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Colorectal cancer (CRC) is one of the most common cancer types and rep-

resents a major therapeutic challenge. Although initial events in colorectal

carcinogenesis are relatively well characterized and treatment for early-

stage disease has significantly improved over the last decades, the mecha-

nisms underlying metastasis – the main cause of death – remain poorly

understood. Correspondingly, no effective therapy is currently available for

advanced or metastatic disease. There is increasing evidence that colorectal

cancer is hierarchically organized and sustained by cancer stem cells, in

concert with various stromal cell types. Here, we review the interplay

between cancer stem cells and their microenvironment in promoting metas-

tasis and discuss recent insights relating to both patient prognosis and

novel targeted treatment strategies. A better understanding of these topics

may aid the prevention or reduction of metastatic burden.

1. Introduction

Colorectal cancer (CRC) is one of the most frequent

types of cancer worldwide, accounting for approximately

10% of all new cancer cases and 8.5% of all cancer

deaths (Torre et al., 2015). Whereas the vast majority of

primary cancers can be extirpated through surgical resec-

tion, only a fraction of the patients diagnosed with overt
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metastatic disease can be cured by surgery. About 20%

of the patients with CRC present with metastasis at the

time of diagnosis (stage IV). In addition, 35–45% of the

patients with localized disease (stages II and III) suc-

cumb to recurrence within 5 years after surgery. Most

of these relapses occur as metastases and are caused

by residual tumour cells that have spread to distant

organs prior to surgery. Clearly, current systemic ther-

apies fail to eliminate latent disseminated tumour cells

and are similarly ineffective in treating growing metas-

tases, offering survival benefits of only a few months.

Metastasis is the spread of cancer to a distant

organ, which in the case of patients with CRC

involves mainly the liver and lungs. As described else-

where (Massague and Obenauf, 2016; Oskarsson et al.,

2014; Valastyan and Weinberg, 2011), to gain meta-

static competence, cancer cells require the capacity to

invade the surrounding tissues, survive in the circula-

tion, colonize the foreign organ and eventually resume

growth. Metastasis is an inefficient process owing to

the fact that most tumour cells fail to acquire the nec-

essary abilities to regenerate a tumour at a distant site

(Massague and Obenauf, 2016; Oskarsson et al.,

2014). Over the past few years, the main determinants

of metastatic competence in CRC have begun to be

characterized. In the absence of mutations that associ-

ate with the process of metastasis in CRC, it has

become increasingly clear that the regeneration of the

tumour in a foreign organ is tightly bound to the

acquisition of a stemlike phenotype by cancer cells.

These metastatic stem cells adopt multiple phenotypes

and behaviours and critically depend on their interac-

tion with the microenvironment to migrate, survive in

the circulation and thrive in a foreign organ.

In Section 2, we will review the genetics of CRC

development, to then discuss both the evidence that

supports the notion of hierarchical organization

throughout CRC progression and the ensuing impli-

cations in Section 3. We will also focus on the mech-

anisms involved in the multiple phenotypes and

adaptations that tumour stem cells go through in the

metastatic process. In Section 4, we will explore the

current knowledge about the role of the tumour

microenvironment in promoting and sustaining metas-

tasis. This includes a dissection of the cell types and

niches that support the survival and maintenance of

metastatic stem cells, and an analysis of the ways

that stromal features can improve disease prognosis.

In Section 5, we will discuss the complexities and

limitations imposed on clinical practice by the hetero-

geneous nature of both epithelial and stromal com-

partments. Finally, we will indicate how these emerg-

ing concepts are informing, and slowly transforming,

therapeutic strategies to treat patients with metastatic

disease.

2. Colon carcinogenesis

2.1. From normal mucosa to colorectal cancer

The epithelium of the normal colon undergoes contin-

uous renewal. At the base of glandular invaginations

of the colonic mucosa, called crypts, a pool of rapidly

diving intestinal stem cells (ISCs) sustains the homoeo-

static regeneration of the epithelium throughout a life-

time (Clevers, 2013). Over the past decade, signals that

regulate ISC renewal and proliferation have been

extensively characterized: WNT, EGFR/MAPK and

NOTCH signalling promote the undifferentiated pro-

liferative state of ISCs in the niche, whereas BMP and

TGF-beta signalling induce cytostasis and differentia-

tion (Clevers, 2013).

The elevated division rate of ISCs increases their

probability to acquire mutations during DNA repli-

cation (Vogelstein et al., 2013). Additional environ-

mental factors such as lifestyle, diet and microbiota

can also greatly influence the transformation of the

epithelium (Bishehsari et al., 2014). The most com-

mon genetic events in CRCs are alterations that

inactivate the tumour suppressor gene APC. This

triggers the constitutive activation of WNT signalling

and imposes a continuous stemlike self-renewing

state at the onset of tumorigenesis, giving rise to

benign outgrowths of the epithelium known as ade-

nomas. Genetic experiments performed in mouse

models support the hypothesis that Apc mutation in

ISCs represents the origin of intestinal polyps

(Barker et al., 2008; Tetteh et al., 2016), although

chronic inflammation or dysregulation of BMP sig-

nalling has been shown to help convert non-stem

cells into CRC-initiating cells (Davis et al., 2014;

Schwitalla et al., 2013).

A small fraction of adenomas become progressively

aggressive through acquisition of additional driver

mutations, which mainly affect three additional sig-

nalling pathways (Cancer Genome Atlas Network,

2012; Seshagiri et al., 2012): (a) the MAPK pathway is

often hit by activating mutations in KRAS, BRAF or

PIK3CA and provides cell autonomous mitogenic and

pro-survival stimuli to cancer cells; (b) the p53 path-

way is inactivated by mutations in the eponymous pro-

tein, or less commonly in ATM, facilitating acquisition

of genomic instability; and (c) the TGF-beta pathway

is frequently silenced by loss-of-function mutations in

TGFBR2, SMAD4, SMAD2 or SMAD3, which

bypasses the suppressive effects of high TGF-beta
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levels present in the tumour microenvironment (Fea-

ron, 2011). Pioneer studies by Eric Fearon and Bert

Vogelstein correlated these mutations with pathologi-

cally classifiable stages of adenoma malignancy and

suggested a linear progression model, in which the

compounding of the four mentioned pathway muta-

tions associated with development of aggressive adeno-

carcinomas (Fearon and Vogelstein, 1990).

Acquisition of these mutations is a slow process,

and consequently, the development of invasive CRC

often takes decades (Jones et al., 2008; Vogelstein

et al., 2013). Of note, the linear progression model

based on four stepwise genetic alterations represents a

simplification, as not every tumour carries genetic

alterations in these four pathways or develops through

the equivalent sequence of events. Moreover, full-

blown CRCs have a riche and complex mutational

landscape that expands well beyond mutations in the

four driver pathways (Cancer Genome Atlas Network,

2012; Seshagiri et al., 2012). Due to the acquisition of

chromosomal instability or defects in the DNA mis-

match repair system, tumours accumulate hundreds or

even thousands of genetic alterations. Some of these

are passenger mutations, as they do not confer advan-

tages to tumour cells, but others drive the biology of

the cancer and therefore give selective advantage.

