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Abstract
Rattus norvegicus, or the rat, has been widely used as animal models for a diversity of
human diseases in the last 150 years. The rat, as a disease model, has the advantage of
relatively large body size and highly similar physiology to humans. In drug discovery, rat
models are routinely used in drug efficacy and toxicity assessments. To facilitate molec-
ular pharmacology studies in rats, we present the predicted rat interactome database
(PRID), which is a database of high-quality predicted functional gene interactions with
balanced sensitivity and specificity. PRID integrates functional gene association data
from 10 public databases and infers 305 939 putative functional associations, which are
expected to include 13.02% of all rat protein interactions, and 52.59% of these function
associations may represent protein interactions. This set of functional interactions may
not only facilitate hypothesis formulation inmolecularmechanism studies, but also serve
as a reference interactome for users to perform gene set linkage analysis (GSLA), which
is a web-based tool to infer the potential functional impacts of a set of changed genes
observed in transcriptomics analyses. In a case study, we show that GSLA based on
PRID may provide more precise and informative annotations for investigators to under-
stand the physiological mechanisms underlying a phenotype and lead investigators to
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testable hypotheses for further studies. Widely used functional annotation tools such as
Gene Ontology (GO) analysis, and Database for Annotation, Visualization and Integrated
Discovery (DAVID) did not provide similar insights.

Database URL: http://rat.biomedtzc.cn

Introduction

The rat was the first mammalian species domesticated in
scientific research in the mid-1800s and soon became the
most widely used biomedical model for >150 years (1). As
a model for human diseases, rats are more advanced to
mice and other organisms in many fields, such as neuro-
biology, cardiobiology, physiology and toxicology (2, 3).
The large body size and more human-like physiology have
made rats a good choice for biological mechanisms and
drug discovery in human disease studies (4).

Over the last few years, the development of omics
approaches in rats has provided novel insights into the
molecular mechanisms of human diseases and has pro-
moted the development of successful precision medicine
(5, 6). Compared with the reductionist approaches in tradi-
tional technology, omics technology can comprehensively
analyze the whole process in the biology system, which
can provide information qualitatively and quantitatively on
diseases, toxicities and therapies (7). However, the consid-
erable and complex omics data also create unprecedented
challenges in interpreting the underlying design logic of
physiological processes from molecular-level descriptions.

To address these challenges, the existing approaches
mostly rely on enrichment analysis to derive high-level
biological sense from the omics data. These approaches
evaluate whether the observed set of changed genes (SCG)
between two physiological statuses are enriched or clus-
tered in a typical biological process. To date, some
enrichment-based gene set annotation tools have been
developed and widely used, including gene ontology (8),
Kyoto Encyclopedia of Genes and Genomes (KEGG) (9)
and DAVID (10). In many cases, this strategy can sum-
marize the observed SCG into the established biological
concepts. However, in practice, these enrichment-based
approaches frequently report no annotation term or report
conceptually very general terms (such as GO:0019538, pro-
tein metabolic process) because no established annotation
terms can be found to explain why such changes occur.
Such results provide little value to elucidate the molecular
mechanisms of the observed SCG to formulate hypothe-
ses and design further experiments. However, when no
established concepts accurately describe the observed SCG,
we may still use established annotation terms to inter-
pret the functional impacts of the expression changed gene
sets. For instance, observed SCG may lead collectively to
GO:0097411 (hypoxia-inducible factor [HIF]-1 alpha sig-
naling pathway), even when the SCGs are not enriched in

these terms (see ‘Discussion’ for details). Previously, we
developed the gene set linkage analysis (GSLA) tool to inter-
pret the potential functional impacts of observed SCG even
though no established biological concepts are available to
define these changes. GSLA evaluates whether the observed
SCG has strong functional associations with the other gene
sets representing established biological processes. If genes
in SCG are densely associated with genes in a biological
process, this SCG is expected to interfere with this biolog-
ical function. GSLA has been successfully used in human
and Arabidopsis transcriptome analyses (11, 12). The suc-
cess of GSLA in these two species relies critically on the
high-quality interactomes that were specially developed for
GSLA in these species (11, 13). In this study, we adapted
and applied the GSLA tool to the high-quality rat interac-
tome predicted rat interactome database (PRID), to extend
its capability for interpretation of the potential functional
impacts of rat SCG.

