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Systems/Circuits

Circuit Stability to Perturbations Reveals Hidden Variability
in the Balance of Intrinsic and Synaptic Conductances

Sebastian Onasch'? and “Julijana Gjorgjieva'?
1Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt 60438, Germany, and 2School of Life Sciences,
Technical University of Munich, Freising 85354, Germany

Neurons and circuits each with a distinct balance of intrinsic and synaptic conductances can generate similar behavior but
sometimes respond very differently to perturbation. Examining a large family of circuit models with non-identical neurons
and synapses underlying rhythmic behavior, we analyzed the circuits’ response to modifications in single and multiple intrin-
sic conductances in the individual neurons. To summarize these changes over the entire range of perturbed parameters, we
quantified circuit output by defining a global stability measure. Using this measure, we identified specific subsets of conduc-
tances that when perturbed generate similar behavior in diverse individuals of the population. Our unbiased clustering analy-
sis enabled us to quantify circuit stability when simultaneously perturbing multiple conductances as a nonlinear combination
of single conductance perturbations. This revealed surprising conductance combinations that can predict the response to spe-
cific perturbations, even when the remaining intrinsic and synaptic conductances are unknown. Therefore, our approach can
expose hidden variability in the balance of intrinsic and synaptic conductances of the same neurons across different versions
of the same circuit solely from the circuit response to perturbations. Developed for a specific family of model circuits, our
quantitative approach to characterizing high-dimensional degenerate systems provides a conceptual and analytic framework
to guide future theoretical and experimental studies on degeneracy and robustness.

(s )

Neural circuits can generate nearly identical behavior despite neuronal and synaptic parameters varying several-fold between
individual instantiations. Yet, when these parameters are perturbed through channel deletions and mutations or environmen-
tal disturbances, seemingly identical circuits can respond very differently. What distinguishes inconsequential perturbations
that barely alter circuit behavior from disruptive perturbations that drastically disturb circuit output remains unclear.
Focusing on a family of rhythmic circuits, we propose a computational approach to reveal hidden variability in the intrinsic
and synaptic conductances in seemingly identical circuits based solely on circuit output to different perturbations. We
uncover specific conductance combinations that work similarly to maintain stability and predict the effect of changing multi-
ple conductances simultaneously, which often results from neuromodulation or injury. /

Bean, 2005; Giinay et al., 2008), can vary several-fold and still
generate nearly identical activity patterns. This degeneracy is due
to the extensive overlap that ion channels display in their bio-
physical properties and how they shape neural activity (Marder
and Tang, 2010). Although multiple circuits generate similar ac-
tivity patterns under normal conditions, they can respond very
differently when perturbed. One example is the pyloric circuit in
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Introduction

The intrinsic and synaptic conductances in diverse neural cir-
cuits, ranging from central pattern generating circuits in inverte-
brates (Marder and Goaillard, 2006; Schulz et al., 2006; Tobin et
al., 2009), to central circuits in mammalian brains (Swensen and
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the stomatogastric ganglion of crustaceans, which normally gen-
erates a stereotypical rhythmic pattern of activity (Tang et al.,
2010; Haddad and Marder, 2018). Following extreme tempera-
ture perturbations, the circuits in each preparation display so-
called “crashes” in different ways, affecting all circuit components
(Robertson and Money, 2012; Tang et al., 2012; Rinberg et al,,
2013). Yet, in such circuits, some types of perturbations affect
individual aspects of circuit output (Ransdell et al., 2013; Sakurai
et al., 2014) and can be used to reveal differences in the circuit’s
intrinsic and synaptic conductances. Beyond rhythmic circuits,
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on how significantly circuit output
was modified for the entire popula-
tion of circuits. Unbiased clustering
of stability exposed specific subsets
of conductances whose perturbation
had a similar effect on the output
of many degenerate circuits with
similar behavior. Unlike classical
sensitivity analysis (Goldman et al,
2001; Olypher and Calabrese, 2007;
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Figure 1.  Generating a population of degenerate Hodgkin-Huxley neurons. A, Maximum conductances for different ion channel

types were chosen randomly and independently from a uniform range of values (left) to create a population of 750 single neurons
with variable firing properties (right). B, Different sets of maximum conductances (left) can produce the same output (right).

degeneracy is also observed during neuropathic pain in primary
afferents of nerve-injured rats (Ratté et al, 2014; Ratté and
Prescott, 2016).

Given this degeneracy in a circuit’s intrinsic and synaptic con-
ductances, many studies have examined how to reliably modu-
late circuit output while maintaining robustness (Marder et al.,
2014). However, experimentally, it is more difficult to record all
circuit components over time, compared with a single measure
of circuit output. To address this challenge, we used computa-
tional modeling where we can read out the values of all biological
components and examine how they interact. Unlike previous
modeling work, which studied few circuits as representative
examples with a desired response (Grashow et al., 2009, 2010;
Dethier et al., 2015), we incorporated intrinsic and synaptic bio-
physical variability in an ensemble modeling approach (Prinz et
al., 2004; Lamb and Calabrese, 2013). Specifically, we studied a
family of degenerate models of half-center oscillators, small cen-
tral pattern generating circuits of two neurons coupled with
recurrent inhibition (Brown, 1911), a common circuit motif
underlying rhythmic behaviors such as breathing and locomo-
tion (Perkel and Mulloney, 1974; Wang and Rinzel, 1992; Sharp
et al.,, 1996). Although modeling studies typically assume identi-
cal neurons and synapses, experiments highlight the impact of
their variability on circuit output and the circuits’ ability to cope
with perturbations (Sharp et al., 1996; Grashow et al., 2009,
2010). Therefore, we studied a large population of degenerate
half-center circuits composed of non-identical neurons and syn-
apses with properties from the stomatogastric nervous system
(Golowasch and Marder, 1992; Liu et al., 1998; Goldman et al,,
2001).

We took a novel approach opposite from studies that
assumed experimentally observed relationships between the cir-
cuits’ building blocks. By examining circuit output in response to
perturbations, fully or partially blocking or enhancing a given
ion channel, we identified surprising conductance combinations
that can predict the response to specific perturbations, even
when the remaining intrinsic and synaptic conductances are
unknown. We first defined a concise measure of circuit stability
when altering conductances in biologically plausible ranges based

Weaver and Wearne, 2008; Drion
et al., 2015), our measure is non-
local and goes beyond a linear
approximation of the covariation of
interacting conductances. We dem-
onstrate this by explaining the sta-
bility to perturbations in two
conductances simultaneously from
the combination of single perturba-
tions, which is relevant for many
neuromodulators that alter more
than one conductance. Although
implemented on a particular family
of circuits, our approach provides a
broader framework for studying
degeneracy and robustness quantitatively, which has the poten-
tial to inspire future experimental investigation of these
phenomena.

Materials and Methods

Single neuron model

For the dynamics of single neurons, we used Hodgkin-Huxley models
with seven different channel types (Fig. 1): fast Na™ (Na), fast transient
K* (A), Ca2+—dependent Kt (KCa), a delayed rectifier Kt (Kd), a hy-
perpolarization-activated inward cation current (H) and fast transient
Ca?" (CaT) and slow Ca®>" (CaS). The transient calcium conductance,
CaT, has a faster time constant than the slow CaS, especially for the clos-
ing gating variable. Therefore, this conductance increases rapidly when
the cell becomes depolarized, and afterward vanishes rapidly. In contrast,
during depolarization Ca$ increases more slowly than CaT, and after-
ward persists for longer.

Parameter values for the channel dynamics, including activation and
inactivation time constants and voltage dependencies, were chosen to
capture rhythmic activity of the lateral pyloric neuron in the stomatogas-
tric ganglion of Cancer borealis (Liu et al., 1998) based on experimental
work (Golowasch and Marder, 1992):

7
CV = 7ZIi+Ileak7 (1)
i=1

I, =gml'hl(V —E). (2)

The capacitance was set to ¢ =1, the membrane potential was V and
each current (I;) was described by the maximum conductance value g, the
reversal potential E;, and the opening and closing variables m; and h; and
the integers p; and g;. For the leak current, m and / were set to 1 and g =
0.01 pS. The reversal potentials Eje, = -50 mV, Exn, =50 mV, Ex = -80 mV
and Ey; =-20 mV were kept fixed, whereas the reversal potential for the cal-
cium-dependent channels was dynamically computed by using the Nernst
equation with an extracellular Ca>* concentration of 3 mM following Liu
etal. (1998) for the sake of consistency with the other parameters, although
the extracellular Ca>* concentration in the crab is 13 mM (Golowasch et
al.,, 1999; Zhang and Golowasch, 2007). The intracellular Ca’>" concentra-
tion depended on the influx of Ca®* through the Ca®*-dependent chan-
nels, as well as on a linear buffer rate:
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d[Ca’]
TCa dt =

—(0.94 uM nA ™) (Tegr +Icas)
—[Ca**]40.05 uM, (3)
with a time constant 7¢, = 200 ms. The opening and closing parameters

were modeled by the following equations (where we omitted the sub-
script i on m and h for clarity):

Tm(V)%:moo(V)—m @
Th(V)% =ho(V)—h

To build single neuron models we selected the maximum conduct-
ance values (in pS) from the following ranges: g, € [800,1200],
Zeur €[0.6) B, € 0.12], 8, € 20.130], gy, € [20,140], gy €
[90,120], g, € [0,2].