Beyond the context of the linear progression model,

the role of many of these mutations remains poorly

understood. Together, these issues of complexity and

heterogeneity impinge upon the functional analysis of

CRC and complicate the development and application

of therapeutic approaches.

2.2. Progression to metastasis

As described above, the mutations that drive CRC

progression affect the signalling pathways that regu-

late ISC behaviour, endowing cancer cells with self-

renewal and growth capacity, independently of crypt

niche signals. Evidence obtained from the analysis of

patient-derived and CRISPR-engineered CRC orga-

noids has led to the hypothesis that acquisition of

mutations in the four linear progression model path-

ways may be sufficient to facilitate the growth of

tumour cells in unfavourable environments such as

those encountered in foreign tissues (Drost et al.,

2015; Fujii et al., 2016; Matano et al., 2015). Yet,

while most CRCs carry genetic alterations in several

of these four driver pathways, metastasis is a relatively

inefficient process. This suggests that additional bottle-

necks and dependencies limit the extent of tumour

spread.

It is worth considering that most CRCs are invasive

at the time of diagnosis and, therefore, have had the

opportunity to shed cells into circulation for months

or longer. When disseminating CRC cells enter the

portal circulation, they are transported to the liver

sinusoids within minutes and can home into the liver

parenchyma because of vessel fenestration. In the case

of pulmonary metastases, CRC cells must first reach

the general circulation and then infiltrate the lung par-

enchyma. It has been reported that this process

requires active killing of lung capillary cells in a mech-

anism that involves the hormone PTHLH (Urosevic

et al., 2014) and possibly necroptosis (Strilic et al.,

2016). The capacity of disseminated CRC cells to infil-

trate other organs such as the brain is less well charac-

terized and may involve co-option of invasion

mechanisms described for other tumour types such as

breast cancer (Valiente et al., 2014).

Work in experimental models has shown that the

rate-limiting step in the metastasis process is the

capacity of circulating tumour cells to colonize the for-

eign organ (Massague and Obenauf, 2016; Obenauf

and Massagu�e, 2015). Most tumour cells that survive

in circulation and manage to infiltrate a distant organ

will die for reasons that remain incompletely under-

stood but that may include recognition and killing of

tumour cells by the innate and adaptive immune sys-

tem (Collignon et al., 2004; Strauss and Thomas,

2010). Those tumour cells that survive and adapt to

the new environment can generate an overt metastasis

(Fig. 1). However, not all venturing cancer cells that

have successfully pervaded a distant site necessarily

have the competency to establish a thriving colony in

these hostile environments. Frequently, they remain

latent for months to years before resuming growth

(Sosa et al., 2014). Below we discuss tumour cell-

intrinsic and cell-extrinsic aspects that facilitate meta-

static colonization in CRC.

3. Colorectal cancer stem cells and
their role in metastasis

Besides (genetic) diversity between patients, no individ-

ual CRC is a uniform, clonal mass of cancer cells: any

given tumour consists of multiple cell populations with

varying levels of phenotypic and genetic heterogeneity.

Intratumoral heterogeneity (ITH) is a central concept to

understand the phenomena of metastatic progression

and therapeutic resistance. Three factors contribute to

ITH: the hierarchical organization of cell lineages (Sec-

tions 3.1 to 3.3), their clonal diversification (Section 3.4)

and the microenvironment (Section 4).
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3.1. Hierarchical organization of cancer cells

More than 30 years ago, it was already proposed that

the phenotypic diversity in cancers could arise from

spontaneous differentiation of tumour cells (Pierce and

Speers, 1988). The concept, originally developed by G.

Barry Pierce in the 1970s, states: ‘[carcinomas] are

composed of a mixture of malignant stem cells, which

have a marked capacity for proliferation and a limited

capacity for differentiation under normal homeostatic

conditions, and of the differentiated, possibly benign,

progeny of these malignant cells’ (Pierce and Speers,

1988). This hypothesis was long ignored, yet several

laboratories have recently put forward evidence to sup-

port that CRC complies with this concept. Of note are

studies by the groups of Ruggero de Maria (Ricci-

Vitiani et al., 2007), John Dick (O’Brien et al., 2007)

and Michael Clarke (Dalerba et al., 2007), wherein

each identified a population of tumour cells within

human CRCs that has the rare capacity to propagate
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Fig. 1. Types of heterogeneity underlying the process of CRC metastasis. Schematic representation of a primary tumour with clonal

diversity (represented by different colours), tumour microenvironment (different cell shapes) and cellular hierarchy: colorectal cancer stem

cells (CRC-SCs) are drawn with darker colours than non-stem cells (non-SCs). In addition, metastatic stem cells (Met-SCs) are represented

by thicker outlines. There are distinct steps (blue arrows) along the metastatic process, each with attrition rates: survival in the vasculature

during migration, overcoming mechanisms of latency and managing to establish an overt metastatic colony. During these events,

interactions with the microenvironment that promote survival, immune evasion, dormancy/proliferation and stemness are thought to

determine outcome. Below: legends depict a basic scheme of cellular hierarchy and the wealth of stromal cell types.
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the disease upon inoculation into immunodeficient

mice. Relaunching the idea that CRCs are organized

through a hierarchy of cells with distinct tumorigenic

potential, they named this population ‘tumour-initiat-

ing cells’.

Subsequent investigation showed that tumour-initi-

ating cells (also referred to as CRC stem cells or CRC-

SCs) reside at the apex of a hierarchy of tumour cells.

They self-renew, display long-term proliferation poten-

tial and are capable of initiating tumours when

inoculated into mice. CRC-SCs cells express a gene

programme that to some extent overlaps with that of

normal ISCs, and their progeny can undergo differen-

tiation towards a phenotype similar to that of the nor-

mal mucosa. Differentiation coincides with loss of

tumorigenic potential (Dalerba et al., 2011; Kreso

et al., 2014; Merlos-Suarez et al., 2011; Vermeulen

et al., 2008, 2010). Furthermore, the existence of stem

cell hierarchy in CRC has been backed by lineage trac-

ing studies in adenomas (Kozar et al., 2013; Schepers

et al., 2012) and by studies of fate-mapping analysis

using lentiviral marking of individual tumour cells

(Dieter et al., 2011; Kreso et al., 2012).

The balance between stemness and differentiation in

CRC depends upon the same pathways that regulate

normal ISCs, including WNT (Vermeulen et al., 2010),

BMP (Lombardo et al., 2011) and NOTCH (Lu et al.,

2013) signalling. Many of these signals are provided

by cells of the tumour stroma, a finding that somewhat

contradicts the hypothesis that CRC progresses

through gain of ISC niche independency by acquired

mutations. Yet, it is worth considering that not every

CRC carries alterations in all four driver pathways

(WNT, EGFR, TGF-beta/BMP and p53) and thus

may still depend on stromal factors for further pro-

gression. As is discussed below, additional stromal-

derived cytokines and growth factors present at the

sites of invasion can further promote self-renewal of

CRC-SCs.

