored
research. In addition, the reality of dual-income families
continues to make lab-based testing in the early months and
years of life a logistical challenge. Although the gold standard of
experimental precision will likely always center around lab-based
techniques, changing work and family dynamics necessitates a
re-evaluation of the gold-standard approach.

The events of the COVID-19 Pandemic forced many
psychologists to abandon lab-based techniques and embrace
online experimental approaches. This has been particularly
difficult for developmentalists, as many infant and child-
based testing techniques rely on looking time or eye-tracking
methodologies. Fortunately, many innovative approaches have
been developed that allow for live face-to-face testing (i.e.,
supervised testing), including commercial video conferencing
options like Zoom and Microsoft Teams, and homegrown
software solutions such as Lookit (https://lookit.mit.edu). While
these approaches facilitate remote observation of the child
engaging in the task, they involve many of the same resources
as lab-based work, including dedicated experimenters and
observers to run test sessions, and pre-scheduled appointments
with families. However, for tasks that can be adapted to rely solely
on behavioral responses (key presses, mouse clicks, touch screens,
etc.), it is possible to do remote online testing in an unsupervised
way. We report here results from a large-scale unsupervised
online change-detection task assessing visual working memory
(VWM) development continuously from 4 to 10 years
of age.

There are several practical benefits of conducting
unsupervised online research. First, it increases session
flexibility, allowing participation at optimal times such as after
naps, on a rainy Saturday afternoon, or when network traffic is
low. Second, it allows for home-based testing, which in addition
to being more convenient for parents and children, may decrease
the anxiety and demand characteristics that are inevitably a part
of supervised testing procedures. Third, unsupervised at-home
testing may allow participation from a wider range of children,
both neuro-typical and neuro-atypical, and allows for rapid
testing over a broad range of ages.

In addition to these practical advantages, there are a host of

scientific benefits that may increase data validity and facilitate

novel research questions. For example, this approach reduces

the time and resources necessary to acquire large sample sizes,
increasing power and replicability for even relatively small
effects. This speeds dissemination of research findings, and
may facilitate novel findings and theory building. Unsupervised
online testing can also be conducted regionally, nationally, or
even internationally without regard to time zone constraints.
In addition to facilitating epidemiological approaches to the
study of development, online testing can improve racial, ethnic,
and socioeconomic diversity, something that is profoundly
lacking from most lab-based research samples. Although access
to computers and internet connections may vary across these
diverse populations, it is possible for participants to conduct
these tasks using a mobile device or tablet, a friend or family
member’s computer, or public resources such as school, library
or community computer banks. Finally, online testing allows
the explicit testing of environment factors such as screen size,
stimulus size, and method of response (e.g., mouse, keyboard or
touchscreen). These features are often either ignored completely
or held constant in lab-based tasks, despite the fact that
changes in these simple task features might critically influence
performance. This form of apparatus diversity additionally
ensures that findings are robust, and context independent.

There are of course some drawbacks to unsupervised
online testing, including lack of control (Anwyl-Irvine et al.,
2020a) and the possibility of parental interference and/or non-
compliance with experimental procedures. All of these can
be ameliorated to some extent using tools present in most
modern online experimental testing suites (e.g., Gorilla.sc and
LabVanced.com), including ability to collect webcam video and
to “calibrate” or scale the stimuli based on the estimated
screen size. It is also possible to use indirect measures to
identify questionable data, such as participants whose response
times are either too fast to be plausibly completed by the
participant (i.e., parental interference), or to reflect effortful
decision and response selection (i.e., random button presses). We
incorporated several of these approaches in the current project.
However, one of the most challenging and underappreciated
aspects of successful online testing, is accurately conveying task
instructions to the children and to the parents who function
as ad hoc experimenters. In contrast to supervised testing
approaches, it is impossible to gauge understanding and solicit
questions from families during unsupervised testing. Thus, it
is critically important that the task be piloted in the lab with
the target age demographic, to reveal confusing and problematic
aspects of the task instructions. This process also facilitates the
development of videos and practice trials that maximally enhance
task understanding.
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Choice of task is also a key factor. The current project
incorporates an unsupervised online testing approach to assess
development of VWM, which is quite easily adapted to rely
solely on behavioral responses (mouse or keyboard clicks, or
touches). This task was chosen, because VWM is an essential
visuocognitive ability that shows substantial development over
the first several years of life (Ross-sheehy et al., 2003; Gathercole
et al., 2004; Oakes et al., 2006; Simmering and Spencer, 2008;
Simmering and Perone, 2013; Buss et al., 2018; Ross-Sheehy
and Eschman, 2019; Reyes et al., 2020), and developmental
profiles have already been established across a range of ages
(e.g., Cowan et al., 2005; Simmering, 2012). VWM is an active
form of short-term memory, that supports the processing of
visual spatial information in service of a task or goal (Luck and
Vogel, 1997). Many tasks that support early learning rely heavily
on VWM, including visual comparison, categorization, spatial
navigation, visual search, object learning, spatial reasoning, and
math. Thus, VWM is a critically important component of general
cognitive development.