Half-center circuit model

To generate half-center circuits (Fig. 2), two cells were coupled via a
graded synaptic connection (Graubard et al., 1980; Johnson et al., 1995)
where the synaptic input current I, adds an additional input to
Equation 1 for the postsynaptic cell (Cell 1) and depends on the mem-
brane voltage of the presynaptic cell (Cell 2) V* (Golomb et al., 1994):

. Vi Vhar |
Isyn = 7§synsvar ( V- Esyn) with Tsynsvar = <1 +e Tore ) - Svan
(5)

with Vi = 45mV, Vygpe = -2mV, 7o = 100 ms and Egy, = -78 mV.
Here, g, = g, denotes the connection from Cell 1 to Cell 2. Similarly,
the reciprocal connection from Cell 2 to Cell 1is g, = g,,. To deter-
mine synaptic strengths that generate a specific output, we scanned the
space of all possible synaptic connections in a Monte Carlo fashion as
follows. For each randomly selected pair of neurons, we chose a pair of
synaptic conductances from a grid in the range [0,1] puS with a resolution
of 0.025 pS. To introduce variability in an unbiased fashion, we further
added jitter to each conductance from the range [-0.0125, 0.0125] pS
with a resolution of 0.0025 puS. Each potential circuit was simulated for
4.5 s. We efficiently sampled the entire space of synaptic conductances
using a batch approach; performing 32 circuit simulations per batch, we
evaluated the output of each circuit. If Cell 1 suppressed Cell 2 for a spe-
cific pair of synaptic conductances, we observed that Cell 1 continued
suppressing Cell 2 when further increasing the synaptic connection from
Cell 1 to Cell 2 (g,,). Thus, we excluded all bigger synaptic conductances
from the remaining selection process after each batch. We call this
Monte Carlo process “self-refining”.

During this self-refining random sampling, we observed three differ-
ent outcomes of circuit output: (1) the circuit is considered “functional”
when both cells are active, fire regularly and in alternation with a phase
difference, period and burst exclusion metric as defined in the main text
(Fig. 2A,B, green circles), (2) both cells are active but they do not fulfill
the requirements for the circuit to be considered functional: although
they fire in alternation, they do not have the phase difference, period and
burst exclusion matrix that we require (Fig. 24,B, yellow circles), or (3)
one of the cells is silent (Fig. 2A4,B, red crosses). The random sampling
was terminated when the circuit output evaluation generated at least
three functional circuits (though in Fig. 2B we did not terminate the
scan for the purpose of visualization), or if the whole grid of synaptic
conductances generated no functional circuit output. In our analysis, we
used only one of the three functional circuits for each pair of neurons
and synaptic conductances.

In summary, our population generation protocol can be described as
follows. We started with 750 single neurons. These could be combined
into a total of 281,625 pairs, allowing us to form a total of 450,600,000
possible circuits because each pair could be combined into a circuit with
1600 different possible synaptic connections. We scanned all pairs and
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found a surprisingly large number, approximately half of them
(137,028), which could form circuits that satisfy our conditions. In par-
ticular, we scanned a total of ~300 million possible circuits made by
these pairs, based on the self-refining procedure. Because of time and
computational constraints, we finally randomly selected 7690 circuits for
our detailed analysis. The functional circuits were further simulated for a
longer period of 120 s to ensure that their regular firing properties
persisted.

Burst detection

During each simulation, an event was counted as a spike when the mem-
brane voltage of the neuron crossed the threshold of —30mV from
below. To extract bursts, we applied a threshold to the interspike inter-
vals (ISIs) that was determined by one-half the sum of 90th percentile of
the whole spike train ISI distribution and the minimal ISI. When this
threshold was too close to the maximum or minimum values of the ISI
(<10ms), the cell was considered to spike. For coupled cells, all bursts
of one cell that occurred between bursts or spikes of the other cell in the
circuit were considered one long burst.

In addition, we used the burst exclusion metric X, eqwork (Grashow et
al., 2009) to determine whether the bursts fired in an alternating fashion
(¥network = 1). The metric is computed by calculating the total active time
of both cells (f.n; and t.q1p) and the overlap of both cells being active at
the same time in the circuit (Openyorl)- The latter is compared with the
overlap time that would happen randomly for uncorrelated cells
(Orandom) and the minimum possible overlap time (O,,) during the
total simulation time Ty:

_ Orandom - One(work
X network = ) (6)
Orandom - Omin
0. = Ttrial — teen — feell2, if Teelll +tce112<Ttrial (7)
min 0, otherwise '

Stability value

For each circuit we determined the initial unperturbed phase difference
b, defined as the time between the onset of a burst from one cell to the
onset of the next burst of the other cell divided by the period of the cir-
cuit. This also included bursts consisting of just a single spike. We per-
turbed the circuit in N=15 steps (in each direction for increases and
decreases) and for each step i extracted the resulting phase difference ¢ .
Then we can calculate the proximity of the phase difference ¢; to the
initial phase difference ¢ o:

proximity(¢,, ,) =

o, .

T lf ¢ 2 (bia

> 0 (8)
— 8
: L, if g, < ¢,

1— ¢, ’

0, if one cell was silent or X eqywork <0.95.

The stability value 6 is defined as the average proximity over all per-
turbation steps (Fig. 4):

N ..
0= Z;prommlt]}\r](d)o, (,25,.). ©)

Influence of the unperturbed cell on stability

To determine how specific circuit attributes correlate with circuit stabil-
ity in response to conductance perturbations in circuits with an identical
perturbed cell, we chose a total of 100 subsets, each consisting of 18-29
circuits, for a total of 2002 circuits (Fig. 5). For every subset, we selected
one perturbation (e.g., an increase in g.,) to calculate the Spearman
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Generating a population of degenerate half-center circuits (HCCs). A, Three circuit behaviors are possible when reciprocally connecting two neurons via inhibitory synapses: one of

the cells is silent (red cross), both cells are active but the circuit does not satisfy all three of the criteria (see text) for a functional circuit (yellow circle), and both cells are active and the circuit
satisfies all three of the criteria for a functional circuit (green circle). ¢ Denotes the phase difference between the two cells in the circuit as a fraction of the circuit period. B, The type of H(Cs
built from three different randomly chosen pairs of neurons where the synaptic conductances were varied in a two-dimensional grid. Depending on the neuron pair, functional HCCs result
when one synaptic conductance is greater than the other (left), when the two synaptic conductances have similar strength (middle), or for no choice of synaptic conductances (right). For every
pair of neurons, instead of testing the output of a given circuit for every pair of synaptic conductances, we stopped searching for synaptic conductances bigger than a value that rendered one
cell silent and when there were at least three functional circuits (green circles); here we show all identified functional circuits for completeness (Methods). Some neuron pairs yielded larger
sets of solutions (e.g., middle). C, Different sets of maximum intrinsic and synaptic conductances (left) lead to the same circuit behavior (right).

correlation coefficient between the stability value (e.g., 6 c,ry) and an at-
tribute of either the unperturbed cell when uncoupled or an attribute of
the unperturbed circuit (e.g., the synaptic connection to the perturbed
cell; Fig. 5). We then evaluated the statistical significance of these
correlations.

Statistical analysis
The significance of the Spearman correlation was determined using the
scipy function scipy.stats.spearmanr. Because the analysis is repeated 100

times, for a significance value of p < 0.05 we expect to see ~5 significant
correlations by chance, even with uncorrelated datasets.

Hierarchical clustering algorithm

The hierarchical clustering algorithm (Fig. 6) was implemented by the
scipy function scipy.cluster.hierarchy.linkage. The distance between two
columns was calculated as the Euclidean distance (L2 norm). The clus-
tering mechanism uses the linkage method “single”, which assigns a dis-
tance d between the clusters u and v given by the following:
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d(u,v) = min (dist(uli], v[j])). (10)
for all points i in cluster « and all points j in cluster v.