In this study, we present the high-quality functional
association gene network called the PRID for rats and
its associated GSLA web tool in terms of their functional
impacts at the biological process level. PRID integrates 6
types of evidence from 10 public databases with the date
before 2018 to infer the functional associations between
genes. The inference accuracy of PRID is evaluated using
experimentally confirmed protein–protein interactions that
were recently reportedwith the date after 2018. The current
version of PRID includes 305 939 gene associations, which
include 302 693 predicted functional associations and 3246
experimentally reported interactions. These 302 693 func-
tional associations are expected to cover∼13.02%protein–
protein interactions of rats. Approximately 52.59% of
these functional associations are expected to represent
protein–protein interactions. We provide a web interface
for PRID so that users can search the functional associ-
ations of their interested genes. We also provide the web
interface for the PRID-based GSLA tool for users to inter-
pret the collective functional impact of multiple simultane-
ously changed genes. Finally, a case study is presented to
illustrate the use of PRID/GSLA.

Materials and methods

Data integration

To build the interaction prediction model, we selected
six types of evidence for the suggestion of functional

http://rat.biomedtzc.cn
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associations between genes by support vector machine
(SVM) algorithm. Six types of indirect evidence were col-
lected from 7 public databases before the year 2018, includ-
ing 17 353 expression profiles (Coxpresdb), 434 836 gene
annotations (GOC), 55 462 domain interactions (IDDI and
Pfam), 15 922 subcellular gene localizations (Compart-
ments), 20 120 phylogenetic profiles (DIOPT) and 14 807
homologs interaction in other species (Inparanoid).

Protein–protein interactions are considered to be one
type of strong functional association. Here, we retrieved
and integrated 6251 experimental reported protein–protein
interactions of rats from three public databases, includ-
ing the Rat Genome Database (RGD) (14), BioGrid (15)
and IntAct (16) (Supplementary Table 1). To ensure that
the protein–protein interactions are experimentally con-
firmed rather than predicted, the original data were further
curated and retained the interactions with more than one
independent study, at least one of which was reported
in low-throughput experiments. Because protein–protein

interactions were integrated from different databases, we
used UniProt (17) and BioMart (18) software to convert
diverse gene IDs to the uniform RGD ID (Figure 1). After
filtration, 2693 highly reliable protein–protein interactions
with uniform RGD ID served as positive examples to train
SVM models. A recently study proposed a categorization
of detection methods for PPIs (19). After filtration, the
fraction of our gold-standard data that are detected by at
least one binary method from one independent study was
increased from 11.98% to 17.21%, which suggested that,
from this perspective, our filtering method also increased
the reliability of our gold-standard dataset.

The computation and evaluation of feature values

From these 6 types of functional association evidence, 36
feature values were computed to describe the functional
associations between genes, including 3 shared annotation
features, 2 co-expression features, 4 co-localization

Figure 1. The workflow diagram for the influence of functional interactions between rat genes. The training dataset consisted of high-quality exper-
imental confirmed protein interactions from three databases that were used as positive examples. Random gene pairs that did not overlap with
positive examples were used as negative examples. The positive to negative ratio was 1:100. Six types of functional association evidence were col-
lected from 10 databases. Six high-quality feature values were selected from 36 feature values that characterize the functional association evidence
with different mathematical representations.
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features, 23 domain interaction features, 3 phylogenetic
profile features and 1 homologous interaction feature
(Supplementary Table 2) (11, 12). Their detailed methods
of computation can be found at the PRID website under
Help/Indirect Evidence. To evaluate the quality of these 36
features in functional association suggestions, we used the
area under the curve (AUC) of the receiver operating char-
acteristic (ROC) test. When the feature value was used to
predict the protein interactions, it produced a series of sen-
sitivities and specificities by different cut-offs. Therefore,
we plotted the ROC curve by these sensitivities and speci-
ficities generated by different cut-offs (X-axis, 1-specificity;
Y-axis, sensitivity). We used an AUC>0.6 as the criterion
for feature selection. After evaluation, 6 features with AUC
higher than 0.6 were considered to be high enough quality
for strong functional association inference (Supplementary
Table 3 and Supplementary Figure 1). These six features
were used in subsequent model training. These features are
set to zero if data necessary for calculating these features
were missing for a pair of genes.