Much research has tied VWM to later academic achievement.
For example, Bull (2008) found that VWM performance in
preschool predicted math problem solving at 8 years of age.
Similarly, others have found that VWM in 7- to 14-year-olds
predicted performance on a national curriculummath test (Jarvis
and Gathercole, 2003). These basic findings have now been
replicated numerous times, with most results demonstrating
an important connection between early VWM and later math
achievement (Tsubomi and Watanabe, 2017; Giofrè et al., 2018;
Allen et al., 2019; Chan and Wong, 2019; Kyttälä et al., 2019;
Carr et al., 2020). VWM in adults is related to measures of
fluid intelligence (Fukuda et al., 2010), and the development of
VWM is distinct from verbal WM (Gathercole and Baddeley,
1993; Jarvis and Gathercole, 2003; Giofrè et al., 2018; Kyttälä
et al., 2019) and executive function aspects of WM (Jarvis
and Gathercole, 2003; Gathercole et al., 2004). Thus, early
and frequent access to online VWM assessment tools could
significantly enhance detection and possibly intervention for
children at risk of cognitive delay. Although the literature on
WM training interventions ismixed, recent ERPworkwith adults
demonstrates hopeful evidence of persistent VWM training
benefits (Zhang et al., 2020).

The Current Project
The goal of the current project is to demonstrate the feasibility
and validity of unsupervised online testing approaches in child
populations, by incorporating a canonical lab-based change-
detection task previously used in infant, child and adult
populations (Luck and Vogel, 1997; Cowan et al., 2005; Riggs
et al., 2006; Ross-Sheehy and Eschman, 2019). The task was
adapted for online testing and was used to assess VWM
development from 4 to 10 years of age. Our task incorporated
a whole-report change-detection approach, meaning all array
items were present both in the sample and test arrays, and
the child’s job was to determine if anything changed from the
sample to the test array. Although many adult change-detection
tasks now utilize a single-probe or partial report approach
(Rouder et al., 2011), we opted to incorporate the whole-report

approach for two reasons: First, pilot studies conducted in our
lab suggested that younger children struggled to understand
the concurrence between sample and test arrays, and altering
test arrays might further disrupt within-trial continuity for our
youngest participants. Second, this task has already been used
successfully in both infant and adult participants (Ross-Sheehy
and Eschman, 2019), facilitating the examination of capacity
development from infancy to childhood and beyond.

METHODS

Participants
Our participant pool was a sample of convenience and included
all families of children born in local or neighboring counties
who had previously expressed an interest in study participation.
All registered families with children between the ages of 4
and 11 years during our 6-month data collection window were
contacted via email and invited to participate. Of the 2,949
families contacted, 9.93% agreed to participate, resulting in a
sample 297 children (see Table 1 for demographics). Unlike
standard lab tasks, data quality could not be assessed until after
participation was complete. As a first step, we examined survey
responses for each participant. This resulted in the exclusion
children due to frustration or inability to understand the task
(n = 3), diagnosis of developmental delay (n = 1) or autism
spectrum disorder (n = 5), incorrect age (n = 1), or completing
the task using a mobile phone (n = 1). We next assessed general
task performance by examining the number trials completed out
of 80 possible trials, as well as general performance (hit, miss,
correct rejection, and false alarm rates). We excluded children
who did not complete at least 3 blocks of trials (n = 18, Mtrials

= 13, SDtrials = 3.7), and children who selected only a single
response button (n = 1). Although several children reported
a family history of colorblindness (n = 11) an examination of
their results revealed typical patterns of responding, so they were
retained in the sample. Task engagement for the final sample of
267 subjects was very high,Mtrials = 76.67, SDtrials = 12.81.

Stimuli
Stimuli for this study were based on Ross-Sheehy and Eschman
(2019). Each trial started with a colorful spinning pinwheel
that oriented attention, and served as a between-trial mask.
Participants were then tested in a change-detection paradigm
consisting of a 1,000ms sample array containing 1–4 colored
circles, followed by a 500ms retention interval, and finally a
3,000ms test array that was either identical to the sample array
(no-change trials) or included a color change presented at a
random location (change trials). After 3,000ms two response
buttons appeared underneath the test array, labeled “same” or
“different” (Figure 1). Participants saw up to 10 blocks of trials
and each block consisted of one of every possible trial type (array
size 1, 2, 3, 4, change and no-change) presented randomly.