Logistic regression classifier

We trained a binary logistic regression classifier for each of the 14 differ-
ent perturbations of the seven intrinsic conductances in each cell in a cir-
cuit (Fig. 7). To prepare the data we assigned the labels “stable” and
“unstable” to the 1500 circuits (top and bottom 20%) with the highest
and lowest stability value for the chosen perturbation, respectively. As
features, we used all 14 maximum conductances (7 for each cell) in the
circuit, as well as the strength of the synaptic connection between them.
Because of the different ranges of each conductance, each was scaled to
the range [0,1]. These data were then used to train a standard logistic
regression classifier from the sklearn.linear_model Python library. We
used 10-fold cross-validation and the L2 norm with a regularization pa-
rameter A = 1.

Prediction of double perturbation by single perturbation

We fit the function 67, = (af;+B6,)” using the scipy function scipy.
optimize.curve_fit (Fig. 10). For each stability value of the double pertur-
bation (67 ,), the two corresponding single stability values (6, and 65)
were used to determine the coefficients «, 8, and 7.

Code/software accessibility
All code is provided on github at https://github.com/comp-neural-
circuits/circuit-stability.

Results

Despite the ubiquity of degeneracy in biological systems, study-
ing degenerate circuits that produce similar output from differ-
ent intrinsic and synaptic conductances is a challenge because of
the many timescales of the underlying parameters and the high
dimension of the parameter space. First, we describe some of this
complexity for a family of degenerate circuit models; two neu-
rons coupled with recurrent inhibition that form a half-center
circuit (HCC) with rhythmic output. Then, we propose a compu-
tational approach to expose hidden variability in a circuit’s
intrinsic and synaptic conductances. We achieve this by quanti-
fying circuit stability to single and double conductance perturba-
tions for a large population of circuits using unbiased statistical
analysis.

Constructing a population of degenerate rhythmic circuits
with similar output

We modeled individual neurons in the half-center circuit with
intrinsic and synaptic conductances based on an established
model for the rhythmic activity of neurons in the stomatogastric
ganglion of Cancer borealis (Golowasch and Marder, 1992; Liu et
al., 1998). In particular, we used Hodgkin-Huxley single neuron
models with seven different channel types (see Materials and
Methods). In contrast to previous mathematical reductions of
HCCs (Perkel and Mulloney, 1974; Wang and Rinzel, 1992;
Skinner et al., 1993, 1994; Daun et al., 2009), we allowed the
intrinsic and synaptic conductances in the HCCs to be different
and investigated the robustness of circuit output when perturb-
ing the intrinsic conductances. To build the population of cir-
cuits, we first generated single neurons with variable maximum
conductances for each channel type, which produced a range of
activity patterns, from single spikes to bursts with different peri-
ods (Fig. 1A). These conductances were randomly and independ-
ently chosen from a uniform range of biologically plausible
values (Fig. 14; Liu et al., 1998; Goldman et al., 2001; Prinz et al.,
2004; O’Leary et al, 2014). The resulting population of 750
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neurons had a significant degree of degeneracy, where different
sets of maximum conductances produced similar output patterns
(Fig. 1B).

Following the construction of single neuron models, we com-
bined randomly selected pairs of these neurons into HCCs by
coupling them with inhibitory synaptic conductances, where we
allowed the synaptic conductances between the two cells to be
different (see Materials and Methods). To generate a population
of HCCs with similar behavior but distinct intrinsic and synaptic
conductances, we required that HCC output satisfied three con-
ditions: (1) non-overlapping activity between the two cells, quan-
tified by a burst exclusion metric close to 1 (see Materials and
Methods; Grashow et al, 2009); (2) a phase difference of
0.5 % 0.03 (measured as a fraction of the circuit period), and (3)
a period between 100 ms and 800 ms. Several biological systems
maintain such a precise phase difference of 0.5, including the
leech heartbeat (Calabrese, 1977) and motor nerve activity gener-
ated during swimming in newly hatched Xenopus tadpoles
(Roberts et al., 2010). A precise phase difference was chosen to
give us a population of circuits that despite highly variable intrin-
sic and synaptic conductances have a similar output. This even-
tually enabled us to compare the deviation from this chosen
phase difference following a perturbation in all simulated cir-
cuits. We allowed the period to vary over a range based on exper-
imental results; for instance, the leech heartbeat period can be
regulated by changes in temperature and during swimming
(Masino and Calabrese, 2002).

A randomly chosen pair from our population of 750 single
neurons, when synaptically coupled, could generate one of three
possible behaviors: one of the cells was silent, both cells were
active but the circuit did not satisfy all three of the above criteria,
and both cells were active and the circuit satisfied all three of the
above criteria; in which case we called the circuit “functional”
(Fig. 2A). For each randomly selected pair of neurons, we identi-
fied synaptic strengths that led to a functional circuit. For this
purpose, we scanned the space of possible synaptic connections
in a self-refining Monte-Carlo fashion (see Materials and
Methods; Fig. 2B). This approach enabled us to efficiently sample
the entire space of synaptic conductances in a biologically plausi-
ble range, without simulating all possible circuits (see Materials
and Methods). The process was terminated early when our out-
put evaluation found at least three functional circuits, from
which we randomly selected one for our HCC population (Fig.
2B, green symbols). For some randomly chosen neuron pairs,
the construction of functional circuits required that one synaptic
conductance was larger than the other (Fig. 2B, left) and for
others that the two synaptic conductances had similar strength,
yielding a much larger set of functional solutions for the given
pair (Fig. 2B, middle). Other neuron pairs never generated a
functional circuit when synaptically coupled (Fig. 2B, right).
Overall, of all possible neuron pairs (281,625) we found that
~50% (137,028) produced functional circuits when scanning
through different synaptic conductances (see Materials and
Methods). As for the single cells, we found many examples of
degeneracy within those functional circuits (Fig. 2C). In sum-
mary, we have developed an unbiased and efficient approach to
generate degenerate HCCs, which generate similar behavior de-
spite different intrinsic and synaptic conductances.

Intrinsic conductance perturbations affect circuit output
differently

We next asked how these circuits with variable intrinsic and syn-
aptic conductances respond to perturbations that fully or
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applied to the 7690 circuits in the population.

partially block or enhance a given ion channel in one of the con-
stituent neurons. Many biological systems are equipped with ac-
tivity-dependent compensatory mechanisms whereby an activity
sensor actively regulates and reconfigures other conductances
when one conductance is perturbed to return circuit activity back
to a target level (Marder, 2011; O’Leary, 2018). Here, we consider
a different form of compensation where following a perturbation
of a given conductance, the remaining conductances can together
compensate for it, due to the overlap in their timescales of opera-
tion of the opening and closing gating variables of the differention
channels (Grashow et al., 2010; Tang et al., 2010, 2012; Soofi et al.,
2014). This type of compensation is much faster and as such would
be applicable to circuits shortly after a perturbation is applied and
when slower activity-dependent mechanisms have not yet had the
chance to regulate other channels in response to the perturbation.
We were specifically interested in channel deletions, and
therefore incrementally decreased the maximum conductance ofa
single ion channel to 0. Because there is no upper bound for con-
ductance increases, we incrementally increased the maximum
conductance to 200% of its original value. For both increases and
decreases, we changed each conductance in 15 discrete steps,
which produced 30 perturbed circuits. We simulated these per-
turbed circuits and scored their functionality (Fig. 3). For some
circuits, modifying a specific conductance did not significantly
affect circuit output, whereas for others it led to a complete failure
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Distinct circuit response to intrinsic conductance perturbations. When one of the maximum conductances (X) was ei-
ther stepwise decreased to 0% (X|) or stepwise increased to 200% (XT) of its original value, the HCC response fell into four catego-
ries: (1) both cells were active for all conductance changes (green), (2) the unperturbed cell remained active while the perturbed
cell was silenced (blue) for some conductance changes, (3) the perturbed cell remained active while the unperturbed cell was
silenced (purple) for some conductance changes, and (4) either cell was silenced for some conductance changes (red). We did not
observe circuits where both cells were simultaneously silenced. The pie-plots show the fraction of all outcomes for all perturbations
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to generate a half-center rhythmic
pattern or rendered one cell com-
pletely silent. We termed this most
severe failure a “crash” similar to the
experimental nomenclature of activ-
ity changes following temperature
perturbations (Tang et al, 2010;
Haddad and Marder, 2018). For
instance, decreasing g, typically led
to silencing the perturbed cell
because the hyperpolarization-acti-
vated current provides the only
source of depolarization in the per-
turbed cell. This agrees with previ-
ous studies, which have shown that
the H current plays an important
role in generating stable bursting
behavior in HCCs (Angstadt et al,,
2005; Daun et al., 2009; Grashow et
al., 2009), specifically in the context
of the ‘escape and release’ mecha-
nism (Wang and Rinzel, 1992;
Skinner et al, 1994; Sharp et al,
1996): When two cells are coupled
in a half-center oscillator, one cell
can either release the other by
reducing its inhibitory influence on
the other, or one cell can escape
the suppression from the other by
hyperpolarization-activated currents,
like the H current.