3.2. Tumour cell phenotypes at the invasion front

Because CRC-SCs have both self-renewal and tumour-

initiating capacity, they likely represent (or give rise

to) the so-called metastatic stem cells (Met-SCs;

Fig. 1), that is the cell of origin of metastasis (Oskars-

son et al., 2014). Experimental evidence supports this

hypothesis: the above-mentioned study by the group

of Hanno Glimm (Dieter et al., 2011) demonstrates

that only cells that hold long-term self-renewing ability

are capable of generating metastasis.

Most CRCs are a relatively disorganized mixture of

stem- and differentiated-like cells that reside into

glandular structures reminiscent of the normal crypts

(Merlos-Suarez et al., 2011). Metastases often have an

equivalent appearance (Merlos-Suarez et al., 2011).

However, whereas CRC-SCs present in tumour glands

are tumorigenic if isolated and xenografted into mice,

naturally they will only be competent to generate

metastasis if they first acquire phenotypic changes that

enable their migration and extravasation. This process

is thought to occur when cancer cells engage in com-

munication with the adjacent tissues and the tumour

stroma. A key example is the interaction with endothe-

lial cells, which induce NOTCH signalling on cancer

cells to facilitate transendothelial migration via the

kinase ABL and RHO activity at invasion fronts

(Sonoshita et al., 2011, 2015) (Fig. 2).

In the interest of defining Met-SCs, there is a long-

standing focus on cancer cells at invasion fronts. A

frequent finding in CRCs is the presence of tumour

buds – small clusters of detached cancer cells at the

invasive border. These budding cells typically possess

attributes that help explain their invasive and migra-

tory phenotype, including increased expression of

genes involved in extracellular matrix degradation and

in epithelial–mesenchymal transition (EMT) (Zlobec

et al., 2010). Moreover, cancer cells present at invasion

fronts and in tumour buds display increased accumula-

tion of nuclear beta-catenin (Brabletz et al., 1998),

possibly marking stemness. Although most CRCs

carry mutations that activate the WNT pathway con-

stitutively, a number of signalling molecules emanating

from stromal cells such as HGF (Vermeulen et al.,

2010) and PGE2 (Li et al., 2012) have been shown to

further elevate WNT signalling in adjacent areas

(Fig. 2). In contrast, high levels of nuclear beta-catenin

at invasion fronts do not always correlate with tumour

budding and various stem cell markers have been

found in only a small fraction of budding cells, casting

some doubt on their general representation of Met-

SCs (reviewed in Dawson and Lugli, 2015). Notwith-

standing these caveats, tumour budding has consis-

tently been linked to poor survival and is a prognostic

factor poised to refine standard clinical risk assessment

of early-stage CRC (van Wyk et al., 2015).

Additional factors derived from the tumour

microenvironment that help sustain invasiveness and

self-renewal of CRC-SCs include IL-22, expressed by a

subset of T cells (Kryczek et al., 2014), and fibroblast-

derived IL-17A (Lotti et al., 2013). Perhaps the best

example connecting invasion and stemness in CRC is

the work by Giorgio Stassi, de Maria and colleagues,

who found that a subpopulation of CRC-SCs express-

ing the surface marker CD44-v6 is present at invasion

fronts and gives rise to metastatic lesions in
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experimental models (Todaro et al., 2014). CD44-v6 is

required for cell migration, and its expression is

increased by factors secreted by stromal cells such as

HGF, OPN and SDF-1 (Todaro et al., 2014). Toge-

ther with the above-mentioned WNT-stimulating

mechanisms, these data imply that the microenviron-

ment instructs the formation of migratory CRC-SCs,

or putative Met-SCs (Fig. 2).

Following local invasion, CRC cells that enter the

vasculature are termed circulating tumour cells

(CTCs). From a theoretical perspective, both CRC-

SCs and non-SCs may be able to enter the circulation.

Yet, few studies have assessed the heterogeneity of

CTCs in regard to their stem cell properties, such as

CD133 expression (Iinuma et al., 2011). Still, CTCs

have attracted considerable attention for their diagnos-

tic potential, although many challenges – including

heterogeneity – impede their robust detection and thus

exploitation (reviewed in Hardingham et al., 2015). In

contrast, analysing mutations in circulating tumour

DNA (ctDNA) appears to be a more straightforward

and robust method to detect residual disease and thus

to assess risk of relapse after therapy in patients with

localized disease (Tie et al., 2016).

3.3. Slow-proliferating and dormant tumour cells

As described in the introductory section, metastasis

often develops after a period of latency, which in CRC

typically ranges up to 5 years. Latency is the conse-

quence of disseminated cells remaining in a dormant

state at distant sites. The current therapeutic strategy

to eliminate these residual cells is treatment with stan-

dard chemotherapy, which has a limited benefit for the

patients. Indeed, dormant and slow-proliferating cells

are largely resistant to chemotherapy, as this typically

targets rapidly proliferating cells. In addition, dormant

cells remain in a particular state of resilience against

cell death-inducing signals and may even be protected

against attacks of the immune system (Ghajar, 2015;

Malladi et al., 2016; Massague and Obenauf, 2016).

Metastatic latency likely includes two distinct mecha-

nisms: population dormancy, a condition in which

tumour cell proliferation and death are balanced, thus

leading to micrometastatic lesions that do not expand;

or a state of cellular quiescence or temporary mitotic

arrest (Ghajar, 2015; Massague and Obenauf, 2016).

The characterization of these mechanisms is of

key importance, as a better understanding offers
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opportunities to cure patients by eliminating the resid-

ual disease (or preventing its outgrowth) before

appearance of overt metastasis. Although progress in

this area has been made for other cancer types (for

excellent reviews on this topic, see Ghajar, 2015; Mas-

sague and Obenauf, 2016), these processes remain

poorly elucidated in CRC. Concerning the latter mech-

anism, fate-mapping experiments with xenografts sup-

port the existence of slow-proliferating cells in the

tumour bulk. Specifically, not all tumour-initiating

cells responsible for secondary and tertiary transplants

had detectably contributed to primary xenografts,

implying the existence of dormant cells that can reacti-

vate in tumour re-initiation (Dieter et al., 2011).

Through a similar strategy, such dormant or minor

clones were found to gain predominance upon

chemotherapy treatment (Kreso et al., 2012).

Whereas the origin, identity and regulation of dor-

mant cell populations in CRCs remain unclear,

advances in the understanding of cellular diversity of

the normal intestinal epithelium may provide some

clues. In the crypts, most cells positive for ISC marker

Lgr5 proliferate at high rates and are therefore sensi-

tive to treatment with radio- and chemotherapy (Met-

calfe et al., 2014; Yan et al., 2012). Douglas Winton

and colleagues showed that a subset of Lgr5+ cells

that are differentiating towards secretory lineages have

slow proliferation kinetics and are relatively chemore-

sistant (Buczacki et al., 2013). Although these cells are

not clonogenic in homoeostasis, they regain stemness

and contribute to regenerating the epithelium after

ISC pool depletion by treatment with cytostatic drugs.

Likewise, lineage tracing experiments in similar settings

have shown that differentiated cells of the absorptive

and secretory lineage can undergo a process of dedif-

ferentiation and repopulate the ISC niche, gaining self-

renewal capacity (van Es et al., 2012; Tetteh et al.,

2015, 2016). Thus, differentiated cells constitute a

reservoir of facultative stem cells in normal mucosa.