The circles in both sample and test arrays were presented
at 45◦, 135◦, 225◦, and 315◦ relative to the center of the
display, but were constrained to stay within the boundary of
the colorful pinwheel perceptual mask. Circles consisted of eight
highly discriminable colors (blue, orange, red, yellow, purple,
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TABLE 1 | Participant counts and demographics by age (years).

SES (annual) Race Ethnicity

Age N M SD Min Max Female <80 K ≥80 K Asian Am. Indian Black Pac. Islander White Mult. Race NA Hispanic

4 43 4.59 0.25 4.02 4.98 42% 23% 77% 9% 2% 2% 2% 81% 0% 2% 7%

5 56 5.50 0.32 5.01 5.99 53% 20% 80% 7% 2% 5% 0% 86% 0% 0% 5%

6 50 6.42 0.28 6.00 6.98 48% 33% 67% 4% 0% 2% 0% 90% 2% 2% 4%

7 31 7.54 0.25 7.02 7.98 38% 24% 76% 9% 3% 13% 0% 72% 0% 3% 0%

8 32 8.43 0.27 8.00 8.97 38% 17% 83% 6% 6% 3% 0% 78% 3% 3% 0%

9 28 9.45 0.32 9.00 9.99 70% 26% 74% 3% 0% 13% 0% 83% 0% 0% 3%

10 26 10.36 0.30 10.03 10.99 52% 9% 91% 4% 0% 11% 4% 81% 0% 0% 7%

FIGURE 1 | Trial events for online change-detection task. Infants were presented with a 1,000ms sample array, followed by a 500ms retention interval, and finally a

3,000ms test array that was either identical to the sample array (no-change) or varied by a single color (change). Array sizes ranged from 1 to 4 (array size three

pictured here), and correct responses were followed by a bell. Feedback was presented at the end of every eight-trial block.

cyan, green and magenta) and were presented against a gray
background. Circle locations and colors were chosen randomly
without replacement for each trial using a custom python script,
and circles for array size 2 were constrained to contiguous
locations only (no obliques). Although Gorilla.sc does allow for
active stimulus scaling based on visual angle, this scaling operates
on individual display objects (i.e., individual circles in our case)
and does not address the relative spacing between objects. That
is, even though the individual circles might successfully be scaled
based on visual angle, the gaps between them were not. Given
chunking efficacy might vary with relative circle proximity we
chose not to incorporate object-based scaling, and instead opted
for passive scaling of the entire configuration based on monitor
size. Although this did not explicitly equate visual angle across
participants, participants with smaller screens (e.g., laptops or
iPads) generally sat closer to the screen, roughly equating visual
angle and preserving the relative spaces between the circles.

Engaging sounds were presented during both the sample and
test arrays to increase interest in the task, highlight cohesion and
alignability between sample and test arrays, and to emphasize the
change detection judgment during test array. The sample array
sound was an ascending slide whistle that continued through
both the sample and gap intervals, followed immediately by a
“bloop” sound simultaneous with the onset of the test array.
A reward tone immediately followed a correct response, and
consisted of a pleasant 630ms bell tone with a frequency of
∼2,300Hz. There was no feedback given for incorrect trials.

Procedure
All methods and procedures were approved by University of
Tennessee IRB #17-03545. Parents were invited to participate
based on previous participation in one of the University of
Tennessee Child Development Research Labs. Parents of children
4–10 years were sent an email inviting them to participate in
an at-home test of cognitive development. If interested, parents
clicked a link, and were taken immediately to an online consent
form (children aged 7 and older were additionally assented).
Upon completion of the consent, parents filled out a general
demographic questionnaire, and were then routed to the online
experiment portal (Gorilla.sc; Anwyl-Irvine et al., 2020b). Parents
and children were given general instructions regarding the online
browser-based “memory game,” and informed that the game
could be quit and resumed if the child became bored, or if
network congestion was high. Parents were then presented with
several “get ready” screens, instructing them to ensure their child
had a distraction free environment, that their browser was in
full screen mode, and that their computer’s sound was set at an
appropriate level. Prior to online testing, pilot testing occurred
in the lab with 3- and 4-year-old children, parents, and adult
participants. These experiences helped us determine the youngest
feasible age for unsupervised testing, and informed the video
demonstration and instructions that appeared prior to the onset
of the task. Previous online testing experience suggested this
process to be critically important in preventing frustration and
enhancing understanding of the task expectations. Parents and
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children were then presented with a video demonstration of the
memory game:

“This colorful pinwheel will appear at the beginning of each

trial. Press “Go” to begin. [child presented with dynamic image of

spinning pinwheel and “go” button]. For each trial, some circles

will briefly appear [child is shown a sample array containing

colored circles], then disappear [child is shown blank display], then

reappear [child is shown test array identical to the sample array

with the exception of a single color change. After a brief delay,

two response buttons were presented underneath the test array,

one labeled “Same” one labeled “Different”]. Your child’s job is

to determine if the circles stayed the same, or if one of them

changed color. Have your child respond aloud, then click “Same”

or “Different” to indicate their response. If your child is correct,

a bell will ring [animation of mouse cursor clicking the “Different”

button, followed by a bell]. The circles blink quickly, so be sure

not to start the trial until your child is ready! We will vary the

position of the circles, and howmany appear [children and parents

shown several additional demonstration trials]. Remember, this

was designed to be challenging! If your child is unsure, encourage

them to guess.”

Parents and children could watch the video as many times as
necessary before proceeding to the practice trials. Practice trials
were identical to task trials, however additional instructions were
included at the top of each display. Parents clicked “Continue”
when their child was ready to begin the task trials. To keep
engagement high, children were presented with a performance
screen after the completion of each block. This screen provided
encouraging feedback, a progress bar, and the child’s accuracy. It
also included two buttons, one to continue the task trials, and
one to end the task early. Parents were instructed to end the trials
early if their child became uninterested, or no longer wished to
participate. The task took an average of 9.74min to complete (SD
= 2.9).

Immediately after task completion, parents and participants
were administered a brief survey that included a comment
field and two questions assessing enjoyment and comprehension
(5-point Likert scale, with one representing least possible
enjoyment/understanding, and 5 representing greatest possible
enjoyment/understanding). Average ratings for enjoyment (M =

3.6, SD = 1.17) and task comprehension (M = 4.39, SD = 1.02)
suggested parents and children understood the task, and enjoyed
it to a reasonable extent. After participation, parents were emailed
a $10 Amazon.com gift card to share with their child.

Two split-half reliability estimates were computed using mean
proportion correct at each set size. The first analysis compared
accuracy across even and odd trials (i.e., internal consistency)
and the second compared accuracy across the first and last half
of the trials (i.e., time effects). Cronbach’s alpha indicated good
internal consistency between even and odd trials, α = 0.712,
good reliability over time, α = 0.730. Although mean proportion
correct was slightly higher for the first half of the experiment (M
= 0.888, SD= 0.145) compared to the last half of the experiment
(M = 0.882, SD = 0.147), this difference was not significant,
t(1,059) = 1.465, p= 0.143.

RESULTS

Raw response times were examined prior to analysis.
This revealed one 8-year-old outlier with implausibly
high performance (mean response time = 155ms, perfect
performance across all 4 array sizes), who was subsequently
removed from our analysis. All other responses conformed to
typical developmental patterns (Figure 2). We estimated VWM
capacity (k) using Pashler’s equation (Pashler, 1988) with k = N
x (H-FA)/(1-FA), where N = array size, H = hit rate (proportion
of change trials in which color change was correctly detected),
and FA = false-alarm rate (proportion of no change trials in
which color change was erroneously detected). We calculated
maximum capacity for each child (max K) as the highest capacity
estimate produced across all four array sizes. Although there is
considerable debate regarding the discrete slots assumptions of
Pashler’s approach (Cowan, 2001; Bays and Husain, 2008; Zhang
and Luck, 2008; Rouder et al., 2011), this equation is convenient
as it incorporates multiple sources of information and is easier to
interpret than accuracy or sensitivity measures such as A’ or d’.
However, Pashler’s equation does not penalize false alarm rates
in cases where hit rates were very high. This is one reason why
Pashler’s equation may slightly overestimate capacity, particularly
in child samples. For this reason, it is important to prescreen
results and identify any participants who may have chosen
the same response for every trial. This may also help identify
children who were confused by the task.