Surprisingly, we found that most
of the perturbations silenced the
unperturbed, as opposed to the per-
turbed cell. Decreases in the conduc-
tances g,r> §xca aNd gy g as well as
increases in g, were the most
obvious conductances for which this
happened, where >50% of the tested circuits failed to generate a
stable output on a perturbation (Fig. 3). This suggests that the
effects of each perturbation on circuit output result from an
interplay of the different timescales of each conductance in the
two constituent cells and are not trivially caused by failures in
the perturbed cell. Although the specific way by which circuits
crashed following perturbations differed, we observed that when
one cell silenced the other from one perturbation step to the
next, the number of spikes per burst increased in 77% of the
cases compared with the corresponding unperturbed circuits.
This increase in spiking was accompanied by a shorter ISI within
a burst in 70% of the cases, and occurred when either the per-
turbed or the unperturbed cell was the silenced cell.

Interestingly, we found that deleting specific ion channels was
more detrimental to circuit stability than increasing them, lead-
ing to more dysfunctional circuits. This suggests that some con-
ductances may need to exceed a threshold value to ensure circuit
stability, i.e., they do not need to be fine-tuned as long as they
are sufficiently large. Together, our analysis argues that perturb-
ing any single intrinsic conductance in one of the constituent
cells can have drastically different effects on circuit output that
cannot be trivially predicted, because of its interactions with
other conductances in the same (perturbed) or in the unper-
turbed cell of the circuit.
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Figure 4.

Quantifying circuit stability in response to intrinsic conductance perturbations. A, Definition of the stability value to single conductance perturbations. (1) One cell is perturbed by

changing one of its intrinsic conductances in 30 steps between 0 and 200%. (2) For each perturbation, the new phase difference of the perturbed circuit output is computed. (3) The new phase
difference is compared with the phase difference of the unperturbed circuit: a proximity of 0 indicates a large difference (or one cell is silent), whereas a proximity of 1 indicates a phase differ-
ence the same as the initial. Finally, the stability value & € [0, 1] is the average proximity of all perturbed circuits. Two different stability values concisely describe the change in phase differ-
ence for decreases () versus increases (1) in the maximum conductance. B, Stability values when perturbing g,s and gy, in the same circuit.

A new measure for quantifying circuit stability in response

to intrinsic conductance perturbations

A concise quantification of the response to a specific perturba-
tion is difficult because degenerate circuit models respond to per-
turbation in different and nonlinear ways (Tang et al, 2010,
2012; Ransdell et al., 2013; Sakurai et al, 2014; Haddad and
Marder, 2018; Ratliff et al., 2018; Alonso and Marder, 2019).
Classical sensitivity analysis typically estimates how a subtle
change in one or multiple system parameters changes the output
of the system. This method has been used to demonstrate how
much one parameter should change from its original value to
compensate a deviation of another parameter from its original
value. This typically yields a linear and local approximation of
circuit output as a function of parameter change (Olypher and
Calabrese, 2007). To quantify changes in circuit output and com-
pare them across circuits and perturbations, we developed a
novel quantitative measure of stability based on the properties of
circuit output following a perturbation that is global, taking into
account the entire range of conductance change.

For each circuit we generated the output in response to indi-
vidual conductance perturbations ranging from 0 to 200% of the
original conductance values (Fig. 4A, Step 1). Because the circuits
generated very different outputs in response to increased or
decreased conductances, we computed the stability values for
each direction of change separately; thus, 6x; denoted the stabil-
ity value when increasing the maximum conductance X from
100 to 200% and €x| denoted the stability value when decreasing
the conductance X from 100 to 0%. For each perturbation, we
computed the mean phase difference over the range of functional
outputs (Fig. 44, Step 2). To quantify circuit stability, we focused
on the phase difference only, because this property seems to be
preserved on a perturbation in rhythmic circuits. For example, in
the case of temperature perturbations in the stomatogastric

ganglion, despite period changes, the pyloric circuit remains
functional as long as phase relationships are preserved (Tang et
al,, 2010). Thus, for each perturbation, we calculated the proxim-
ity of each resulting phase difference to the initial phase differ-
ence of the unperturbed circuit: A value equal to the initial phase
difference results in a proximity of 1, and a dysfunctional circuit
results in a proximity value of 0. This procedure generated prox-
imity values for each simulated circuit (Fig. 4A, Step 3). Finally,
we averaged all proximity values for each conductance increase
or decrease to get a stability value between 0 and 1. Circuits that
maintained a functional output with the same phase difference
as the original circuit (0.5 = 0.03) for the entire range of the per-
turbation were quantified as stable, with a stability value of 1,
whereas circuits that crashed for the smallest perturbation were
quantified as unstable, with a stability value of 0. For the majority
of circuits, the stability was somewhere in between (2 examples
given in Fig. 4B).

This method provides us with a concise and quantitative mea-
sure of circuit stability in response to perturbations of a single
conductance in a given constituent cell of an HCC. We highlight
that computing a given stability value does not require knowl-
edge of the specific conductance composition of the neurons,
only the phase difference, and thus, has the potential to be used
for quantifying stability in other rhythmic circuits with a clearly
defined output (see Discussion about the applicability of our
approach to other circuits).

A population of degenerate circuits shows a range of stability
to intrinsic conductance perturbations

Equipped with a concise measure of circuit stability, we aimed to
quantify the response of the population of degenerate HCCs
with similar output but distinct intrinsic and synaptic conduc-
tances following a perturbation. Similarly to single neuron
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perturbed cell perturbed cell

Diverse stability values in response to different intrinsic conductance perturbations. 4, Top, A schematic illustrating a subset of circuits with the same perturbed cell (red) and dis-

tinct unperturbed cells (gray). Middle, The output of each cell when uncoupled, to illustrate the feature “period of the unperturbed cell”. Bottom, The output of the circuit. B—D, The gray histo-
grams show the distribution of stability of all 7690 circuits for different perturbations, € ¢y, @cs; and @y. In addition, the right ordinate axis shows: (B) the relationship between the
synaptic conductance to the perturbed cell (g;,; A, bottom) and the stability values @ cary, @cas) and @y, (symbols) for 20 different circuits with the same perturbed cell and distinct unper-
turbed cells; (€) the relationship between the synaptic conductance to the unperturbed cell (g,;; A, bottom) and the same stability values; (D) The relationship between the period of the
unperturbed cell when uncoupled (4, middle) and the same stability values. In each case, the Spearman correlation coefficient and p-value are provided. E, Boxplots show the median and the
quartiles of all correlation coefficients for 100 subsets of circuits (2002 circuits total), each subset with the same perturbed cell and with 18-29 distinct unperturbed cells. The whiskers are
extended to 1.5 of the interquartile range and black diamonds indicate outliers outside this range. The statistically significant correlations (p << 0.05) from these subsets are superimposed as
gray circles. The numbers indicate the number of subsets from those 100 with a statistically significant Spearman correlation coefficient, whereas the red asterisks indicate the single subset of
20 circuits from B through D. Only correlations between 6y, @casy and Oy and three circuit features (g4,, g,; and period of unperturbed cell) are shown.

models (Alonso and Marder, 2019), HCCs responded to intrinsic
conductance perturbations in different ways (Fig. 5). HCC out-
put was particularly vulnerable to some, but not other, conduct-
ance perturbations. For instance, the majority of circuits were
largely unaffected by increasing g, as reflected in the highly
skewed distribution of stability values 6c,r; to 1 (Fig. 5B-D,
bars, left). In contrast, decreasing g,; had a strong effect on the
majority of circuits (Fig. 5B-D, bars, right). Yet other perturba-
tions, for instance decreasing g.,q showed a range of effects on

the circuits as seen in the relatively uniform distribution of stabil-
ity values 0 c,s; (Fig. 5B-D, bars, middle).