Given the other parallels with CRC, such as cellular

hierarchy, it would be clinically relevant to test

whether these concepts of (population) dormancy and

plasticity also apply to cancer and metastasis. For

example, do latent metastatic cells share characteristics

– other than chemoresistance – with quiescent crypt

cells? And does dedifferentiation facilitate CRC recur-

rence after treatment?

3.4. Linking clonal diversity to cancer stem cell

architecture

As a result of genomic instability, cancers acquire hun-

dreds of genetic and epigenetic alterations that impose

distinct phenotypes and fates on tumour cells, poten-

tially leading to clonal expansion. This evolutionary

phenomenon is the basis for the striking capacity of

cancer to adapt to different environments, colonize

foreign organs and resist therapy (Boland and Goel,

2005; Nowell, 1976; Swanton, 2012). In CRC, a Big

Bang-like model has been proposed in which tumours

go through extensive clonal diversification at early

stages, with little indication for stringent selection or

clonal expansion. Additionally, malignant behaviour

appears to be determined early, and can be inferred

from analysing subclone intermixing events (Sottoriva

et al., 2015). From this initial genetic diversity, artifi-

cial selection pressure in the form of chemotherapy

might select for the rise of pre-existing resistant clones

(reviewed in Greaves and Maley, 2012). For instance,

minor populations of KRAS mutant cells already pre-

sent in the primary CRC will expand upon anti-EGFR

therapy, leading to resistant relapses (Diaz et al.,

2012).

At the conceptual level, the phenotypic heterogene-

ity resulting from tumour cell hierarchy and clonal

diversity is not necessarily independent. CRC-SCs

likely represent the unit of clonal selection, as muta-

tions occurring in more differentiated cells may have

a lower chance of being selected given the relatively

short life span of this population (reviewed in

Greaves and Maley, 2012; Kreso and Dick, 2014;

Valent et al., 2012). A particularly interesting aspect

that has been seldom explored is how the genotype

affects cellular hierarchy. The WNT (Vermeulen

et al., 2010), PI3K (Tenbaum et al., 2012), BMP/

TGF-beta (Lombardo et al., 2011) signalling path-

ways all affect self-renewal and differentiation capac-

ity of CRC stem cells, and thus, mutations in these

pathways likely regulate the frequency of CRC-SCs.

It is thus possible that successive accumulation of

genetic alterations in these pathways increases fre-

quencies of CRC-SCs, progressively increasing the

probability of mutation being selected and thus accel-

erating evolution, up to a point where full compound

mutant tumours contain abundant, variegated popula-

tions of CRC-SCs with limited capacity to produce

differentiated progeny. Testing this hypothesis will

require analysing how the tumour hierarchy changes

in distinct mutational backgrounds.

Although clonal diversity has been linked to thera-

peutic resistance, somatic evolution and increased

metastatic competency, sequencing of primary CRC

and metastases has revealed no specific genetic alter-

ations associated with tumour dissemination per se

(Jones et al., 2008; Mlecnik et al., 2016b). While

equivalent studies analysing epigenetic marks have not
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been performed, the similarities between primary

tumour and metastasis suggest that nongenetic factors

might be of particular relevance in this process.

4. The microenvironment during
progression to metastasis

Heterogeneity between patients and within the CRC

epithelial compartment already raises significant chal-

lenges and opportunities for patient diagnosis and

treatment. Yet, further augmenting the complexity,

ITH also includes the numerous additional cell types

that permeate the tumour and are collectively referred

to as stroma or tumour microenvironment (TME).

Stromal-associated functions are linked to all steps of

cancer progression and metastasis, and a picture has

emerged in which cancer cells and the stroma cross-

communicate and co-evolve during cancer progression

(Hanahan and Coussens, 2012; Quail and Joyce,

2013). Conceptually, transformed cancer cells strongly

change the nature and composition of the stroma, to

the point that this altered microenvironment forms an

adapted niche, providing protection and stimulation,

essentially fostering cancer stem cells (Fig. 3).

With the emergence of the TME as a critical player

in cancer progression, an increasing effort goes into

the characterization of specific stromal cell populations

that are held responsible for tumour malignization and

metastatic colonization. Several mechanisms have

issued from this endeavour, providing potential targets

for the design of new anticancer therapies.

4.1. Cancer-associated fibroblasts

Cancer-associated fibroblasts (CAFs) are a heteroge-

neous group of fibroblasts that are redirected towards

tumour promotion. As in other cancer types, CRC-

associated fibroblasts differ from neighbouring normal

fibroblasts and express specific markers including

alpha-smooth muscle actin (alpha-SMA), fibroblast

surface protein (FSP-1) and fibroblast-activated pro-

tein (FAP) (reviewed in Calon et al., 2014). CAFs pro-

vide CRC cells with an array of cytokines that

promote cancer cell survival and tumour initiation

(Kalluri, 2016). Mechanistically, co-inoculated CAFs

enhance in vivo tumour growth of cancer cells more

than normal colon fibroblasts, and soluble factors

secreted by the former increase self-renewal and migra-

tion of epithelial cancer cells to a greater extent than

those secreted by the latter (Berdiel-Acer et al., 2014).

In addition, gene expression signatures derived from

CAFs correlate with poor outcome in colorectal cancer

(Becht et al., 2016; Calon et al., 2015; Herrera et al.,

2013; Isella et al., 2015). Thus, CAFs constitute an

important cell population in the TME and provide a

permissive niche for cancer progression (Figs 2 and 3).
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TGF-beta has been linked to poor prognosis in

CRC as an independent biomarker across AJCC

(American Joint Committee on Cancer) stages, and

ligand expression levels correlate with TGF-beta-

activated stromal cells that secrete a cocktail of addi-

tional pro-metastatic factors (Calon et al., 2012)

(Fig. 3). Although TGF-beta activates a wide range of

tumour stroma cell types (Pickup et al., 2013), CAFs

are the main contributors to the association of stromal

TGF-beta-driven programmes with poor clinical out-

come in CRC, suggesting a predominant role of

TGF-beta-activated CAFs during progression to

metastasis (Calon et al., 2015). These activated CAFs

express several known pro-metastatic secreted factors

including angiopoietin-like-4 (ANGPTL-4) (Padua

et al., 2008), connective tissue growth factor (CTGF)

(Kang et al., 2003), tenascin C (TNC) (Oskarsson

et al., 2011) – functionally described in breast cancer –
and periostin (POSTN), a promoter of metastatic

growth in colon cancer that increases cell survival via

the AKT pathway (Bao et al., 2004). In addition to

these factors, we found that TGF-beta-activated CAFs

secrete interleukin-11 (IL-11), which leads to enhanced

STAT-3-dependent survival and initiation of meta-

static cancer cells (Calon et al., 2012). To support the

role of this cytokine in CRC progression, an IL-11

antagonist was shown to reduce both proliferation and

invasive capacity of CRC cells (Putoczki et al., 2013).

A recent study described an additional function for

TGF-beta in promoting liver metastasis by the adhe-

sion of cancer cells to CAFs, followed by their subse-

quent codissemination to the metastatic site

(Gonzalez-Zubeldia et al., 2015).