Assessing Data Quality, Task Validity, and
Environment Variables
Does Unsupervised Testing Produce Plausible VWM

Capacity Estimates?
Because this was an unsupervised task, it was important to assess
task performance and compliance, as well as general capacity
estimates. A Pearson bivariate correlation revealed a moderate
correlation between age and trial counts, r = 0.230, p < 0.001,
with younger children completing fewer trials than older children
(Table 2). Although 90.4% of participants completed all 80 trials,
the 26 participants who completed fewer than 80 trials were
relatively young,Mage = 5.68, SDage = 1.15. In addition, younger
children took longer to respond on average than older children, r
=−0.565, p < 0.001. This finding is not unique to online testing
paradigms, and suggests that relatively slow responses may have
contributed to increased task fatigue for the youngest children.
Importantly, results for maximum capacity (max K) revealed a
strong positive correlation with age (Figure 3). These estimates
are consistent with previously published findings for children of
this age, validating this general approach (Simmering, 2012, 2016;
Buss et al., 2018).

Do Screen Size and Response Mode Influence VWM

Capacity Estimates?
One of the drawbacks of at-home testing is the lack of
experimental control over the testing equipment and
environment (Anwyl-Irvine et al., 2020a). However, there
are some important advantages as well. For example, analyzing
data collected from home samples facilitates the examination of
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FIGURE 2 | Trial response times (ms) by age. Boxplot edges represent upper and lower quartiles, notches represent the 95% confidence interval of the median

(center line), and ‘X’ represents the mean.

TABLE 2 | Pearson Bivariate correlation table of task and test environment factors. Significant effects indicated with (*).

Age Trial count Response time Resolution Response mode Max K

Age 1 0.230** −0.565** −0.010 −0.105 0.579**

Trial Count 0.230** 1 −0.311** 0.000 0.020 0.059

Response Time −0.565** −0.311** 1 0.120 0.199** −0.419**

Resolution −0.010 0.000 0.120 1 0.409** 0.101

Response Mode −0.105 0.020 0.199** 0.409** 1 −0.029

Max K 0.579** 0.059 −0.419** 0.101 −0.029 1

*p < 0.05, **p < 0.01, ***p < 0.001.

often ignored task specifics such as the size of the screen (width
in pixels), method of response (1 = touchscreen, 2 = keyboard,
3 = mouse) and their influence on VWM capacity estimates.
Results of a correlation analysis revealed that neither screen
size (r = 0.101) nor response mode (r = −0.029) were related
to VWM capacity, though screen size and response mode were
highly correlated, r = 0.409, p < 0.001 (Table 2). Response mode
was also positively correlated with response time (r = 0.199, p
= 0.001), revealing that children responded most quickly when
using touchscreen devices (both computers and tablets). Several
other significant relations were observed, most notably between
response time and max K (r = –0.0.419, p < 0.001), with faster
responding associated with higher capacity estimates, though age
may have been an important driver of this effect.

Assessing Capacity Across Multiple Set
Sizes
Although Pashler’s capacity estimate is convenient and easily
interpreted, using this equation with child populations poses
some unique challenges. One such challenge occurs when hit
rates are lower than false alarm rates. In these cases, Pashler’s
equation will produce a negative value that is uninterpretable. For
example, one 5-year-old child in our sample had the following
capacity estimates for array sizes 1 through 4, respectively: 1, 1.78,
−0.86, and.44. There are two things to notice. First, this child had
a negative value for array size 3 (−0.86), however estimates for
array sizes 1 and 2 appear valid. Given these negative values were
rare (n = 9 of 1,051 cells) we treated them as missing data and
removed them from the analysis. The second thing to notice, is
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FIGURE 3 | Scatter plot and linear trend for visual working memory capacity (max K) as a function of age.

that the capacity estimate for array size 4 is smaller than estimates
for array size 2 and even array size 1. We believe this may occur
when children become overwhelmed by the memory demands
for a given array and disengage from the task. There is some
neurophysiological evidence to support this (Fukuda et al., 2010;
Reyes et al., 2020; McKay et al., 2021). If this is the case, then
the array size that produces maximum capacity (i.e., the optimal
array size) should vary by age, with younger children reaching
maximum capacity for smaller array sizes, and older children
reaching maximum capacity for large array sizes independent
of capacity estimates. An examination of the raw data
clearly reveals such a trend (Figure 4), with younger children
showing apparent capacity regressions at higher array sizes
(Figure 5).

Do Large Arrays Disproportionately Hinder VWM

Performance for Younger Children?
To determine if large array sizes resulted in underestimation of
capacity for our young participants, we conducted a linear mixed
effect (LME) analysis using R (R Core Team, 2020) with package
lme4 (Bates et al., 2015). LME analyses are robust to missing
data, and can handle the interdependence of capacity estimates
across array size (Singmann and Kellen, 2019). This approach
allowed us to calculate the extent to which capacity estimates
increased with increasing array size for each age. We included
fixed effects of array size and age and random participant-level
effects in our baseline model (i.e., random intercept). Based
on the observation that capacity varied with age (Figure 4),

we additionally included an array size by age interaction. This
addition significantly improved model fits, χ2 (18, N = 1,051)=
199.93, p < 0.001.