Some of the studied circuits shared one of the neurons, i.e.,
they had either an identical perturbed or unperturbed neuron.
One might conceive that when the circuits shared the perturbed
neuron, the identity of the second, unperturbed neuron did not
matter for the stability of circuit output. To determine this, we
compared a subset of 20 circuits where the perturbed cell was
identical (Fig. 5B-D, colored dots). The synaptic conductances
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differed across the different circuits to ensure that the different
unperturbed cell could still generate functional HCC output
based on our criteria when coupled with the perturbed cell.
Particularly, we wondered whether the stability values in
response to a given perturbation correlated with specific attri-
butes of the circuit. We searched for correlations between
Ocary, Ocas) or Oy and different circuit attributes, including:
the synaptic conductance from the unperturbed to the perturbed
cell g,, (Fig. 5B, blue dots), the synaptic conductance from the
perturbed to the unperturbed cell g,, (Fig. 5C, purple dots), and
the period of the unperturbed cell when uncoupled from the cir-
cuit (Fig. 5D, green dots). The subset of circuits that had the
same perturbed cell showed diverse correlation relationships
between the stability values and the circuit attributes, with a
range of statistical significance (Fig. 5B-D. We found that some
significant correlations have interesting implications; for
instance, circuits with high 6 c,r; in the perturbed cell seemed to
receive a strong synaptic connection from the unperturbed cell
(Fig. 5B, left), but provide a weaker synaptic connection to the
unperturbed cell (Fig. 5C, left). These same circuits were also
characterized with longer periods of the unperturbed cell (Fig.
5D, left). Furthermore, circuits with low 6, seemed to receive a
stronger synaptic connection from the unperturbed cell (Fig. 5B,
right), but had a variable synaptic connection to the perturbed
cell (Fig. 5C, right).

To summarize these findings in an unbiased manner across
many simulated circuits, we found a total of 100 such distinct
subsets each consisting of ~20 (18-29) circuits that have the
same perturbed cell but different unperturbed cells, giving us a
total of 2002 circuits. For the circuits within these subsets, we
computed the correlations between each of Oc,ry, 6cas; and
0y with each of g,,, g,, and the period of the unperturbed cell
when uncoupled. Considering the statistically significant correla-
tions (p < 0.05) revealed some general relationships (Fig. 5E), g,
was generally positively correlated with 6 ¢, and 6 c,s) but neg-
atively correlated with 6y (Fig. 5E). This suggests that having a
high g,, the synaptic conductance from the unperturbed to the
perturbed cell, makes circuits ultra-sensitive to decreases in gy,
consistent with a classical “escape” mechanism whereby one cell
escapes inhibition from the other during rhythm generation
(Wang and Rinzel, 1992; Skinner et al., 1994; Sharp et al., 1996).
The special role of g;; in rhythm generation is further high-
lighted in the lack of correlation between 6y and the period of
the unperturbed cell when uncoupled, in contrast to the other
positive correlations with @c,r; and Ocas) (Fig. 5E). We also
found that g,, was negatively correlated with all @c.ry, 6 cas)
and 0y in most circuits (Fig. 5E). This implies that a stronger
synaptic conductance from the perturbed to the unperturbed cell
will result in a lower circuit stability. Interestingly, a similar rela-
tionship was found experimentally in the mollusk, Tritonia dio-
medea, where the extent of motor impairment during swimming
following injury correlates with the inhibitory synapse strength
converging onto a specific neuron (Sakurai et al., 2014).

Together, these results demonstrate that the relationships
between circuit stability when perturbing a single conductance
and distinct circuit attributes can be quite complex. For some cir-
cuits, having a different unperturbed cell has a huge impact on
circuit stability after a perturbation and the resulting stability
exhibits strong correlations with specific circuit attributes. For
other circuits, the different unperturbed cell continues to have a
big impact on circuit stability, but the stability fails to correlate
with specific circuit attributes. For yet other circuits, having a dif-
ferent unperturbed cell has minimal influence on circuit stability.

Onasch and Gjorgjieva e Circuit Stability Reveals Hidden Variability

These results highlight that circuit stability depends on the entire
circuit, rather than the individual cell that is perturbed, and dem-
onstrate the need for an unbiased analysis of the effects of pertur-
bations on circuit stability, which is what we sought to
accomplish next.

Perturbations reveal subsets of conductances that co-regulate
circuit stability

Applying a perturbation to a specific conductance can be inter-
preted as moving through the parameter space of all intrinsic
conductances along one direction (the perturbed parameter) to
find parameter combinations that yield a similar circuit output.
Our newly defined stability measure allows us to quantify this
movement at different points in this parameter space for a large
population of circuits. More specifically, the measure describes
whether, following a perturbation, the circuit retains its output
(high stability) or not (low stability). In this view, we postulated
that any correlations between two stability values should locally
describe the shape of the parameter space in which functional
circuits reside. Therefore, we examined the correlation between
all possible pairs of stability values in the population of degener-
ate circuits (Fig. 6A). Surprisingly, the majority of the stability
values were uncorrelated (e.g., 0 a1 vs 6| and Ok vs 0 4); Fig.
6B, top). Additionally, no strongly negative correlations were
observed, which suggests that high circuit stability when perturb-
ing one conductance does not imply low circuit stability when
perturbing another conductance. Several pairs of stability values
exhibited strong correlations (e.g., Okca) Vs Ouy and Oa; vs
0 cas; Fig. 6B, bottom). Applying a hierarchical clustering algo-
rithm (see Materials and Methods) to reorganize the columns of
the correlation matrix revealed four clusters of strong positive
correlations (Fig. 64, yellow boxes), uncovering subsets of con-
ductances that when perturbed produced a similar effect on
diverse individuals of the population, thus co-regulating circuit
stability. Two of the clusters (01 vs Ocas and 04 vs Ocasy)
imply co-regulation of stability by opposite changes in g, and
Zcas- This relationship predicts that a neuromodulator that
increases (decreases) the A current has similar effects on circuit
stability as a neuromodulator that decreases (increases) the Ca$S
current. A plausible explanation for this correlation in stability
may be that the activation functions of the corresponding cur-
rents operate on a similar timescale, but in opposite directions;
the A current has a hyperpolarizing action, whereas Ca$S current
has a depolarizing action (Table 1). Similarly, the Kd current
operates in the same direction and with a similar activation time-
scale as A, consistent with 6xq4; being a member of the stability
cluster containing 6 4| and 6 cas;.

Particularly interesting is the large cluster consisting of the
stability values to five different perturbations, which contains
011 and ke, . The H and KCa conductances are critical for the
robustness of circuit output for several reasons. First, even
weakly increasing g,; or decreasing g, affects the membrane
potential of the perturbed cell right after its burst ends. During
normal rhythm generation, the H current gradually vanishes
over the course of the burst, whereas the KCa current builds up.
During a perturbation, however, slightly decreasing g, leads to
a smaller hyperpolarizing current after the burst, while slightly
increasing g, leads to a larger depolarizing current in the same
time window. Applying a stronger perturbation that more signif-
icantly decreases gy,, or increases g, effectively prevents the
intrinsic mechanism of the perturbed cell to terminate its burst-
ing, leading to a severe crash where the unperturbed cell is
silenced (Fig. 3). Although the other stability values in the large
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Correlation of stability values. A, Spearman correlation between all stability values. The columns and rows of the correlation matrix are reordered after hierarchical clustering (see

Materials and Methods). The yellow boxes denote distinct conductance clusters that co-regulate circuit stability, the rectangles (green, orange) highlight conductances that are used in the logis-
tic classifier in Figure 7. B, Four examples of the relationship between different stability values (numbers in A). The plots show a random subset of 1000 for clarity. The symbol color corresponds

to the correlation strength in A.

Table 1. Time constants for opening and closing gating variables of each
intrinsic conductance

Na (€1} (€ A KCa Kd H
T (activation) 0.15 7.76 20.00 9.63 6010 592 553.09
7y, (inactivation) 1.15 60.10 157.70 28.30 — — —

The values are calculated at the threshold membrane voltage of —55mV and given in milliseconds.

cluster correspond to perturbations of conductances that act on
different timescales (Table 1), their ultimate effect on circuit out-
put is likely similar; increasing gy, or gy, and decreasing g,
lead to a longer ISI and thus shorten the time window where the
membrane voltage is depolarized. For instance, a bigger Na*
current speeds up the depolarization during each spike in a burst,
preventing other depolarizing currents with much slower time-
scales to build up. Immediately following a spike, the Na* cur-
rent no longer contributes to the membrane potential because
the Na™ channels are completely closed. At this time, the lack of
other depolarizing currents becomes apparent, leading to a
stronger after-spike hyperpolarization and eventually a longer
ISI within a burst. Because of the longer ISI and more hyperpo-
larized membrane potential, the KCa current fails to build up (or
the H current is not reduced as strongly) as before the perturba-
tions, resulting in similar effects as decreasing gy, (or increasing
gyy) directly.

