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The role of CMV in glioblastoma and implications for immunotherapeutic strategies
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ABSTRACT
Controversy surrounds the role of cytomegalovirus (CMV) in glioblastoma (GBM). However, several
studies have shown that CMV nucleic acids and proteins are present within GBM tumor tissue. CMV
has been implicated in GBM pathogenesis by affecting tumor stem cell factors, angiogenesis and
immune pathways. Anti-viral therapy has not been found to definitively improve outcomes for patients
with GBM. Several studies have leveraged CMV by targeting CMV antigens using ex-vivo expanded T
cells or dendritic cell vaccines. The initial results from these studies are promising and larger studies are
underway.
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Introduction

The poor clinical outcomes in patients with glioblastoma
(GBM) has fueled a vigorous search for a driver of tumor
growth and resistance. GBM is a high-grade glioma associated
with a median survival of 15–20 months.1,2 Cytomegalovirus
(CMV) has captured the interest of investigators due to the
chronic inflammation found in GBM and the immunosup-
pressed state of patients. CMV is a double-stranded DNA
virus that encodes approximately 200 genes as well as micro
RNA (miRNA) and non-coding transcripts.3 CMV can infect
many cell types including and, like all herpes viruses, can
result in life long persistence after the initial acute infection.4

Therefore, the immunosuppression associated with GBM5,6

would be the perfect environment for CMV re-activation in
tumor cells. CMV DNA and protein products have been
discovered in multiple tumor types7-9 including low grade
glioma and higher grade glioma (e.g. GBM) samples.10

These findings have led to inquiry into the effect of CMV
on glioma growth patterns, stem cell properties of the tumor
cells and therapeutic targeting.

In this review, we will discuss the role of CMV in GBM.
The controversies around the detection of CMV in glioma
samples, and the possible implications of CMV in the role
of glioma-genesis or treatment resistance will be reviewed.
We will also discuss therapeutic implications and how a
small amount of CMV nuclei acids or proteins may result
in large treatment effect when targeted with immunother-
apy. Immunotherapeutic approaches leveraging CMV for
the treatment of GBM have not been limited by the pre-
sence of the blood brain barrier.3 The preclinical and clin-
ical studies of CMV based immunotherapies for GBM will
be discussed.

CMV detection in gliomas

One of the first descriptions of CMV genomic expression in
glioma was authored by the group led by Dr. Charles Cobbs.
They found 27 out of 27 human glioma samples demonstrated
expression of CMV genomic and protein material as mea-
sured by immunohistochemistry (IHC) and in situ hybridiza-
tion (ISH).10 Other groups also described CMV viral material
in glioma samples using similar methodology.11,12 Mitchell
et al. found that a large percentage of GBM samples were
positive for CMV immediate-early (IE)1, pp65 or glycoprotein
B using IHC, ISH and polymerase chain reaction (PCR).13

However, subsequent to these initial reports, other groups
published reports of no detectable CMV protein or genomic
material in glioma samples.14,15 These findings were chal-
lenged due to the variability of CMV detection depending
on assay sensitivity.16 More recent studies using PCR have
also failed to detect CMV glycoprotein B and IE in GBM
patient peripheral blood or tumor samples.16 Recently, an
analysis of 94 formalin fixed, paraffin embedded and 28
snap frozen glioma samples using IHC and PCR found no
CMV viral products in the samples.17

Despite these studies demonstrating no detectable CMV in
glioma samples, multiple reports from several independent
laboratories have confirmed the detection of CMV in glioma
and other tumor samples. Scheurer et al. found that the
majority of glioma samples had CMV viral genes and that
the number of CMV positive cells was higher in GBM com-
pared to low grade gliomas.11 This phenomenon has been
reported by other groups as well.18,19 Studies using PCR
techniques to detect 20 different regions of the CMV genome
found CMV positivity was much more likely in GBM samples
compared to epilepsy samples.20 They also found that CMV
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detection was higher in more recent samples compared to
older samples. More recent studies utilizing IHC have found
pp65 positivity in gliomas, medulloblastomas, CNS lymphoma
and meningiomas.21 Others have found that 25% of patients
with GBM had detectable levels of a CMV micro RNA (miR-
UL112-3p) in their blood.22 (Table 1)