Effect estimates from our full LME model are presented in
Table 3, and estimated marginal means are presented in Table 4.
Age and array size were dummy coded so that the intercept
reflects mean capacity for our reference group (4-year-olds at
array size 1), and estimates reflect deviations from reference.
Results for age were not significant, suggesting that despite small
differences in array size 1 estimates (e.g., K = 0.83 at 4 years
versus K = 0.96 at 10 years) all ages performed at ceiling for
array size 1. However, results for array sizes 2–4 varied markedly
by age. For example, though all ages had significant array size
4 effects, only 8- to 10-year-olds demonstrated significant array
size 3 effects, with only 9- and 10-year-olds showing additional
marginal effects for array size 2. This makes sense, as the slope
of the regression line for array size should increase as overall
capacity estimates increase (Figure 3).

To assess these patterns more directly, we conducted follow-
up contrast analyses for each age (R package: emmeans v1.5.5-
1) using estimated marginal means derived from our LME
model (Searle et al., 1980). Significant non-linear trends would
suggest that capacity estimates peaked for smaller array sizes,
then regressed for larger array sizes. Results revealed significant
quadratic trends for our four youngest ages: 4 years, t(820) =

−6.551, p < 0.001, 5 years, t(817) = −4.389, p < 0.001, 6 years,
t(812) = −5.007, p < 001 and 7 years, t(812) = −2.242, p =

0.025. These findings highlight 4–7 years as an ideal age at which
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FIGURE 4 | Raw visual working memory capacity trends by age and set size.

FIGURE 5 | Mean visual working memory capacity trends by age and set size. Shading represents +-1SEM.

to identify and track individual differences, and underline the
importance of including smaller array sizes to catch maximum
capacity performance for younger children. Although we see a
great deal of variability in our youngest participants, performance
for 8-, 9-, and 10-year-olds did not appear to differ. This
observation coupled with relatively large capacity estimates for
these older children, suggests that VWM capacity improvements
may have slowed by 8-years-of age, approaching adult capacity
of around 3–4 items (Rouder et al., 2011; Zhang and Luck,
2011).

DISCUSSION

Children ages four through 10 were tested in an unsupervised,
online change-detection task. Results from this paper highlight
several novel benefits of online testing. For example, online
approaches are quick, have compliance rates comparable
to lab-based techniques, and appear to provide accurate
results on par with lab-based approaches. In addition,
online testing may increase diversity of the sample, facilitate
testing across a wide array of ages, and allow for testing
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TABLE 3 | Estimates and model fits for predictors of visual working memory

capacity. Significant effects indicated with (*).