Besides the above-mentioned TGF-beta targets, also

modifiers of TGF-beta signalling may be therapeuti-

cally relevant in the context of CAFs and liver metas-

tasis. Under physiological condition, hepatic stellate

cells (HSCs) are maintained unresponsive to TGF-beta

through degradation of TGF-beta receptor type-2, by

a process involving IQGAP1 (IQ motif-containing

GTPase-activating protein). During cancer progres-

sion, paracrine signalling emanating from cancer cells

decreases IQGAP1 expression in HSCs, which pro-

motes HSC activation into myofibroblasts as well as

metastatic outgrowth (Liu et al., 2013). These data

indicate that CRC-SCs are capable of initiating the

formation of a metastatic niche by reprogramming res-

ident mesenchymal cells into CAFs. Furthermore,

TGF-beta signalling in HSCs was shown to be modu-

lated by platelet-derived growth factor receptor

(PDGFR)-alpha, leading to paracrine effects on CRC

cell proliferation and migration (Liu et al., 2014). This

adds to the rationale for the inhibition of the PDGFR

signalling pathway with imatinib, a compound target-

ing tyrosine kinases including PDGFRs. This drug was

previously proposed as a therapeutic agent in CRC for

its effects on impairing migration of bone marrow-

derived mesenchymal stem cells (MSCs) to the tumour

site, resulting in decreased metastatic intake (Shina-

gawa et al., 2013). Incidentally, MSCs have also been

reported to be differentiated into CAF-like cells in the

TME (Shinagawa et al., 2010).

4.2. Endothelial cells

The stromal niche surrounding cancer cells comprises

a constantly developing network of blood vessels, sup-

plying the growing tumour with oxygen and nutrients.

Secreted factors produced in the tumour stimulate pro-

liferation and survival of endothelial cells, thus

enhancing angiogenesis. Tumour-associated angiogene-

sis gives rise to abnormal blood vessels characterized

by a chaotic network, excessive branching, decreased

pericyte coverage and leakiness (Dudley, 2012). The

latter has been associated with metastasis and poor

prognosis in patients with CRC (Yonenaga et al.,

2005).

VEGFA is a key regulator of endothelial cell prolif-

eration in most human tumours, inducing the MAPK/

ERK signalling pathway. Tumoral VEGFA expression

correlates with invasiveness, increased vascular density

and progression to metastasis. Accordingly, beva-

cizumab, a monoclonal antibody against VEGFA and

an inhibitor of angiogenesis, has been shown to

increase survival of patients with stage IV CRC when

combined with chemotherapy (Ferrara and Adamis,

2016; Hurwitz et al., 2004; Mathonnet, 2014) (Figs 2

and 3). Besides blocking neo-angiogenesis, the clinical

benefit of a dual-targeting approach may involve the

reprogramming of tumour-associated blood vessels

into normalized blood vessels by bevacizumab,

decreasing vessel permeability and improving anti-

cancer drug bioavailability into the tumour mass (Jain,

2005).

Interleukin-33 (IL-33), a cytokine secreted by

endothelial and epithelial cells to activate NF-jB and

MAPK signalling, may also hold therapeutic interest

for the reprogramming of endothelial cells and nor-

malization of tumour vasculature in CRC. Tumour-

derived IL-33 dramatically enhances neo-angiogenesis

by increasing endothelial cell proliferation, migration

and differentiation into blood vessels to robustly

increase metastatic spreading of CRC cells to the liver

(Zhang et al., 2016). Conversely, blockade of IL-33

signalling suppresses angiogenesis and reduces tumori-

genesis (Maywald et al., 2015).
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Endothelial cells are a part of perivascular niches

that have been reported to foster cancer stem cells

(Butler et al., 2010). A mechanism in which endothelial

cells directly promote the formation of CRC-SCs

involves a soluble form of Jagged-1 to activate

NOTCH signalling in cancer cells (Lu et al., 2013)

(Fig. 2). Another way in which endothelial cells might

participate more directly in niche formation is their

conversion into CAF-like cells, through a TGF-beta-

driven mechanism called endothelial–mesenchymal

transition (EndMT). This process is associated with

the upregulation of fibroblast-specific protein-1 (FSP-

1) and downregulation of the endothelial marker

CD31 (Zeisberg et al., 2007). Although the existence

of EndMT in CRC remains elusive, a similar mecha-

nism was reported in response to inflammation in the

colon (Rieder et al., 2011).

4.3. Immune cells

As the immune system can be a powerful weapon

against tumorigenesis through coordinated elimination

of aberrant cells, successful cancers find a way to cir-

cumvent tumour immunity; this is recognized as a hall-

mark of cancer (Hanahan and Weinberg, 2011). In

fact, it has become increasingly clear that the immune

system has a dual role in cancer, able to both suppress

and promote cancer progression (Schreiber et al.,

2011). Even if a thriving cancer suggests inhibition of

the former and exploitation of the latter, there is evi-

dence for a continued battle between the immune sys-

tem and cancer cells. First, there is a positive

prognostic value of the presence of infiltrating immune

cells such as T cells (Galon et al., 2006) and dendritic

cells (Gulubova et al., 2012), as well as high levels of

gene signatures of active immune responses (Galon

et al., 2006). Conversely, the presence in blood and

tumour of immunosuppressive myeloid-derived sup-

pressor cells (MDSCs) (Solito et al., 2011; Sun et al.,

2012) correlates with a poor prognosis. Second, can-

cers show signs of immunoselection, where the number

of neoantigens is lower than expected based on muta-

tion rates. This can be caused by T cell-mediated

killing of cells or clones expressing immunogenic neoa-

ntigens (Matsushita et al., 2012) or by loss of antigen

expression or presentation (DuPage et al., 2012; Roo-

ney et al., 2015).

Together, this indicates that evasion from antitu-

mour immunity is only partial, local or reversible and

that immunity is likely a key hurdle to overcome in

the metastatic process. Relatedly, metastatic latency

and population dormancy have been linked to

immunosurveillance in a melanoma model, where

(micro)metastasis growth was equilibrated by immuno-

logic cancer cell killing (Eyles et al., 2010) (reviewed in

Giancotti, 2013; Sosa et al., 2014). Although many of

these important concepts are emerging for cancer in

general (Vinay et al., 2015), less is known about the

specific situation in CRC. Nevertheless, below are

some recently described mechanisms that together have

an important impact on the prospects of immunother-

apies.

4.3.1. Innate immune cells

Besides their role in innate immunity and the coordina-

tion of adaptive immune responses, several bone mar-

row-derived myeloid cells have been linked to tumour

progression (Taketo, 2009). Chemokine signalling may

play an important role in their recruitment and subse-

quent communication with CRC cells and other TME

residents, often promoting both cancer progression and

metastasis (Itatani et al., 2016) (Fig. 3). Immature mye-

loid cells positive for C-C chemokine receptor type 1

(CCR1) have been linked to CRC progression and liver

metastasis (Kitamura et al., 2007, 2010), in a mecha-

nism that involves the loss of SMAD4 in CRC cells,

triggering CCL15-mediated recruitment of CCR1+

myeloid cells (Hirai et al., 2014; Itatani et al., 2013).