Due to the variability in techniques, a consensus statement
was published summarizing the data for CMV expression in
gliomas. This publication established that CMV is expressed
in most human glioma samples with sensitive assays.23

Peripheral blood tests do not always correlate with CMV
positivity in tumor samples. Controversy remains about the
role of CMV in glioma oncogenesis. Nonetheless, CMV
nucleic acids and proteins have been found to be potential
immunogenic antigens that could be targeted using immune-
based therapy.

CMV role in glioma pathogenesis

Beyond identification of CMV within glioma samples, several
studies have investigated the effect of CMV infection in
glioma pathogenesis. By infecting human glioma tumor cells
with CMV, investigators discovered activation of the phos-
phatidylinositol-3-kinase (PI3K)-Akt pathway.24 They also
found phosphorylation of focal adhesion kinase (FAK) result-
ing in increased tumor cell migration and invasiveness. This
group also described that expression of IE1 CMV genes in
human GBM cell lines resulted in increased entry into the cell
cycle, DNA synthesis and cellular proliferation.25

Overexpression of CMV glycoprotein B in glioma cells also
induced entry into the cell cycle and increased invasiveness.26

However, this effect was mediated through phosphorylation
of PDGFRα which had been previously shown to be a critical
receptor for CMV infection.27 Straat et al. infected malignant
glioma cell lines with CMV and found that this resulted in
activated telomerase in tumor cells.28 They hypothesized that
this effect could be a link between viral infection and
oncogenesis.

Findings vary based on techniques utilized to overexpress
CMV genes within tumor cells. Most studies have evaluated

the impact of CMV on tumor cells via infection of cell lines.
However, other studies utilizing transfection of glioma cell
lines to overexpress the CMV IE1 proteins found a down-
gregulation of tumorigenic genes such as thrombospondin-1
(TSP-1) and a reduction of tumor suppressor genes like p53.29

CMV-mediated oncogenesis has also been proposed to be
modulated through expression of US28, a virally encoded
chemokine receptor. US28 has been found to be expressed
in 60% of human GBM samples and can bind several chemo-
kines (CCL2, CCL5, CX3CL1). During CMV infection, US28
has constitutive activity resulting in G-protein dependent
signaling. Overexpression of US28 in glioma cells promoted
secretion of vascular endothelial growth factor (VEGF)30,
activated signal transducer and activator of transcription
(STAT)3, and resulted in increased GBM cell invasiveness.31

US28 expression also accelerates glioma growth.32 De Wit
et al. found that US28 resulted in activation of hypoxia indu-
cible factor 1alpha/pyruvate kinase M2 (HIF-1alpha/PKM2)
in GBM cells which resulted in increased VEGF and lactate
secretion.33 Increased proliferation of cells expressing US28
was reversed by inhibiting HIF-1alpha/PKM2. In addition to
promoting tumor cellular growth, other groups have found
that CMV prevents apoptosis of GBM tumor cells by over-
expression of activating transcription factor 5 (ATF5).34

In addition to tumor proliferation and invasion, CMV
expression is associated with enhancement of stem cell prop-
erties within glioma tumor cells. Soroceanu et al. found that
attenuation of endogenous IE expression in glioma stem-like
cells inhibited growth of the tumor cells in spheres which is a
technique that enriches for stem-like cells.35 Simultaneously,
non CMV-expressing cell lines that were infected with CMV
had an increase in self-renewal and proliferation. The same
group found that CMV pp71 was preferentially expressed in
CD133+ glioma stem-like cells.36 They described that pp71
induced stem cell factor (SCF) in GBM cells which is a pro-
angiogenic factor, via nuclear factor kappa light chain enhan-
cer of activated B cells (NF-kB) signaling. Antiviral treatment
resulted in less secretion of SCF from GBM cells. They also
found that pp71 and NF-kB activation were augmented in
mesenchymal subtypes of human GBM samples. CMV pp71

Table 1. CMV detection methods in glioma.