Evaluation of interactions in PRID

PRID was inferred from data that were released before
1 January 2018. We selected 11 810 genes from the GO
database with new annotations added after 2018. These
11 810 genes have a total of 376 904 annotations, 113 105
of which were newly updated since 2018. These genes
and their new annotations (4891) were used to evaluate
the quality of the interaction networks. For each of the
11 810 target genes, we first found all first-degree neigh-
bors of a target gene in an interactome to create a gene set.
This gene set was analyzed by Protein ANalysis THrough
Evolutionary Relationships (PANTHER) to find enriched
annotation terms For each P-value cut-off reported in PAN-
THER, we counted (i) how many terms were predicted by
PANTHER (N); (ii) how many PANTHER predicted terms
are among the 376 904 known annotations or their more
specific terms (X) and (iii) how many of the 113 105 new
terms have themselves or their more specific terms predicted
by PANTHER (Y). The precision and recall are calculated
as follows:

Precision=
X
N

Recall=
Y

113,105

Microarray data analysis

The microarray data GSE80339 was retrieved from the
Gene Expression Omnibus (GEO) database (20). In the
original article, the authors identified 838 downregulated
transcripts and 786 upregulated transcripts in low oxygen
conditions compared with the ambient condition. We rean-
alyzed the expression dataset using the online tool GEO2R

with default parameters. We selected the top 250 upreg-
ulated genes for interpretation using DAVID, PANTHER
and PDIR/GSLA. All upregulated genes have adjusted P-
value < 0.05 (Supplementary Table 4).

Results

Data integration for the prediction of functional
associations between rat genes

Six types of evidence were selected for the prediction of
interactions between rat genes, each suggesting a specific
type of functional association (21, 22). We collected the
indirect evidence from seven public databases, including
Coxpresdb (23), Gene Ontology Consortium (GOC) (24),
Compartments (25), IDDI (26), Pfam (27), DIOPT (28) and
Inparanoid (29) (Figure 1).

From these 6 types of indirect evidence, 36 feature values
were computed to characterize the strength of functional
associations between rat genes (Supplementary Table 2).
Actually, not all 36 of these feature values are expected
to separate the protein interactions from the random gene
pairs. Here, the protein interactions were considered a
strong type of functional association. To increase the pre-
diction power in the later functional association inference
step, we evaluated these feature values through the AUC in
the ROC test. The ROC curve was used to assess whether
the feature is capable of indicating protein interactions.
Among the 36 features, 6 with AUC >0.6 were selected
for the subsequent inference of functional gene associations
(Supplementary Table 3 and Supplementary Figure 1).

Protein–protein interactions are one type of strong
functional association. Here, we preferred to use protein
interactions as positive examples in model training. Exper-
imentally reported protein–protein interactions in rats were
integrated from three databases, which included RGD (14),
BioGRID (15) and IntAct (16) (Figure 1 and Supplementary
Table 1). To ensure the quality of collected protein interac-
tions, we filtered by the evidence provided in each database,
keeping the experimentally confirmed high-confidence pro-
tein interactions, which were used as positive examples in
training the prediction model (Figure 1 and Supplementary
Table 1).