Model Source Estimates SE df t p

Full model Intercept 0.834 0.075 926.188 11.168 <0.001***

Array size 2 0.717 0.092 791.429 7.754 <0.001

Array size 3 1.276 0.094 797.340 13.611 <0.001***

Array size 4 1.115 0.094 797.340 11.898 <0.001***

5y 0.068 0.099 939.852 0.688 0.492

6y 0.123 0.102 914.485 1.206 0.228

7y 0.149 0.115 902.258 1.294 0.196

8y 0.141 0.116 892.237 1.222 0.222

9y 0.150 0.117 911.148 1.282 0.200

10y 0.124 0.121 910.477 1.026 0.305

Array size 2 *5y 0.106 0.123 790.210 0.866 0.387

Array size 3 *5y −0.022 0.124 794.534 −0.176 0.861

Array size 4 *5y 0.450 0.124 796.411 3.619 <0.001***

Array size 2 *6y 0.146 0.126 790.117 1.154 0.249

Array size 3 *6y 0.198 0.127 793.346 1.556 0.120

Array size 4 *6y 0.604 0.127 793.346 4.746 <0.001***

Array size 2 *7y 0.183 0.142 789.795 1.285 0.199

Array size 3 *7y 0.213 0.143 792.350 1.486 0.138

Array size 4 *7y 0.925 0.143 792.350 6.466 <0.001***

Array size 2 *8y 0.219 0.142 789.795 1.539 0.124

Array size 3 *8y 0.393 0.143 792.350 2.747 0.006**

Array size 4 *8y 1.374 0.143 792.350 9.604 <0.001***

Array size 2 *9y 0.241 0.145 789.749 1.659 0.098

Array size 3 *9y 0.538 0.146 792.208 3.688 <0.001***

Array size 4 *9y 1.343 0.146 792.208 9.204 <0.001***

Array size 2 *10y 0.276 0.150 789.676 1.838 0.066

Array size 3 *10y 0.620 0.151 791.979 4.112 <0.001***

Array size 4 *10y 1.557 0.151 791.979 10.329 <0.001***

AIC BIC LogLik Chisq df p

Baseline model 1618.60 1678.10 −797.30 – – –

Full model 1454.70 1603.40 −697.34 199.930 18.00 <0.001***

*p < 0.05, **p < 0.01, ***p < 0.001.

across regions, or even countries. Other benefits of this
approach include reduced resource and infrastructure
demands, increased testing speed (∼300 participants tested
around 6 months vs. 2–3 years for in-lab testing), and
the ability to allow maximum flexibility for parents and
children, so that sessions may be timed when participants are
maximally attentive.

Although there are several challenges to testing online, we
did not find them to be unsurmountable. For example, ensuring
that participants (not the parents) completed the assessments
could be handled by capturing periodic facial images during
testing, something that is possible with most browser-based
experimental software suites. This may be particularly important
if the task is being advertised broadly and compensation is
provided. Although we did not collect participant video in our
sample, we limited participation to families in our local area
with whom we had a prior relationship, either as participants

in our own lab or in our departmental colleagues’ labs. In
addition, pre-screening the data prior to analysis can help
identify suspicious data (e.g., response times too quick or
performance too high). All tasks should be piloted in-lab to
help develop expectations for performance, and to identify any
issues with the task, or with child and/or parent understanding of
the task.

Our results revealed several insights regarding at-home
testing, such as the importance of tracking as many environment
variables as possible. Although we found no evidence that
screen size and response mode impacted VWM capacity
estimates, it is possible that exceptionally large or small
screens might still be problematic. We did find evidence
that response mode influenced the speed of responding,
which might be an issue for speeded designs or designs
that require some sort of response inhibition (e.g., flanker
or go/no go tasks). Some of our findings were not unique
to online testing, such as the finding of slower response
times for younger kids, and larger arrays sizes (older
children only).

In addition to demonstrating the validity of unsupervised
online testing approaches, our results also produced several
novel insights regarding the development of VWM from 4
through 10 years of age. First, our results produced capacity
estimates that are comparable to published lab-based estimates
(Cowan et al., 2005; Riggs et al., 2006; Simmering, 2016),
suggesting this approach to be a viable alternative requiring
a fraction of the resources necessary for lab-based tasks.
In addition, we found capacity increased significantly with
age, reaching near-adult levels by around 8-years-of age
(Figure 3). Our analysis also revealed evidence of substantial
performance variability from 4- to 7-years-of-age (Figure 4),
potentially highlighting assessment points for longer-term
individual difference studies, as well as possible targets for
memory intervention. Given the ease of online testing and
the importance of VWM to several aspects of math and
cognitive performance (Jarvis and Gathercole, 2003; Bull, 2008;
Tsubomi and Watanabe, 2017; Giofrè et al., 2018; Allen et al.,
2019; Chan and Wong, 2019; Kyttälä et al., 2019; Carr et al.,
2020), adding a quick at-home assessment as part of a school,
medical, or lab assessment might provide a more detailed
developmental profile.

On Estimating Capacity in Children
One of our most important findings was the demonstration
of an interaction between array size and capacity estimation,
especially for our youngest participants. Whereas, our older
participants appeared able to perform consistently regardless
of array size, our youngest participants seemed to disengage
for larger arrays, resulting in estimates that were often lower
than estimates obtained from smaller arrays. This is evidenced
visually in our raw data (Figure 4), and statistically in our
finding of significant quadratic trends for our 4- through
7-year-olds. These errors may have been purposeful (i.e.,
sample array perceived as too difficult resulting in a random
guessing strategy), or they may have occurred after earnest
attempts to respond accurately. If an explicit guessing strategy
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was employed for larger array sizes, we would expect mean
response times to be negatively correlated with array size. A
correlation analysis on the raw data revealed this may be the
case, with 4- through 7-year-olds demonstrating a small but
significant negative correlation between response time and array
size, r = −0.061, p = 0.031, and 8- through 10-year-olds
revealing a small but significant positive correlation, r = 0.093,
p= 0.032.