We also identified isolated clusters of stability that did not
correlate with any other, O xca and 0 (Fig. 6A). Perturbations in
these conductances had unique effects on circuit output stability
independent of the other conductances. Increasing gy, did not
significantly impact circuit output. In contrast, decreasing g,
had severe impact on circuit output, because a threshold amount
of gy, is necessary for the circuit to generate the desired bursting
output (Fig. 3; Wang and Rinzel, 1992; Skinner et al., 1994;
Sharp et al, 1996; Angstadt et al, 2005; Daun et al, 2009;
Grashow et al., 2009).

Together, our analysis uncovers subsets of intrinsic conduc-
tances that co-regulate circuit stability by examining only the
response to perturbations of these same conductances in a popu-
lation of degenerate circuits with entirely uncorrelated intrinsic

and synaptic conductances. By identifying subsets of perturba-
tions that act alike, the correlations between pairs of stability val-
ues at different locations within the parameter space of intrinsic
conductances provide insights into the shape of the parameter
space where functional circuits live.

Features predictive of circuit stability to single conductance
perturbations

We next wondered whether certain intrinsic or synaptic con-
ductance combinations can predict circuit stability to specific
conductance perturbations. To extract predictive circuit features
in an unbiased fashion in the entire population of degenerate cir-
cuits, we used a logistic regression classifier with the intrinsic
conductances of each cell and the two synaptic conductances as
features (total of 16). We trained a different classifier for each
perturbation (see Materials and Methods; Fig. 7A). We refer to
the classes as stable and unstable, with each containing the 20%
most stable or 20% most unstable circuits, respectively. While
the classification rate was >75% for most of the classifiers (Table
2), each classifier weighted the features differently to predict cir-
cuit stability. This information enabled us to look at the features
with the largest weights as those that most strongly predict
whether a circuit is stable given a specific perturbation. For
example, the feature “g ., in the perturbed cell” for the classifiers
of Oxay, Ocast, Oa (Figs. 6A, green box, 7B) and 0y (Fig. 64,
orange box, 7B) shows that a circuit with a high value of g in
the perturbed cell will result in low stability values k4|, € cast
and 64| because of the negative weights for each classifier (Fig.
7B, green dotted box), but in a high stability value in 6] due to
the positive weight (Fig. 7B, orange dotted box). Therefore, a
high value of g, in the perturbed cell makes the circuit more
likely to be sensitive to decreases in g4 and g, and increases in
Zcas> but less sensitive to decreases in gy;. In the parameter space
of all intrinsic conductances, this analysis reveals that the initial
position in parameter space, defining the unperturbed circuit,
determines the stability of that circuit with respect to the differ-
ent perturbations, which move the circuit along different
directions.
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Circuit features that predict stability to single conductance perturbations. A, A logistic classifier was trained for each perturbation to classify whether a circuit belongs to the 20%

most stable or unstable circuits (see Materials and Methods). B, The weights for four dlassifiers after training: top three for 64|, 6 s and 6 (Fig. 6A, green box), bottom for 6 (Fig.
6A, orange box). The weights highlighted by the dashed boxes show opposite trends between the top three (green) classifiers and the bottom (orange) classifier. €, The weight vectors for the
four classifiers highlighted in B projected onto the first three principal components of the weight space of all 14 classifiers. The weight vectors have the same color as the classifier to which
they correspond (B). D, The angles (in radians) between the weights from each classifier computed in the high dimensional space of all 14 weights. Same row ordering as in Figure

6A.

Table 2. Classification rates for the trained classifiers

Na (€1} (€Y A Ka Kd H
0, 0.67 0.91 0.78 0.89 0.78 0.86 0.80
0 0.84 0.74 0.85 0.83 0.78 0.85 0.76

The dlassification rates for all classifiers introduced in Figure 7 are above chance level (50%).

To compare general differences between the weights of the
classifiers without looking at each weight individually, we com-
puted the angle between the weight vectors for each classifier. To
visualize the angles between the weight vectors for the four classi-
fiers highlighted in Figure 7B, we projected the vectors into the
space spanned by the first three principal components of the
weights of all 14 classifiers (Fig. 7C). The angles capture the simi-
larity between the projected weight vectors. Here, the orange vec-
tor is nearly orthogonal to the green vectors. Calculating the
angles between the weight vectors in the full 16-dimensional

space for all classifiers produces a matrix similar to the correla-
tion matrix between stability values (compare Figs. 6A, 7D). This
suggests that the specific subsets of conductances that co-regulate
circuit stability, identified with unbiased clustering, correspond
to circuit features that are predictive of circuit stability to
perturbations.

These two results can also be reconciled in the parameter
space of all intrinsic conductance in which a perturbation can be
interpreted as a movement through parameter space. The
previously identified correlations in the stability to a perturba-
tion are independent from the initial position in the parameter
space (which defines the unperturbed circuit), because they
were determined for the entire population of degenerate cir-
cuits. Complementary to that, the classifier developed here
identifies the direction along the weight vector within the pa-
rameter space, which leads to the best classification. Thus,
when the two stability values in response to perturbations are
perfectly correlated, the weight vectors completely overlap.
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Stability in response to double perturbations for a single circuit. 4, Two intrinsic conductances were perturbed at the same time in an example circuit. Each line denotes a different

ratio between the amounts of the two perturbations. The cardinal directions correspond to the single perturbations (Fig. 4). B, As for the single perturbation, the phase difference for each direc-
tion was computed in the two-dimensional space (left). Along each direction (middle) the stability value (right) was calculated as described in Figure 4. C, Two-dimensional plot of the stability
values for the circuit in B. The highlighted stability values 6; and 6; correspond to the perturbation directions in B.

Indeed, we find that the perturbations with highly correlated
stability values (Fig. 6A) also have small angles between the
weight vectors of their classifiers (Fig. 7B).

Quantifying circuit stability in response to double
conductance perturbations

Considering that neuromodulators often impact more than one
intrinsic conductance simultaneously (Ratté et al., 2014; Ratté
and Prescott, 2016; Ratliff et al., 2018), it is important to under-
stand how to determine circuit stability in response to multiple
conductance perturbations. Few studies have explored the effects
of the interaction of multiple conductance perturbations at the
circuit level, especially providing quantitative descriptions of co-
modulation (Harris-Warrick, 2011; Marder, 2012; Nadim and
Bucher, 2014; Li et al,, 2018). This co-modulation can directly
result from a perturbation that simultaneously affects two con-
ductances or from a secondary effect where a perturbation in
one conductance triggers a change in a second conductance. To
address this, we next extended our measure of stability to simul-
taneously perturbing two intrinsic conductances in one cell of
the HCCs (Fig. 8A). These double perturbations resulted in an
order of magnitude more (600 vs 30) perturbed circuits. As
before, we calculated the phase difference between the two cells
for each perturbed circuit (for an example circuit, see Fig. 8B).
This generated a set of directions in the two-dimensional plane
of conductance changes. The horizontal and vertical directions
correspond to the single perturbations considered previously
(compare Figs. 84, 4A). Other directions than the cardinal corre-
spond to perturbations in which both conductances were

simultaneously perturbed at a given ratio. For each of these
directions, we extracted a single stability value using the same
procedure as for the single perturbations (compare to Fig. 8B,
4A). These stability values were then examined in a two-dimen-
sional space (Fig. 8C).