Prediction of functional gene associations

The functional association predictionmodel was built using
the libSVM package, which is an integrated software pack-
age for support vector classification (30, 31). In the pre-
diction model training, 2693 experimentally confirmed
protein–protein interactions were collected from before the
year 2018 and used as positive examples. Negative exam-
ples were those randomly generated gene pairs that do not
overlap with the positive examples. In fact, two random
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gene pairs still had a low probability of having functional
associations. To reduce the impact of few false positive
examples existing in the negative examples, we set the
negative to positive ratio in the training dataset to 100:1.

We used the soft-margin Gaussian kernel SVM algo-
rithm to train the prediction model. A 5-fold cross-
validation was implemented to optimize the kernel width
parameter σ and soft-margin parameter C. With the opti-
mized σ and C, all the training data were used to train
the prediction model, which was then validated by the
protein–protein interactions (published after 31 December
2017) and randomly generated negative examples (posi-
tive:negative=1:100). The final optimized model showed
a total of 302 693 functional associations with a sensitivity
of 13.02%and a specificity of 99.98%. For comparison, we
also evaluated how well the predicted interaction in MIST
and STRING covered these new interactions. The results
are shown in Supplementary Table 5.

Applying this model to all rat gene pairs produced
302 693 inferred functional associations. These inferred
functional interactions together with the 3246 known pro-
tein interactions make the PRID dataset, which consists
of 305 939 interactions. Based on the inferred 305 939
functional associations, we were also curious about the
proportion of protein–protein interactions covered by the
predicted functional interactome. Therefore, we solved
the following equation:

Ninteractome × Sensitivity+(Nall−pairs −Ninteractome)

× (1− specificity) =Npredict

In the equation, Ninteractome is the expected number of all
protein–protein interactions in rats;Nall−pairs is the number
of all gene pairs in rats; Npredict is the number of pre-
dicted gene associations; sensitivity and specificity are the
accuracy measures produced when the prediction model is
validated with newly published protein interactions. Solv-
ing this equation gave an estimated size of rat protein
interactome1.22× 106. Based on the estimated interactome
size (1.22 × 106) and the estimated sensitivity (13.02%,
the conservative estimation from the training stage sensitiv-
ity 13.38% and the evaluation stage sensitivity 13.02%),
the predicted interactions in PRID is expected to include
159 618 true protein interactions. Therefore, 52.59% of
the PRID functional interactions (159 618 out of 302 693)
are expected to represent protein interactions.

Evaluation of functional gene association
network

To assess the quality of our predicted functional associa-
tion network of PRID, we evaluated how well it connects
functional associated genes and compared its quality with
five other existing rat interactomes, including Mentha (32),

MIST (33), STRING (34), RGD (14) and HitPredict (35).
In this study, the quality evaluation of those interactomes
was measured by the accuracy to predict a gene’s function
by this gene’s network neighbors. The PANTHER term
enrichment tool (36) was used to measure the prediction
accuracy of each interactome.

Because PRID was inferred based on data available
before 2018 (31 December 2017), we collected 11 810
genes from the GO database (up to 1 August 2018) for
which new annotations were added after 31 December
2017. These genes contained a total of 376 904 annota-
tions, 113 105 of which were newly reported after 2018.
Based on these genes and their annotations, we compared
the performance of six interactomes by PANTHER to
infer new GO biological processes. To evaluate the over-
all accuracy of the new annotation prediction, we used
the precision–recall curve in this study. Precision mea-
sured the proportion of PANTHER reported annotations
that were correct with the known annotations (all 376 904
annotations), while recall measured the proportion of PAN-
THER reported annotations that were covered with the
newly added 113 105 annotations. In reality, the number
of PANTHER reported annotations will change if we alter
the significance cut-off in PANTHER. A loose cut-off in
PANTHER will report more annotations but with a higher
false positive rate. In contrast, a strict cut-off in PANTHER
will give fewer new annotations but with higher precision.
In general, a loose cut-off will lead to higher recall, and
a strict cut-off will lead to lower recall. Therefore, the
precision–recall curve has the advantage of displaying the
precision and recall rates at different cut-offs.