Authors Year Samples Number of samples Detection Methods Fraction Positive

Cobbs et al. 2002 Grade II-IV glioma 27 IHC, ISH, EM-IHC 22/22 GBM, 1/1 AO, 4/4 LGG
Sabatier et al. 2005 Grade II-IV glioma 97 IHC, ISH 10/97 GBM
Poltermann et al. 2006 Grade II-IV glioma 40 IHC, PCR 0
Scheurer et al. 2008 Grade II-IV glioma 50 IHC, ISH 21/21 GBM, 9/12 AA, 14/17 LGG
Mitchell et al. 2008 Grade IV glioma 45 IHC, ISH, PCR 42/45 GBM
Slinger et al. 2010 Grade IV glioma 21 IHC 20/21 GBM
Lucas et al. 2011 Grade IV glioma 49 IHC 25/49 pp65, 8/49 IE1
Ranganathan et al. 2012 Grade IV glioma 75 PCR yes*
Bhattacharjee et al. 2012 Grade II-IV glioma 17 PCR, Gene sequencing 16/17
Matlaf et al. 2013 Grade IV glioma 10 IF 5/10 pp71
Libard et al. 2014 Grade II-IV glioma 469** IHC 197/219 HGG and LGG
Mohammad et al. 2014 Grade IV glioma 20 PCR of plasma 5/20
Priel et al. 2015 Grade IV glioma 7 PCR 0
Huang et al. 2015 Grade II-IV glioma 60 IHC, ISH, PCR, Western blot yes ***
Garcia-Martinez et al. 2017 Grade II-IV glioma 122 PCR, IHC 3/119 by PCR only

* Compared GBM with epilepsy and non-malignant tumor samples. No quanitification of the number of positive glioma samples.
** Includes other tumor types such as medulloblastoma and CNS lymphoma.
*** Determined high versus low expression of various CMV markers in different grade tumors.
GBM glioblastoma; AA anaplastic astrocytoma; LGG low grade glioma; HGG high grade glioma; AO anaplastic oligodendroglioma; IHC immunohistochemistry; ISH in
situ hybridization; PCR polymerase chain reaction; IF immunofluorescence; IE1 immediate early 1
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has also been implicated in diminishing the accumulation of
major histocompatibility complex (MHC) class I on the cell
surface of GBM cells.37

CD133 and CMV have been implicated in poorer patient
outcomes. Fornara et al. reported that high expression of
CD133 and CMV-IE proteins predicted poor patient
survival.38 They also found that infection of GBM tumor
cells led to an upregulation of stem cell markers like
Notch1, Sox2, Oct4 and Nestin. CMV infection induced neu-
rosphere formation of GBM tumor cells and this could be
prevented with anti-viral treatment with ganciclovir. Recently,
Ulasov et al. reported that endogenous CMV miRNA
(CMV70-3P) was associated with stem cell properties in pri-
mary GBM cell lines. Inhibition of CMV70-3P reduced cell
proliferation and ability to form spheres.39

Glioma stem-like cells are also associated with long-term
CMV infection compared to non-stem cell glioma lines which
stop expressing CMV genes 5 weeks after infection.40 Other
groups have found that CMV had a tropism for CD133
+ glioma stem-like cells and these cells produced CMV IL-
10.41 CMV IL-10 induced immunosuppressive monocytes and
expression of viral IE1. The immunosuppressive monocytes
produced angiogenic VEGF, immunosuppressive transform-
ing growth factor (TGF)-beta 1 and increased migration of
glioma stem-like cells.