Similar mechanisms link MDSCs to CRC progression

through the action of CCL15 (Inamoto et al., 2016) or

CCL2 (Chun et al., 2015).

Macrophages, one of the most abundant tumour-

infiltrating cell types, have been ascribed many

tumour suppressor roles in CRC, ranging from direct

cytotoxicity to orchestrating and sustaining adaptive

responses (Braster et al., 2015). Besides this classical

functional state (often called M1), alternative activa-

tion states such as M2 (also referred to as tumour-

associated macrophages or TAMs) have been

described; these are characterized by mostly pro-

tumorigenic potential (reviewed in Mantovani et al.,

2009). Polarization of macrophages is incompletely

understood but appears to be plastic and largely

dependent on the TME (reviewed in Braster et al.,

2015). Recently, much attention has gone towards the

clinical implication of the presence, plasticity and dual

functions of TAMs (Braster et al., 2015; Mantovani

and Allavena, 2015). For example, their accumulation

at the liver metastatic periphery was recently shown

to lend itself for exploitation, when a gene transfer

strategy delivered interferon-alpha to the TME via

Tie2+ monocytes/macrophages in a mouse model for

CRC metastasis, resulting in reduced tumour growth

and enhanced survival (Catarinella et al., 2016)

(Fig. 3).
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Like macrophages, neutrophils (a class of granulo-

cytes) have been found to undergo functional repolar-

ization in the TME, a process that involves TGF-beta

(Fridlender et al., 2009) and converts them into a pro-

tumorigenic state (N2 vs. N1). Tumour-associated neu-

trophils (TANs), like MDSCs, can be recruited to

SMAD4-mutant metastatic cancer cells by CCL15 and

help promote lung colonization (Yamamoto et al.,

2016). In addition, a recent report links neutrophils to

cancer recurrence after surgery through a defence

mechanism involving the release of neutrophil chro-

matin strands: neutrophil extracellular traps (Tohme

et al., 2016). These may be possible explanations for

the emergence of a high neutrophil-to-lymphocyte

ratio as a potential poor-prognosis marker for patients

with CRC (Li et al., 2014).

4.3.2. Adaptive immune cells

Specialized, adaptive immune responses heavily rely

on cells from the lymphoid lineage, including T cells

and B cells. Central mediators of adaptive responses

are CD8+ cytotoxic T lymphocytes (CTLs) that rec-

ognize specific antigens. For their function, they

require assistance and reinforcement from CD4+ T-

helper cells as well as from myeloid cells. CTL infiltra-

tion in CRC is a factor for good prognosis, and lack

thereof indicates poor disease outcome (Galon et al.,

2006; Naito et al., 1998; Ropponen et al., 1997), indi-

cating that T cell-mediated immune surveillance plays

an important role in CRC metastasis. Therefore,

microsatellite-instable (MSI) cancers, bearing multiple

mutations that can translate into aberrant (peptide)

antigens, may be linked to good prognosis – in large

measure – because of effective adaptive immune

responses (Kloor and von Knebel Doeberitz, 2016;

Rooney et al., 2015).

A growing number of recent therapeutic strategies

aim to enhance existing T-cell responses, and early

results point to successes mainly in MSI cancers (see

Section 5.4). Besides reprogramming neutrophils,

TGF-beta has been shown to repolarize various other

immune cell types, including natural killer cells, den-

dritic cells, macrophages and T cells (Flavell et al.,

2010), and to directly inhibit T-cell mechanisms (Chen

et al., 2005; Thomas and Massague, 2005; Yang et al.,

2010; Zhang et al., 2005). Moreover, dendritic cells,

MDSCs and tumour-associated macrophages are all,

like CAFs, sources for stromal TGF-beta (Gabrilovich

and Nagaraj, 2009), indicating a mechanism in which

TGF-beta reprogrammes a variety of stromal cells,

amplifying its own signal, and impeding anticancer

immune responses in a concerted way.

4.4. Heterogeneity of the TME as a tool to

stratify patients with CRC

As described above, an understanding of the extent of

intra- and intertumour variegation helps frame the lim-

ited accuracy of the generic AJCC staging system in

predicting disease outcome, and has provided a num-

ber of additional parameters for prognostic use.

Numerous findings underscore the prognostic value of

immune cells in the tumour stroma during cancer pro-

gression. As mentioned above, the work by J�erôme

Galon and colleagues showed that an index evaluating

the type and localization of immune cells (Immuno-

score) can predict disease outcome. Indeed, they

demonstrated a stronger prognostic power than the

classical TNM (tumour, lymph node, metastasis) sys-

tem (Galon et al., 2006, 2014; Mlecnik et al., 2016a,b).

Furthermore, since the development of DNA

microarray technology, there has been a growing inter-

est in refining CRC patient stratification with unbiased

molecular classification based on gene expression pro-

files (Blanco-Calvo et al., 2015; Golub et al., 1999). A

series of recent studies have identified between three

and six molecular subtypes of CRCs associated with

distinct outcome and response to treatment (Budinska

et al., 2013; De Sousa E Melo et al., 2013; Marisa

et al., 2013; Roepman et al., 2014; Sadanandam et al.,

2013; Schlicker et al., 2012). To consolidate the vari-

ous classifiers, a consortium of experts in the field of

molecular classification integrated these molecular

stratifications of CRC into four consensus molecular

subtypes (CMS) (Guinney et al., 2015). CMS1 includes

most of the MSI and CpG island methylator pheno-

type (CIMP)-high CRCs, whereas CMS2, CMS3 and

CMS4 are generally chromosome-instable tumours dis-

playing roughly equivalent genotypes yet distinct

expression profiles. CRCs belonging to CMS2 express

a gene programme that suggests elevated WNT/MYC

activation, and thus, they may represent the canonical

class of CRC. CMS3 cancers express signatures that

reflect particular metabolic reprogramming, and those

of CMS4 display elevated expression of mesenchymal

genes.

Importantly, CMS4 is associated with poor out-

come. Whereas mesenchymal gene expression was ini-

tially attributed to cancer cells undergoing EMT, two

studies revealed that the signatures that identified

patients with the worst outcome were in fact of stro-

mal origin (Calon et al., 2015; Isella et al., 2015).

Recent analysis also suggests that the gene expression

profile of the CMS4 subtype reflects immunosuppres-

sion (Becht et al., 2016). Importantly, the power of

stromal gene signatures to predict disease relapse

107Molecular Oncology 11 (2017) 97–119 ª 2016 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

D. V. F. Tauriello et al. Determinants of colorectal cancer metastasis



outperforms both the classical AJCC staging system

and the consensus molecular stratification of patients

(Calon et al., 2015; Isella et al., 2015). As mentioned

in earlier sections, further investigation within these

prognostic stromal gene signatures identified a promi-

nence of TGF-beta target genes expressed by CAFs in

the most aggressive tumours, which are promising

poor-prognosis biomarkers that can be assessed using

either transcriptomic or immunohistochemical tech-

niques (Calon et al., 2012, 2015). Altogether, these

data suggest that stromal evaluation will greatly bene-

fit upcoming patient classification systems and may

translate to better clinical assessment of the disease,

while also providing new avenues for therapeutic inter-

vention.