Figure 2 shows that PRID had the highest AUC among
six interactomes, suggesting its superior quality in gene
function prediction compared with the remaining five inter-
actomes. When the curves reached the high-recall region,
PRIDwas the only database that maintained high precision.
The curves of Mentha (32), MIST (33), RGD (14) and Hit-
Predict (35) reached high-precision regions; however, these
curves always remained in low-precision regions. How-
ever, STRING reached a high-recall region as did PRID,
but its precision was always below PRID. This suggests
that the STRING interactome may contain a large propor-
tion of weak functional associations and result in a higher
false positive rate when predicting the functional associ-
ations between rat genes. In conclusion, PRID showed
the best performance with balanced coverage and accuracy
during gene function prediction compared with the other
interactomes.

The web interface of PRID/GSLA

We developed a user-friendly interface of PRID, which sup-
ports two search options: a single gene search and a mul-



Page 6 of 11 Database, Vol. 00, Article ID baaa086

Figure 2. Assessment of six interactomes for their capabilities to group functionally related genes together. The precision–recall curves were drawn
with a series of precision and recall pairs obtained by predicting a gene’s function with its network neighbors. Precision measures the fraction of
correct annotations predicted using an interactome. Recall measures the fraction of new annotations predicted using an interactome.

tiple gene search (Figure 3A). The difference between these
two search modes is the number of submitted genes. A sin-
gle gene search provides the inferred functional associations
involving the query gene, while a multiple gene search pro-
vides the functional associations between the query genes.
The results reported by PRID are listed in a tabular form
(Figure 3B). In addition, the inferred functional associa-
tions are also provided in a graphic view on the right side of
the query interface. If users are curious about the detailed
annotations of a gene in the predicted function association
network, they can click the node corresponding to the gene
of interest. We also provided the feature values that were
used to predict the function associations; users can right-
click the edges to see the details. All the reported functional
associations in the predicted network are provided for users
to download. Users can also download the full dump of the
PRID interactome on the download page.

The GSLA web tool was first developed based on the
predicted Arabidopsis interactome resource (PAIR) to func-
tionally interpret SCG in Arabidopsis (12). It evaluates
whether a SCG has more frequent functional associations
with genes that comprise a biological process or biolog-
ical function. A pair of hypotheses (Q1 and Q2) was
used to determine the statistical significance of functional
associations between two rat genes (Figure 4). The first
hypothesis (Q1) assumes that the density of intergene-set
functional associations between two gene sets is higher than

the density between two random gene sets. The second
hypothesis (Q2) assumes that the density between two gene
sets in a biologically meaningful functional gene associa-
tion network is higher than in a random functional gene
association network, which consists of the same genes and
same neighbors but different interactions. In a biological
sense, Q1 tests the strength of the functional associa-
tion between two gene sets, while Q2 confirms that the
strong functional association is the result of the biologi-
cally correct functional network (i.e. which represents our
knowledge of molecular mechanisms) rather than a result
of the gene set compositions. In reality, in an interactome,
some genes, such as hubs, may have more neighbors than
other genes. Gene sets containing many hubs may easily
have more intergene-set functional associations compared
with other gene sets. Therefore, we used Q2 to remove the
confounding factor of gene set composition and ensure the
biological significant functional associations between two
gene sets. In general, Q1 and Q2 are different but comple-
mentary. They work together to increase the sensitivity and
specificity of GSLA. For the GSLAweb tool, the default sig-
nificant cut-offs to report the interaction of a gene set are
density > 0.01 (Q1) and P<0.001 (Q2).