Others have also found that US28-CCL5 paracrine signal-
ing may contribute to glioma progression.31 Factors associated
with inflammatory macrophages has also been implicated
with CMV and GBM pathogenesis. Costa et al. described an
increase in arginase 2 (ARG2) in GBM cells infected with
CMV that expressed the IE proteins.42 ARG2 is involved in
nitric oxide metabolism. Conversely, other groups have found
that CMV down-regulates ARG2 in human GBM cells with a
concomitant reduction miRNA-613. These investigators
found that reduced microRNA-613 was associated with
worse outcomes (survival, tumor size, etc).43 Therefore, the
implications of CMV in glioma growth may be partially
immune mediated.

CMV impact on prognosis

Several groups have investigated the impact of CMV on out-
comes in patients with GBM. In a study of 80 GBM patients,
99% of tumor samples were found to express CMV and these
were graded for the number of positive cells (grade 1–4). The
investigators found that patients with longer survival
(> 18 months) were more likely to have tumors with low
grade CMV infection.44 This group subsequently performed
a retrospective study and found that GBM patients with a low
grade CMV infection of their tumor sample had a median
survival that was 20 months longer than those with a higher-
grade infection (p 0.036).45 These studies are limited by ana-
lysis prior to routine use of temozolomide and lack of con-
trolling for other prognostic factors such as isocitrate
dehydrogenase (IDH)-1 mutational status.

The benefit of pharmacologic anti-viral treatment in GBM
remains questionable. Pre-clinical studies found that treatment
of human GBM cells in an orthotopic murine xenograft model
with cidofovir resulted in inhibition of CMV gene expression

and cellular apoptosis in both CMV infected and uninfected
tumors.46 The treatment was synergistic with radiation in
prolonging survival of tumor-bearing mice. In 2006, a small
randomized study of adding valganciclovir to standard of care
treatment for GBM found no difference in overall survival or
time to progression.47 On post-hoc analysis, the investigators
reported that patients who received the drug for > 6 months
did have improved survival compared to those who received it
for a shorter time. These results are subject to immortal time
bias. Therefore, the authors re-analyzed their data to remove
this bias and found similar results.48 They subsequently
described a retrospective analysis of 50 GBM patients treated
with valganciclovir added to standard treatment and found
their medial overall survival was 25.0 months compared to
13.5 months in a comparator control group (p < 0.001).49 A
small study of 13 patients who were treated with valganciclovir
and bevacizumab at the time of recurrence of GBM were
compared to a group of patients treated with bevacizumab
alone.50 The authors reported a trend for improved overall
survival (13.1 months in the combination group compared to
8.7 months in the bevacizumab alone group). These data have
significant limitations due to study design. Therefore, use of
anti-viral treatment in patients with GBM is not routine.