To quantitatively describe the stability of all circuits, we gen-
erated a two-dimensional histogram where each quadrant pro-
vides important information about how the two conductance
perturbations interact (Fig. 9A-C, left). For instance, the top
quadrant corresponds to perturbations where the H conductance
was increased to 200% from its reference value (Fig. 9A), whereas
at the same time the A conductance was either decreased (left
half) or increased (right half). One naive expectation is that these
double perturbations affect circuit output more than perturba-
tions in the single conductances, thus leading to lower stability
values along perturbation directions different from the cardinal.
However, we found this not to be the case. In fact, simultaneous
perturbations of two conductances often improved circuit stabil-
ity relative to the single perturbations. For instance, when g,
decreased, decreasing rather than increasing g,; improved the
stability for most circuits (Fig. 94, left quadrant, a peak in the
histogram near 1 in the bottom half). In contrast, when g,
increased, increasing rather than decreasing g,; improved stabil-
ity (Fig. 94, right quadrant, a peak in the histogram near 1 in the
top half). Therefore, we find that changing g, in the same direc-
tion as g, increases circuit robustness. This finding is consistent
with previous experimental results that g, and g, are co-regu-
lated (MacLean et al., 2003; Amendola et al., 2012) and actively



3198 - J. Neurosci., April 15, 2020 - 40(16):3186-3202 Onasch and Gjorgjieva e Circuit Stability Reveals Hidden Variability

relative frequency (%)1 &

B Oar

W oa

-1
st L
< =
< £
2 2
0

0 relative frequency (%) 20

Figure 9.  Interaction of double perturbations for the population of degenerate circuits. 4, A two-dimensional circular histogram (left) of stability values for 1000 circuits in response to a si-
multaneous perturbation of the A and H conductances as introduced in Figure 8. The scatter plot (right) shows the relationship between the stability values of the double perturbations involv-
ing a decrease in g, and two opposing changes in g, (left ordinate axis: decreases in red, and right ordinate axis: increases in green) as a function of the stability values of the single
perturbation in gy,. B, Same as A but for a simultaneous perturbation of the A and CaS conductances (left) and a scatter plot (right) with the stability values of the double perturbations involv-
ing a decrease in g, (left ordinate axis, red) and an increase in g, (right ordinate axis, green), as a function of the double perturbation involving an increase in g, and a decrease in g,.
€, Same as A but for a simultaneous perturbation of the H and CaS conductances (left) and a scatter plot (right) with the stability values of the double perturbations involving a decrease in gy,
and two opposing changes in g, (left ordinate axis: decreases in red; right ordinate axis: increases in green) as a function of the stability values of decreasing gy,.

kept at a fixed ratio to maintain a given output (Krenz et al,  peak in the histogram near 0.2 when decreasing g,; and increas-
2013, 2014). ing g,, which agrees with our previous finding that stability is

Extracting a similar relationship when examining the effect of ~ decreased when g;; and g, change in opposite directions (Fig.
changes in g, after perturbing g,; appears to be more challeng- 94, bottom quadrants). To better illustrate the impact of pertur-
ing (Fig. 94, top and bottom quadrants). In particular, we finda  bations in g, on the circuits already perturbed in g ;, we plotted
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Explaining circuit stability to double perturbations from stability to single perturbations. A, Schematic of the fit to examine whether the stability in response to single perturba-

tions can be nonlinearly combined to explain the stability values of the double perturbation. Left, The minimum and maximum value of +y that were fitted for all combinations of perturbations
in the population. -y = 1 corresponds to a linear relationship. Middle, y as a function of R% All perturbations that include a decrease in gy are marked with black circles (dashed ellipse).
Right, v as a function of the correlations in stability to single perturbations (Fig. 64). Dashed ellipse denotes the strong correlations in the four clusters in Figure 64 (from top: red, purple,
gray, green). B, Predicting the stability to double conductance perturbations from the nonlinear combination of the stability to single perturbations. Left, v > 1 indicates that stability to the
double perturbation is worse than the combination of single perturbations. Middle, << 1 indicates that stability to the double perturbation is better than the combination of single perturba-
tions. Right, The single perturbation involving decreasing g, dominates the double perturbation (large weight to ).

circuit stability for the double perturbations, 6 jx and 6 a1 n,
as a function of circuit stability for the single perturbation, 6y
(Fig. 94, right). As for the single perturbations, perturbing g,
had a strong effect on circuit stability because decreasing g,
removes a cell’s ability to burst (Fig. 3; Grashow et al., 2010).
This is a minimal requirement for which changes in g, cannot
compensate. Furthermore, circuit stability when changing g, in
addition to decreasing g, is stereotypic: Nearly all circuits
became more stable when g, also decreased (Fig. 94, right, red)
and more unstable when g, increased (Fig. 94, right, green).
This relationship was surprisingly robust across the vast majority
of tested circuits, although the intrinsic conductances in the pop-
ulation of degenerate circuits were uncorrelated by construction,
thus confirming that g, and g,; need to be co-regulated for cir-
cuit stability.

Previously, the single conductance perturbations revealed
that changes in g, and g, when applied in opposite directions,
have similar effects on circuit stability (Fig. 6). This relationship
persisted when considering the double perturbation (Fig. 9A):
Simultaneously increasing g.,; and decreasing g, decreased
stability in the majority of circuits compared with only
increasing g ¢ or only decreasing g, (Fig. 9B, right). In con-
trast, changing g, and g, in the same direction enhances cir-
cuit stability (Fig. 9B). This opposing action of A and CasS is
further evident when comparing the double perturbations
involving g, and g,; with those involving g, and g;. Circuit
stability when comparing changes in g, in addition to
decreasing g,; (0 cas) u and Ocasyir) is mirror opposite to cir-
cuit stability with changes in g, in addition to decreasing g,
(011 and 6 51 1; Fig. 9, compare A, C, right). These findings
confirm that even more than for single perturbations, the cir-
cuit response to double perturbations is non-intuitive,

highlighting the strength of our newly derived stability mea-
sure to summarize this diversity in responses.

Explaining circuit stability to double perturbations by
combining single perturbations

Next, we asked whether circuit stability in response to double
perturbations can be predicted from the stability to single pertur-
bations, 6, and 65, by fitting the nonlinear function with con-
stants @, B and y: (a6,+B6,)” (Fig. 10A). The fitted
exponent vy tells us whether the double perturbation results in a
lower (y > 1) or higher (y < 1) stability than the weighted com-
bination of stability to single perturbations. In addition, we also
considered the goodness of fit, R*. We found that a fit with
v > 1 (supralinear) explains the double perturbation better
(has a higher R?) than a fit with y < 1 (sublinear; Fig. 104,
middle). This can tell us more about the impact of the inter-
action between the two simultaneously perturbed conductan-
ces on circuit stability.

We first investigated fits with high y and R’ which indicate
that simultaneously perturbing both conductances more strongly
destabilizes circuit output than when perturbing the conductan-
ces one at a time. For instance, the stability to the double pertur-
bation 6cas;ja can be well explained by the supralinear
combination of 6 c,s1 and 6 4| with y>1 (Fig. 10B, left). We pre-
viously showed that 64| and 6 c,s; are positively correlated (Fig.
6A). Interestingly, we found this to be a general result: the well
correlated stability values to single perturbations (Fig. 6A) could
be supralinearly combined to yield excellent predictions for the
stability to double perturbations (Fig. 10A, right). The high cor-
relation between the two stability values to the single perturba-
tions indicates that these conductances have the same effect on
circuit output when perturbed. Thus, simultaneously perturbing
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those same conductances yields even more perturbed output, sug-
gesting that their interaction is weak. When the two stability values
in response to single conductance perturbations are weakly corre-
lated (e.g., 0 cas1 and 6 41), the double perturbation leads to better
circuit stability than the nonlinear combination of the stability to
the single perturbations (Figs. 10B, middle, 9B). Therefore, the
interaction between the two perturbed conductances is likely
strong, and the double perturbation cannot be well-explained by
the nonlinear combination of single perturbations (low RY.

An exception to the relationship between y and R* are stability
values involving perturbations that decrease H (Fig. 104, black
symbols), due to the powerful effect of this conductance on burst-
ing in HCCs as previously discussed. Fitting the stability to the
double perturbation involving a decrease in g, typically results in
high R? values because the single perturbation involving g,; tends
to dominate the double perturbation. This is reflected in the large
weight assigned to ) compared with the stability when perturb-
ing the second conductance (e.g., 6 | in Fig. 10B, right).

When considered together, our results reveal a set of condi-
tions under which a double perturbation can be explained by a
nonlinear combination of single perturbations, and when such a
double perturbation improves or worsens circuit stability,
depending on the interaction strength of individual conductan-
ces in a circuit. Beyond the specifics of the family of half-center
circuits we consider, this finding cautions against studying single
conductance perturbations one at a time to determine the effect
of neuromodulators or external perturbations that simulta-
neously disrupt more than conductance.

Discussion

We developed quantitative measures to reveal hidden variability
in a circuit’s intrinsic and synaptic conductances from the
responses of a population of model circuits to distinct perturba-
tions (increases and decreases) in the intrinsic conductances.
Based on the simulated output to such perturbations and
unbiased statistical analysis, we showed how these models can be
used to develop intuitions about which conductance combina-
tions predict circuit stability to particular perturbations when all
other conductances are unknown. We focused on the smallest
circuit of two reciprocally coupled neurons with inhibition, a
common motif found in rhythmic networks (Brown, 1911;
Perkel and Mulloney, 1974; Calabrese and De Schutter, 1992;
Marder and Calabrese, 1996; Daun et al., 2009; Harris-Warrick,
2011; Doloc-Mihu and Calabrese, 2014; Dethier et al., 2015).
Our circuits were composed of non-identical conductance-based
neurons with multiple conductances preserving essential dynam-
ics for bursting (Dethier et al., 2015; Franci et al,, 2013, 2018).
This enabled us to achieve a balance between computational
tractability and biological realism.