5. Specific targeting of cell types to
treat metastasis

For many years, the standard of care for advanced

disease had been 5-fluorouracil – commonly supple-

mented with folinic acid – which only conferred a mar-

ginal survival advantage. Somewhat more encouraging

results emerged from the addition of oxaliplatin or

irinotecan to the regimen (FOLFOX or FOLFIRI,

respectively) both in metastatic disease (Douillard

et al., 2000; de Gramont et al., 2000) and, as adjuvant

therapy, in some stage II and most stage III CRC

patients (Andr�e et al., 2009; Van Cutsem et al., 2016).

However, these systemic chemotherapies in effect indis-

criminately kill proliferative cells and their therapeutic

index is limited for many patients. Moreover, this

approach neither targets dormant CRC-SCs nor offers

an answer to resistance or stromal mitigation. Under-

standing intratumoral heterogeneity and the biology of

the different cell types that populate the tumour is

guiding the development of new therapeutic strategies

to treat advanced disease.

5.1. Targeted therapies

Standard systemic chemotherapy is increasingly com-

bined with targeted treatments that eliminate specific

dysregulated pathways crucial for cancer growth or

survival. For example, inhibitors of EGFR signalling

such as cetuximab and panitumumab improve survival

in patients with CRC (Van Cutsem et al., 2016)

(Fig. 3). Unfortunately, these therapies are met with

both intrinsic and acquired resistance in the vast

majority of cases, often involving mutations down-

stream to EGFR (including in KRAS and BRAF

genes), but also in other mitogenic protein kinase

receptor signalling pathways (Bertotti et al., 2015).

As additional targeted therapies become available,

the development of increasingly adding cancer genome

and transcriptome sequencing to regular clinical prac-

tice might help in this systematic approach of targeting

signalling networks most relevant to individual

tumours. However, clonal diversity can severely com-

plicate this class of analysis (see Section 3.4). Addi-

tionally, signalling networks perturbed in one way can

rewire elsewhere and confer resistance, indicating a

challenge in providing straightforward biomarkers for

response for targeted therapies (Prahallad et al., 2012).

Therapies combining multiple pathway inhibitors are

being tested as a way to prevent resistance to individ-

ual drugs, but these strategies may face important

toxic effects on normal tissues that limit their imple-

mentation.

5.2. Therapies against cancer stem cells

The hierarchical organization of CRC has led to the

hypothesis that the cause of disease relapse is that

standard chemotherapy eliminates the tumour bulk

while sparing CRC-SCs. While formal proof for this

idea is still lacking, several initiatives to develop anti-

CRC-SC therapies are currently ongoing. There are

three classes of such therapies. First, targeting the key

pathways that regulate the behaviour of CRC-SCs –
including WNT, NOTCH, EGFR and TGF-beta/BMP

– is an obvious approach to prevent the maintenance

or expansion of this cell population. Whereas inhibi-

tors and agonist of these pathways exist, they are not

always effective, given the fact that CRCs carry genetic

alterations that alter many or all of these pathways.

For instance, CRC-SCs depend on WNT signalling to

sustain self-renewal, and inhibitors of WNT secretion

and of WNT receptors are in advanced stages of test-

ing. Yet, the vast majority of CRCs carry mutations in

the tumour suppressor gene APC, which constitutively

activate the pathway downstream of the receptor.

Unfortunately, developing inhibitors that target path-

way components downstream of APC has proven to

be tremendously challenging (Anastas and Moon,

2012; Kahn, 2014), although two recent studies reported

promising compounds. The first, called NCB-0846,

inhibits TNIK (an essential regulatory component of

WNT/beta-catenin signalling (Mahmoudi et al., 2009))

and effectively abrogates CRC stemness in vitro and

polyp formation in mice (Masuda et al., 2016). The

second (called MSAB) binds to beta-catenin and pro-

motes its proteasomal degradation, inhibiting the

growth of xenograft tumours in mice (Hwang et al.,

2016) (Fig. 2). A drawback of this class of strategies is

the fact that normal ISCs also critically depend on the
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same pathways as CRC-SCs, which may lead to strong

side effects.

A second therapeutic strategy is to deplete CRC-

SCs through the use of antibodies–drug conjugates

(ADCs) designed to bind surface antigens expressed by

this cell population. As recently shown, antibodies tar-

geting Lgr5 coupled to different toxins demonstrated

potent antitumour efficacy in preclinical models of

CRC (Junttila et al., 2015) (Fig. 3). Again, this strat-

egy may also have significant side effects given the fact

that many surface makers of CRC-SCs are shared with

normal ISCs. Furthermore, as discussed in Section 3.3,

if stress-induced dedifferentiation in the normal crypt

has its parallel in cancer, regeneration of CRC-SCs

pool by conversion of non-SCs cells upon cessation of

the treatment may also limit the effectiveness of this

strategy (Fig. 3).

A third strategy relies on identifying molecules and

dependencies specific for CRC-SCs that can be tar-

geted therapeutically, supposedly without major toxici-

ties. For instance, targeting self-renewal of CRC-SCs

using an inhibitor of BMI1 (PTC-209) has been shown

to have robust therapeutic effects (Kreso et al., 2014).

ER-stress-induced activation of the unfolded protein

response (UPR) forces CRC-SCs to differentiate, and

therefore, drugs that induce UPR could have therapeu-

tic activity against this cell population (Wielenga et al.,

2015). Furthermore, a low dose of the DNA-demethy-

lating agent 5-AZA-CdR induces viral-like response in

CRC-SCs by triggering the expression of double-

stranded RNAs derived from endogenous retroviral

elements, which has an antitumoral effect (Roulois

et al., 2015) (Fig. 3).

5.3. Stromal therapies

In line with the growing realization that a large number

of stromal cells are actively involved in driving CRC

progression (including maintenance of CRC-SCs), new

strategies are taking shape wherein either the TME is

the main target or a combination of agents attacks both

cancer cells and stromal cells, to improve therapeutic

response and prevent acquired resistance (Fang and

Declerck, 2013). For example, a recent study suggested

that HGF secreted by fibroblasts might decrease the

response to irinotecan. The successful reversion of such

resistance using anti-HGF-targeted therapy (Woo

et al., 2015) emphasizes the promises of multitargeted

treatments for patients (Fig. 3). This strategy might

also be of high value for CRC patients with nonmu-

tated KRAS gene where resistance to inhibitors of

EGFR is associated with increased levels of HGF

(Liska et al., 2011; Takahashi et al., 2014).

As mentioned in Section 4.2, another group of

widely applied agents for CRC treatment in fact target

the TME. These drugs inhibit VEGF signalling in

endothelial cells and thereby oppose tumour vascular-

ization. Besides monoclonal antibodies, also a recom-

binant fusion protein (aflibercept, blocking VEGFA,

VEGFB and placental growth factor signalling) was

shown to improve survival in phase III trials on

selected patients with metastatic CRC (Van Cutsem

et al., 2012). However, the majority of responsive

patients tend to develop resistance to anti-angiogenic

therapies over time, in part because the hypoxic condi-

tions established during treatment may independently

cause further malignization of cancer cells (Ulivi et al.,

2016). Nevertheless, anti-angiogenic therapies are likely

to continue to be part of future combinatory treatment

strategies.