The finding of slightly faster response times for large array
sizes suggests that at least some of our youngest participants
may have resorted to guessing strategies when the demands
of the array exceeded memory capacity, attentional resources,
or some combination of the two. This is consistent with
previous work demonstrating that children have sufficient
metacognitive awareness to know when they have successfully
encoded a to-be-remembered event, and when they have not
(Applin and Kibbe, 2020). However, it is also possible that
this drop in performance for set size 4 arrays may be the
result of catastrophic forgetting, or the inability to encode
any array items when capacity is exceeded. For example, in
manual search tasks, 12- and 14-month-old infants appear
unable to detect the difference between hiding events involving
two vs. four balls, despite successfully detecting the difference
between two vs. three balls (Feigenson and Carey, 2003).
Importantly, this effect may have been partially driven by
perceptual similarity, as it is largely ameliorated when four
differently colored balls are used (Zosh and Feigenson, 2012).
Given the older participant ages tested here and our use
of highly discernably circle colors, it seems unlikely that
the drop in performance for large arrays is the result of
catastrophic forgetting.

Although adult researchers have proposed avoiding small
array sizes to reduce the likelihood of underestimation (Morey,
2011), our results suggest that using large array sizes might
also underestimate capacity, particularly for our youngest
participants. Without a doubt, probabilistic and Bayesian
approaches to capacity estimation are more sophisticated and
can better account for high false alarm rates present in our
young samples. However, these analysis techniques are not as
readily adapted to online calculation or quick assessment for
individual participants. We believe using a variety of array sizes
works well as long as assessments are based on either maximum
capacity across array sizes, or a holistic assessment of capacity as
a function of array size. It is possible that reducing the number of
large array sizes would increase number of trials young children
complete, but those benefits would have to be weighed against the
possible cost of underestimating capacity due to ceiling effects
for higher performing children. If the goal of the assessment
is to identify general working memory ability, a more desirable
metric might be the array size at which a child reaches maximum
capacity, or the optimal array size. This metric incorporates both
a quantitative capacity estimate (i.e., maximum capacity) and a
qualitative attentional estimate (i.e., maximum array size a child
can tolerate before disengagement).

In conclusion, results presented here demonstrate the
feasibility of effective and accurate at-home assessments of
VWM, and provide novel insights into the influence of factors

TABLE 4 | Estimated marginal means based on best-fitting LME model (full

model).

Age Set size Mean SE df Lower CI Upper CI

4 years 1 0.834 0.076 953 0.686 0.983

2 1.551 0.075 944 1.404 1.698

3 2.110 0.077 961 1.960 2.260

4 1.949 0.077 961 1.799 2.100

5 years 1 0.902 0.066 940 0.773 1.031

2 1.725 0.066 940 1.596 1.854

3 2.156 0.066 947 2.026 2.286

4 2.467 0.067 960 2.335 2.599

6 years 1 0.957 0.070 927 0.819 1.095

2 1.820 0.070 927 1.682 1.958

3 2.431 0.070 927 2.293 2.569

4 2.676 0.070 927 2.538 2.814

7 years 1 0.983 0.089 910 0.809 1.158

2 1.883 0.089 910 1.708 2.057

3 2.472 0.089 910 2.297 2.646

4 3.024 0.089 910 2.849 3.198

8 years 1 0.976 0.089 892 0.800 1.151

2 1.911 0.089 892 1.736 2.087

3 2.644 0.089 892 2.469 2.820

4 3.465 0.089 892 3.289 3.640

9 years 1 0.985 0.091 927 0.805 1.164

2 1.942 0.091 927 1.762 2.121

3 2.798 0.091 927 2.619 2.978

4 3.442 0.091 927 3.263 3.622

10 years 1 0.959 0.097 927 0.769 1.148

2 1.951 0.097 927 1.761 2.141

3 2.854 0.097 927 2.665 3.044

4 3.631 0.097 927 3.441 3.820

such as array size, screen size, and response mode. Results
additionally highlight numerous benefits for unsupervised at-
home testing, from substantially increasing sample diversity
(e.g., SES, race, ethnicity) to enabling large-scale geographically
unconstrained population surveys at a relatively low cost. We
have also found that allowing participants the flexibility to pick
optimal test times increases compliance, decreases stress, and
contributes to improved data quality and representativeness.
Although this approach may not be useful for tasks that require
closelymonitored speeded approaches, it seems quite appropriate
for change-detection tasks. Future work will be conducted to
test older ages and broaden our participant pool geographically
to include underrepresented regions and populations. It is our
hope that approaches like the one presented here may help
identify regional, cultural, and socioeconomic influences that
affect VWM development and general cognitive outcomes.
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