Understanding the cooperativity rules of intrinsic conductan-
ces is a challenging task due to the surprising amount of degener-
acy in achieving a particular circuit output. The parameters that
govern intrinsic excitability, synaptic strength, and neuronal
architecture can vary several-fold, despite nearly identical circuit
output (Goldman et al., 2001; Prinz et al., 2003, 2004; Swensen
and Bean, 2005; Marder and Goaillard, 2006; Schulz et al., 2006,
2007; Tobin et al, 2009; Doloc-Mihu and Calabrese, 2011;
Roffman et al., 2012; Temporal et al, 2012; Srikanth and
Narayanan, 2015). One reason for having so many degrees of
freedom to tune circuit function may be the circuits’ ability to
compensate perturbations. There are at least two complementary
ways to achieve such compensation. One way relies on an activity
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sensor, which actively regulates the unperturbed conductances to
return the circuit to a target activity level. The mechanisms
implementing this form of compensation, including synaptic
and homeostatic plasticity, function over long timescales after
perturbation (Marder, 2011; O’Leary, 2018). The other way to
achieve compensation, pursued in our study, does not rely on
active mechanisms but on the overlap of different timescales in
the interacting neuronal conductances (Grashow et al., 2010;
Tang et al., 2010, 2012; Soofi et al., 2014), and thus depends on
the context provided by all other conductance identities and
expression levels. This compensation occurs on a much faster
timescale and before the onset of activity-dependent mecha-
nisms. A common approach to understand conductance interac-
tions has been to build on identified correlation relationships
between individual parameters (Schulz et al, 2006, 2007;
Khorkova and Golowasch, 2007; Goaillard et al., 2009; Calabrese
et al, 2011), arguing that reliable circuit output and robustness
to perturbation is encoded in the correlation rules, rather than
the value of any one parameter (Olypher and Calabrese, 2007;
Tobin et al., 2009; Zhao and Golowasch, 2012). Our approach
addressed the problem in reverse: starting from a measured out-
put to a given perturbation in a specific two-cell circuit, we
revealed conductance subsets of the circuit neurons that similarly
affect circuit stability when perturbed, as well as conductances
that predict circuit stability after a perturbation.

Single neurons in biological circuits have many conductances,
producing numerous parameter combinations that maintain
appropriately tuned electrical phenotypes; this problem intensi-
fies at the circuit level, making it difficult to evaluate all possible
changes to these circuits. To surmount this curse of dimensional-
ity, we developed a novel measure to quantify circuit stability
when modifying intrinsic conductances in biologically plausible
ranges based on how significantly circuit output was altered (Fig.
4). This measure provided a concise description across the entire
population of model half-center circuits to the same perturba-
tion, as opposed to qualitatively describing a few representative
examples (Grashow et al., 2009, 2010; Lamb and Calabrese, 2013;
Dethier et al., 2015). Compared with classical sensitivity analysis
(Olypher and Calabrese, 2007), our measure does not assume a
linear change of circuit output for small and local changes in the
modulated parameter but embodies strong nonlinearities espe-
cially when the circuits fail to generate functional output. This
allowed us to scan the entire space of model instances without
being restricted to local sensitivity effects (Weaver and Wearne,
2008) and consequently probe interactions between parameters.
Previous studies have also attempted to define more extensive
robustness measures (Doloc-Mihu and Calabrese, 2014, 2016)
but in a more qualitative sense.

The quantitative nature of our stability measure enabled us to
evaluate stability correlations to different perturbations in the
family of HCC we studied. Unbiased clustering of the stability to
single conductance perturbations led to the discovery of specific
subsets of intrinsic neuronal conductances that, when modified,
co-regulate the circuits’ response to perturbations in these con-
ductances (Fig. 6). Interestingly, the identified subsets of conduc-
tances resulted from generalizing over all the circuits in our
population of circuits with entirely uncorrelated sets of conduc-
tances. For instance, altering the A and CaS currents in opposite
directions resulted in similar circuit stability after a perturbation,
consistent with the similar activation timescales of these currents.
Decreases in the H current had a severe impact on circuit func-
tion, in agreement with the important role that this current plays
in the generation of stable bursting (Wang and Rinzel, 1992;
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Skinner et al., 1994; Grashow et al., 2009). The strong correla-
tions of stability in response to single perturbations were directly
related to subsets of conductances, which were used as features
to predict circuit stability using nonlinear classifiers (Fig. 7), sig-
nificantly extending linear classification techniques like principal
component analysis (Grashow et al., 2010; Doloc-Mihu and
Calabrese, 2014).

Many neuromodulators either target the same ion channel or
can have distinct targets within the same neuron or circuit
(Harris-Warrick, 2011; Marder, 2012). A wealth of experimental
data has shown that the co-modulatory actions of converging
neuromodulators can be similar or opposing, resulting in addi-
tive, synergistic, antagonistic, or other nonlinear co-modulatory
effects (Nadim and Bucher, 2014). Therefore, we investigated
when the stability to single perturbations can be combined to
predict circuit stability to perturbations in two conductances
simultaneously. Strong correlations between stability to the sin-
gle perturbations resulted in much worse circuit stability when
those same conductances were simultaneously perturbed, as in
the case of increasing CaS and decreasing A (Fig. 9). For conduc-
tances that exhibited weak correlation when perturbed inde-
pendently, the double perturbation often led to higher stability
compared with the single perturbations applied alone, as in the
case of increasing CaS and increasing A (Fig. 9). It is important
to note that we only considered perturbations to the maximal
conductances in individual neurons in the circuits. Many neuro-
modulators, however, also act on the level of synaptic transmis-
sion, and may follow different rules at different subcellular
targets (Nadim and Bucher, 2014; Li et al., 2018). Moreover, we
did not explicitly model neuromodulatory action, only the effect
that it could have on intrinsic conductance changes. Still, our
approach is an important advance toward understanding how
distinct conductances might interact to shape circuit output by
quantitatively evaluating the interaction rules when modifying
several intrinsic neuronal conductances simultaneously. To our
knowledge, no previous analysis of stability has been applied in
such a nonlocal and nonlinear manner.

Some of the conductance relationships we identified are already
known. This includes simultaneously modifying A and H in the
samedirection (Fig. 9A),whichimproved circuitstability consistent
with experimental data, which shows that these two currents are co-
regulated and actively maintained in the same ratio (MacLeanetal.,
2003; Amendola et al., 2012; Krenz et al., 2013, 2014). Importantly,
our analysisalso revealed novel relationships. For instance, modify-
ing A and CaSinopposite directionsoneatatime had similar effects
on circuit stability, possibly due to the similar timescales of opera-
tion. Wealso found thatincreasing the H currentand decreasing the
KCa currentaffected the perturbed cell’sability torelease the unper-
turbed cell from inhibition. We identified similar effects on circuit
stability from increasing the Na or Kd currents and decreasing the
CaT current. Perturbing any one of a larger subset of conductances
(H|,AT,CaS]|,Na|)silenced theperturbed cell (Fig. 3) preventingit
from escaping the suppression of the unperturbed cell. To fully
understand how the “escape and release” mechanisms are com-
bined by the different circuits will require a concise classification
into each of these categories before and after a perturbation
(Skinneretal.,1994).

Although our approach was developed for a specific family
of circuits, it can be applied to other circuits for which a well-
defined output exists (in our case, the phase difference
between the two neurons). One would need to know the indi-
vidual conductances in the circuit neurons and the connectiv-
ity diagram to generate a population of circuits, and perform a
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similar large-scale perturbation analysis. However, once this analy-
sis has been performed, it can be used to identify combinations of
conductances that co-regulate and are predictive of stability for
those circuits solely from the circuit’s response to perturbation. The
outcome of the analysis will depend on the overlap of timescales of
theopeningand closing gating variables of each conductance, which
determine whether specific conductances can compensate for
others on a perturbation. Going beyond the details of the cir-
cuit model we considered, our quantitative and unbiased
approach to characterizing high-dimensional degenerate sys-
tems, thus, provides a novel framework to understand circuit
robustness and to guide future experimental and theoretical
studies.
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