Instead of targeting elements in the TME for deple-

tion or destruction, an attractive alternative is the

repolarization of stromal cells into a nonpermissive

state, for instance by blocking or reverting the corrup-

tive signals from cancer cells. In this perspective, stro-

mal reprogramming might have a lower toxicity than

destructive therapies and can thus be a powerful tool

to combine with more conventional treatments. The

many stromal pro-tumorigenic functions associated

with TGF-beta in CRC (and other cancers) suggest

that its successful and safe inhibition would be an

invaluable therapeutic goal. In a mouse model of

metastatic initiation, stromal TGF-beta signalling

enhanced metastatic spreading, while therapeutic inhi-

bition of this pathway in the stroma with galunisertib

abrogated liver metastasis initiation by CRC cells

(Calon et al., 2012, 2015) (Fig. 3). Extensive discussion

on the implementation of anti-TGF-beta therapies for

advanced CRC can be found elsewhere (Tauriello and

Batlle, 2016).

5.4. Immunotherapies

It has been proposed that conventional chemotherapy

may in large part rely on immune components to be

efficient, for instance by causing immunologic cell

death (Zitvogel et al., 2013). Consequently, T-cell

infiltration of both the primary tumour and liver

metastases has been associated with response to chem-

otherapy in patients with metastatic CRC (Halama

et al., 2009, 2011). Immunotherapies – which aim to

directly induce immune responses, or to enhance pre-

existing ones – have seen impressive efficacies in a

growing number of cancer types (Palucka and Cous-

sens, 2016). Designed to activate tumour-specific

CD8+ CTL immune responses, cancer vaccines have
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demonstrated benefit in prostate cancer, melanoma

and other cancer types (Butterfield, 2015), and several

strategies have been developed for CRC (Xiang et al.,

2013). Many such treatments focussed on advanced

(metastatic) disease have had disappointing responses,

possibly in part because of the progressively immuno-

suppressive TMEs of those tumours, suggesting a

higher benefit at earlier stages (Merika et al., 2010).

Recently, promising results were reported for a vaccine

based on a mucin-1 peptide in prophylactic treatment

of patients with precancerous adenomas (Kimura

et al., 2013). Even in this study, treatment failure was

linked to the presence of high levels of immunosup-

pressive MDSCs already at this early stage, which

might be a useful biomarker for further exploration of

similar strategies. Furthermore, these cells can be ther-

apeutic target themselves. To circumvent both the

requirement of in situ activation and the problem of

tumoral immune tolerance, a passive form of

immunotherapy can be used, where in vitro-activated

immune effectors (most often T cells) are administered

to the patient. However, early trials with adoptive cell

therapy resulted in severe toxicities and were not effi-

cacious (Xiang et al., 2013).

Early clinical trials with a different type of

immunotherapy – checkpoint inhibition, which unblo-

cks T cell-mediated adaptive anticancer responses –
have shown benefit in at least a subset of patients with

CRC (Puzzoni et al., 2016; Zumwalt and Goel, 2015)

(Fig. 3). Notably responsive are hypermutated MSI

tumours, which commonly carry many neoantigens,

are heavily infiltrated by T lymphocytes and express

relatively high levels of various checkpoints (Diaz and

Le, 2015; Kloor et al., 2010; Llosa et al., 2015). How-

ever, even in microsatellite-stable CRCs, there is a cor-

relation between mutational/neoantigen load, immune

infiltration and survival (Giannakis et al., 2016), offer-

ing a perspective on successful future exploitation of

immunotherapies. Several clinical trials are ongoing,

evaluating the benefit of checkpoint inhibitors such as

anti-CTLA-4 or anti-PD-1 antibodies (Moehler et al.,

2016). In addition, combinations of multiple check-

point inhibitors, or of such agents with other strategies

such as vaccines and/or chemotherapy, are likely to

increase the number of patients with good responses

(Sharma and Allison, 2015).

Alternatively, immunotherapy can be designed to

inhibit pro-tumorigenic interactions between immune

cells and neoplastic CRC cells. In a phase I trial,

cancer–stromal crosstalk through accumulating mye-

loid cells and T cells, and pro-tumorigenic cytokine

signalling, was successfully targeted using anti-CCR5

therapy in patients with advanced/metastatic CRC

(Halama et al., 2016) (Fig. 3). As TGF-beta is a classi-

cal immune suppressor as well as a key modulator of

cellular crosstalk, the discovery that high levels of

TGF-beta correlate with poor prognosis may imply

that colorectal cancer exploits this cytokine in tumoral

immune evasion, besides affecting CAF-mediated

secretion of pro-tumorigenic factors (Tauriello and

Batlle, 2016). It will be of great interest to study the

effects of this therapeutic strategy in immunocompe-

tent models, as well as explore the putative role of

CAFs as immunosuppressors (Feig et al., 2013; Kra-

man et al., 2010). Indeed, TGF-beta inhibition, for

which several approaches are in clinical trials (Akhurst

and Hata, 2012; Neuzillet et al., 2015; Smith et al.,

2012), might act as or synergize with immunotherapy.

6. Concluding remarks

Taken together, recent data discussed here emphasize

the importance of tumour heterogeneity – in terms of

cellular hierarchy, clonal diversity and tumour

microenvironment – in modulating CRC progression

and metastasis (Fig. 1). These factors have strong

implications for patient stratification as well as for the

development, optimization and application of thera-

peutic strategies (Figs 2 and 3). While key mechanisms

and dependencies in cancer progression and metastasis

are increasingly being translated into targeted thera-

pies, it is vital to integrate these emerging concepts

both in the selection of patients for clinical testing of

new agents and in combining approved therapies for

the treatment of individual patients.

All types of heterogeneity play a role in generating

and maintaining colorectal cancer stem cells (CRC-

SCs) with chemoresistance and metastatic competency,

and particularly, the TME supports metastatic colo-

nization (Figs 2 and 3). Therefore, therapies that tar-

get any or several of the mechanisms discussed here

may potentially be able to prevent metastasis from

developing in the 40–50% of patients with early-stage

disease at risk of distant recurrence. Moreover, several

of these therapies may be very beneficial for patients

with advanced/metastatic CRC. Among these promis-

ing therapeutic strategies are treatments that target

CRC-SCs directly or through their dependency on the

TME. In addition, a deeper understanding of

colorectal cancer immunity may lead to a better

exploitation of immunotherapeutic options, as well as

offering opportunities in targeting immunosuppressive

mechanisms.

The fast pace of progress as well as the high number

of open questions in each of the research fields we

have borrowed from assures that there will be
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significant challenges ahead in our understanding of

the full complexity of CRC as a heterogeneous disease.

Breaking our inability to effectively treat metastasis

requires the concerted effort of a large number of

researchers and clinicians and will likely involve

patient-specific combination of therapies aimed at tar-

geted elimination of metastatic competency mecha-

nisms.
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