The PRID website also provides a link for users to access
GSLA, which uses the PRID interactome to predict the
functional impacts of SCG in rat transcriptomic experi-
ments. The main interface is shown in Figure 3C. When
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Figure 3. PRID website. (A) Single gene search and multiple gene search. (B) Search result page. Right-clicking on an interaction in the diagram will
show its details. (C) GSLA interface. (D) GSLA result file.

users submit a set of SCGs, five types of rat gene IDs are
supported, including RGD ID, gene name, UniProt ID,
Ensembl gene ID, Ensembl protein ID and NCBI Entrez ID.
Here, we suggest users provide SCG directly in RGD IDs
because the internal server of GSLA works only with RGD
ID so that the submitted IDs are automatically mapped to
RGD ID before further computation (Figure 3D). There-
fore, to avoid information loss, RGD ID is the best choice.
In addition, the cut-offs for Q1 (density) and Q2 (P) are
able to adjust (Figure 3C). To obtain specific and focused
functional impacts, the top 50 to 200 genes of SCG are rec-
ommended. The results will be mailed to the user-provided

email address. In the result file, the analysis parameters are
shown in the top 10 lines, which are followed by a tabular
list of identified biological processes and the functional gene
interactions between the SCG and the reported biological
processes (Figure 3D).

Using the PRID/GSLA system to reanalyze the
low oxygen embryogenesis datasets

During embryogenesis, the establishment of a trophoblast
cell lineage is the leading cell differentiation event (37–40).
The antecedents of all trophoblast cells, known as tro-
phoblast stem (TS) cells, with their precise program of



Page 8 of 11 Database, Vol. 00, Article ID baaa086

Figure 4. The GSLA algorithm. GSLA uses two hypothesis tests to identify biologically significant functional associations between gene sets. Q1
evaluates whether the intergene-set interaction density between two gene sets is higher than that between random gene pairs. Q2 evaluates whether
the dense functional interactions between gene sets can only be observed within the correct network, rather than random interactomes.

expansion and differentiation, are essential for the devel-
opment of the hemochorial placenta (41), which plays
an important role in fetal development, preservation of
maternal health, and extraction of maternal resources (20).
Placental organization plasticity can be achieved through
differential regulation of TS cell proliferation and dif-
ferentiation, which is affected by hypoxia. Low oxygen
redirects placental organization, promotes the develop-
ment of invasive trophoblast cells, remodels the uterine
spiral artery and activates the cell response mediated by
the HIF (20, 42–44). Chakraborty et al. reported that
matrix metallopeptidase 12 (MMP12) is upregulated in low
oxygen conditions (20). While no evidence supports that
MMP12 is a direct target of HIF, the authors identified
that lysine demethylase 3A (KDM3A) mediates the regu-
lation ofMmp12 by hypoxia/HIF. In summary, the authors
found that the hypoxia-HIF-KDM3A-MMP12 regulatory
pathway is conserved and facilitates placental adaptations.

To investigate placental adaptation and plasticity,
Chakraborty et al. performed cDNA microarray analysis
on rat TS cells with ambient (21% oxygen) or hypoxic
(0.5% oxygen) conditions (GEO database, GSE80339)
(20). They reported that 838 transcripts were downreg-
ulated, and 786 transcripts were upregulated under low
oxygen conditions. We used the PRID/GSLA system to
annotate the functional impacts of hypoxia-induced gene
changes. The top 250 upregulated genes were analyzed
with PRID/GSLA, DAVID and PANTHER (GO ontology
analysis). All terms reported by these tools and the terms
reported by the original article were summarized into func-