CMV as immunotherapeutic target

Several groups have explored the potential of CMV as a useful
target in the immunotherapeutic treatment of GBM. Lucas
et al. found that CMV pp65 and IE1 expression was mostly in
the cytoplasm of GBM samples, and that CMV specific T cells
were able to recognize and lyse GBM cells that were infected
with CMV in the laboratory.51 The immunotherapeutic stra-
tegies for targeting CMV include adoptive T cell transfer and
vaccine approaches. Adoptive T cell therapy has been mostly
described using CMV-specific T cells from patients that are
ex-vivo expanded. Crough et al. described CMV-specific
CD8+ T cells in GBM patients who were seropositive for
prior CMV infection.52 These T cells were found to be poorly
functional based on cytokine production in ex vivo analyses.
However, their functionality was restored in vitro with CMV
peptide epitopes and IL-2 exposure. Nair et al. demonstrated
that CMV antigen specific T cells could be isolated from
human GBM patients.53 They described expanding these T
cells ex-vivo using pp65 pulsed DCs. Expansion of these cells
could represent a memory response after prior CMV infec-
tion. However, they found that these cells elicited a potent
anti-tumor response in vitro in an antigen specific manner
when co-cultured with autologous GBM tumor cells. These
findings are significant as they demonstrated that endogenous
levels of CMV antigens were sufficient to serve as targets for
CMV-specific T cells in vitro. Other investigators have also
been able to expand CMV specific T cells from patients with
GBM.54,55 In a study of patients with recurrent GBM, these
cells were given as adoptive T cell infusions in combination
with chemotherapy to 11 of the patients who demonstrated an
overall survival of 13.4 months. The authors found a correla-
tion between progression-free survival and a specific gene
signature of T cell activation within the ex vivo expanded,
CMV-specific T cells.54
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Other studies exploring vaccination strategies aimed at
expanding CMV-specific immunity in vivo have demon-
strated promising results in early phase studies. In murine
experiments and in vitro human sample experiments, Dasari
et al. demonstrated that vaccination with CMV glycoprotein B
polypeptide in combination with toll like receptor agonists
resulted in an influx of DC subsets.56 These cells induced
activation of adaptive immunity through antigen acquisition
and cross presentation. Our group has found that DCs elec-
troporated with CMV pp65 mRNA can be delivered to GBM
patients and results in a potent immunity and anti-tumor
response when these cells migrate efficiently to draining
lymph nodes. In a clinical trial, GBM patients were rando-
mized to receive standard therapy with pp65 DC vaccine
alone or pp65 DC vaccine combined with a tetanus diphtheria
toxoid (Td) booster vaccine.57 The group that received the
combination vaccination had significantly more DCs migrate
to the draining lymph nodes due to an upregulation of CCL3.
This increased migration correlated with significant improve-
ment in overall survival (> 36.6 months versus 18.5 months).
This publication was the first to demonstrate a link between
DC migration, immunotherapy efficacy, and clinical out-
comes in GBM patients.

Reap et al. subsequently found DC vaccines are important
for increased functionality of adoptively transferred CMV
specific T cells.58 In a pilot study, 22 patients were rando-
mized to receive adoptive transfer of pp65 specific T cells with
CMV DC vaccine or saline. The patients who received the T
cells and DC vaccine had a significant increase in CMV
specific CD8 T cells that were positive for IFNγ, TNFα and
CCL3 compared to patients who received the T cells and
saline. The increase in these polyfunctional CD8 T cells cor-
related with improved overall survival.

Another strategy to enhance the efficacy of CMV targeted
immunotherapy, is to combine DC vaccines with dose-mod-
ified chemotherapy. In a recent study, Batich et al. described
11 GBM patients who received dose-intensified temozolomide
along with at least 3 doses of the pp65 DC vaccine after
completing standard temozolomide and radiation.59 After
receiving 3 pp65 DC vaccines, patients had significantly
increased pp65 cellular responses. Despite having an increase
in peripheral immunosuppressive regulatory T cells (Tregs),
the median progression-free survival was 25.3 months and
overall survival was 41.1 months. Four of the eleven patients
remained progression-free at 59 to 64 months. It is believed
that vaccination during homeostatic recovery from the pro-
found lymphopenia induced by dose-intensified temozolo-
mide results in a more robust antigen-specific immune
response following the period of lymphopenia.60-63

To build on these results there are ongoing studies inves-
tigating CMV based immunotherapeutic strategies. We are
leading a phase 2, blinded and randomized clinical trial eval-
uating the efficacy of CMV pp65 RNA-pulsed DC vaccines
(ATTAC II). This study (ClinicalTrials.gov, NCT02465268) is
enrolling newly-diagnosed GBM patients randomized to
receive either peripheral blood monocytes and saline (control
group) or one of two formulations of CMV pp65 RNA con-
jugated to the lysosomal associated membrane protein
(LAMP-1), which enhances antigen-processing and

presentation. Patients receive standard concomitant radiation
and temozolomide followed by adjuvant cycles of also dose-
intensified temozolomide (100 mg/m2/day x 21 days).