tional categories in Supplementary Table 6. All three tools
compared in this study reported oxygen homeostasis and
inflammatory response-related biological processes, which
were consistent with those documented in the original pub-
lication (Figure 5, Supplementary Tables 7–9). Notably,
PRID/GSLA system reported HIF and MMP12-involved
signaling pathways, which suggested the hypoxia-HIF-
KDM3A-MMP12 regulatory circuit (Figure 5 and Supple-
mentary Table 9), which are intuitively relevant to this
study and provides a mechanism hypothesis. The results
from PRID/GSLA system also showed elastin metabolism
related pathways that were also reported in the origi-
nal publication. In comparison with DAVID and PAN-
THER, PRID/GSLA reported mitochondrial-related terms,
whereas DAVID did not (Supplementary Tables 8 and 9).
Some other studies observed that hypoxic stress suppressed
mitochondrial membrane potential and decreased total
cytochrome c oxidase levels (45, 46). Furthermore, we
also found a series of nitric oxide (NO)-related pathways
with PRID/GSLA (Figure 5). In an independent study, Park
et al. observed that hypoxia helped maintain NO produc-
tion in trophoblast cells (47). In this case study, DAVID
reported 193 terms in 34 clusters (Supplementary Table 7),
GO ontology analysis reported 267 terms (Supplementary
Table 8), in contrast, PRID/GSLA reported only 48 terms
(Supplementary Table 9). Therefore, the interpretation
provided by PRID/GSLA is broader and more concise,
which highlights potentials for experimental researchers to
explore molecular mechanisms, whereas other widely used
enrichment-based tools did not provide similar insights.
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Figure 5. The gene set annotations produced by PRID/GSLA. The annotations produced by GSLA are more comprehensive and inspire further
mechanism studies. We performed DAVID and gene ontology analysis for comparison.

Discussion

As a powerful disease model organism, many efforts have
been made to build a molecular interaction1 network of
Rattus norvegicus. A comprehensive and accurate reference
interactome of rats may facilitate hypothesis formulation in
molecular pharmacology studies. To date, many rat inter-
actome databases are available. Some of these databases
integrate the experimentally reported protein–protein inter-
actions, such as RGD (14), BioGrid (15) and IntAct (16).
Others provided the predicted interactions of rats, includ-
ing MIST (33), STRING (34) and HitPredict (35). In
general, experimentally reported molecular interactions are
considered to be more accurate than the predicted inter-
actions. However, the number of experimentally reported
interactions is too small. According to the estimated size
of the rat interactome (1.22x 106), the highest cover-
age of protein interactions is the RGD database (up to
1.08%), which represents 7.89% of the rat protein inter-
actome. Actually, the coverage of the RGD database will
be lower than 1.08% due to false positive experimental
interactions. Therefore, researchers can only obtain lim-
ited support from experimental interactions for molecular
mechanism analysis. In contrast, databases with predicted
interactionsmay cover a high proportion of the true rat pro-
tein interactome. For example, STRING presents 6 624 008
rat gene associations and is estimated to cover as high
as 14.83% of the rat interactome. However, these asso-
ciations cover many types of reported associations (not
only protein interactions), and only∼0.86% of these asso-
ciations may represent protein interactions. In our new
assessment of functional prediction, both the experimen-

tally reported interactomes and the predicted interactomes
did not perform as well as the PRID interactome, which
showed a balanced coverage and reliability (13.02% cover-
age and 52.59% reliability if evaluated as a protein interac-
tion network). In conclusion, PRID complements existing
rat interactomes as a high-quality network for functional
gene association analysis.

The high quality of functional associations in PRID
enables the GSLA approach to interpret the SCG in rats.
To report significant functional associations between two
gene sets, GSLA estimates the density of functional gene
interactions between the component genes in two gene sets.
Therefore, for the successful application of this strategy, a
high-quality reference interactome with balanced coverage
and accuracy was required. As discussed above, previous
interactomes were unable to meet this need. If we used
other interactomes, GSLA could not produce an interpre-
tation of functional impacts as useful as those produced by
PRID (data not shown). This was the same case when we
assessed our previously developed high-quality functional
interactome with other existing databases for humans and
Arabidopsis (11, 13).

Our developed PRID/GSLA system extends the capa-
bility of current enrichment-based tools to interpret the
potential functional impacts from the observed rat SCG and
summarize the SCG into known biological processes, espe-
cially when no established biological concept can describe
the observed SCG, as mentioned in the introduction. More-
over, the functional association resource provided in PRID
is a useful reference for researchers for interpreting the
molecular mechanisms of their genes of interest.
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Supplementary Data

Supplementary data are available at Database Online.
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