Another group has developed an anti-CMV enveloped
virus-like particle (eVLP) vaccine that is currently being tested
in a Phase 1/2a study in 18 patients with recurrent GBM
(ClinicalTrials.gov, NCT03382977).

Mechanisms of action of anti-cmv based
immunotherapy

The efficacy of CMV based immunotherapy observed in early
phase studies in GBM has been relatively surprising since the
quantitative amount of CMV genomic or protein material
within glioma samples is reportedly very low. Despite this
phenomenon, robust anti-CMV immune responses have
been documented in a patient vaccinated with tumor-lysate
pulsed DCs.64 With the caveat that early phase studies are
fraught with difficulties in estimating the true efficacy of any
new therapeutic modality, plausible explanations for such
potential efficacy can be categorized into direct vaccine-
mediated effects or indirect targeting effects on tumor cells.

Direct antigen-specific hypothesis

Strategies to generate an anti-CMV immune response result in the
specific killing of CMV positive tumor cells, and the loss of these
cells is what is responsible for clinical benefit. These cells have been
shown to demonstrate stem cell properties35,36,38,39 and therefore
may represent the tumor population driving tumor growth, inva-
siveness and treatment resistance. Therefore, although CMV
based immunotherapy may eliminate only a portion of GBM
tumor cells, these changes remain clinically significant due to the
downstream impact of removing this cell population (Figure 1a).

Indirect targeting hypothesis

Due the presence of CMV antigens in most glioma samples,
immunotherapy may result in a robust activation of host
immunity within the tumor microenvironment. In addition
to the antigen-specific immune response, the host has an
increase in cytokines, NK cells, macrophages and memory T
cell activation.65,66 These recruited immune effector cells can
cause MHC independent killing of tumor cells and cytokines
that result in a bystander T cell response67 that can also
control tumor growth68 (Figure 1b). Moreover, the innate
immune system can detect CMV DNA via toll-like receptor
(TLR) 9 and cyclic GMP/AMP synthase (cGAS) catalyzing
formation of stimulator of interferon genes (STING) followed
by an upregulation of type I interferon responses69,70 that may
cause indirect killing of tumor cells.

Cross-priming

CMV-specific immune killing of tumor cells results in antigen
release and cross priming by dendritic cells (DCs) to other tumor-
associated and tumor-specific antigens.71 These cells thenmagnify
the anti-tumor immune response and results in killing of both
CMV positive and negative tumor cells (Figure 1c).
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The pre-clinical and clinical outcomes that have been
reported with current CMV immunotherapeutic strategies are
likely due to multiple mechanisms in play. Studies of CMV in
glioma have shown that herpes viral material can be found in
tumor cells. These viral proteins may serve as potent targets for
immunotherapy due to their completely “foreign” nature.
Despite challenges such as the blood brain barrier and hetero-
geneity of expression of low level CMV expression within tumor
cells, initial studies of CMV targeted immunotherapy have been
promising in the treatment of GBM. Further studies will be
necessary to elucidate the mechanisms that result in anti-tumor
efficacy and which patient populations are most likely to benefit
from CMV-directed immunotherapy.

Conclusion

CMV viral genes and proteins are found in most GBM tissue
samples. Anti-viral treatment with drugs has not definitively
been shown to improve survival in patients with GBM.
However, immunotherapy has been used to target CMV anti-
gens in GBM. Initial results of CMV-based immunotherapy
are promising. The efficacy of anti-CMV immunotherapy
may be due to targeting of CMV expressing cells that drive
tumor growth, activation of other immune cells that cause
additional killing of CMV negative cells, or cross-priming
after killing of CMV positive tumor cells. Larger studies are
currently underway to determine the efficacy of CMV tar-
geted immunotherapy for the treatment of GBM.
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