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ABSTRACT
The extended synaptotagmins, E-Syt1, 2 and 3, are multiple C2 domain membrane proteins that are
tethered to the endoplasmic reticulum and interact in a calcium dependent manner with plasma
membrane phospholipids to form endoplasmic reticulum - plasma membrane junctions. These junctions
have been implicated in the exchange of phospholipids between the 2 organelles. The E-Syts have further
been implicated in receptor signaling and endocytosis and can interact directly with fibroblast growth
factor and other cell surface receptors. Despite these multiple functions, the search for a requirement in
vivo has been elusive. Most recently, we found that the genes for E-Syt2 and 3 could be inactivated
without effect on mouse development, viability, fertility or morphology. We have now created insertion
and deletion mutations in the last of the mouse E-Syt genes. We show that E-Syt1 is specifically expressed
throughout the embryonic skeleton during the early stages of chrondrogenesis in a pattern quite distinct
from that of E-Syt2 or 3. Despite this, E-Syt1 is also not required for mouse development and propagation.
We further show that even the combined inactivation of all 3 E-Syt genes has no effect on mouse viability
or fertility in the laboratory. However, this inactivation induces an enhancement in the expression of the
genes encoding Orp5/8, Orai1, STIM1 and TMEM110, endoplasmic reticulum - plasma membrane junction
proteins that potentially could compensate for E-Syt loss. Given the multiple functions suggested for the
E-Syts and their evolutionary conservation, our unexpected findings suggest that they may only provide a
survival advantage under specific conditions that have as yet to be identified.
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Introduction

The E-Syts (E-Syt1, 2 and 3) are C2-domain membrane pro-
teins that bind membrane phospholipids in a Ca2C dependent
manner.1 They were initially implicated in glucose transport
and fibroblast growth factor (FGF) signaling.2-5 Subsequently,
they were shown to enhance the formation of contact sites
between the endoplasmic reticulum (ER) and the plasma
membrane (PM) in response to Ca2C signaling,6,7 see 8,9 and
10 for reviews. The E-Syts are broadly conserved throughout
the animal kingdom and are analogous to the tricalbins
(Tcb1, 2 and 3), which perform analogous functions in ER-
PM tethering and phospholipid transport in yeast.11,12 By
their ability to form ER-PM junctions, the E-Syts were shown
to facilitate the transport of phospholipids to the plasma
membrane (PM).7,13-15 In this way they can act to sustain
homeostasis of PM phosopholipids and particularly of phos-
phatidylinositol (PI) and phosphatidylinositol 4,5 biphos-
phate (PtdIns(4,5)P2 or PIP2). PIP2 is a major substrate in cell
signaling and its hydrolysis by phospholipase C (PLC) acti-
vates Ca2C signaling via the release of inositol 1,4,5-trisphos-
phate (IP3). Since activation of PLCg and PIP2 hydrolysis is a

major pathway of FGF signaling, the ability of the E-Syts to
replenish plasma membrane PIP2 would naturally enhance
and prolong signaling through this pathway, as was suggested
for E-Syt2 during early Xenopus development.5,9

The ability of the E-Syts, and particularly E-Syt2, to induce
tight ER-PM junctions would logically also promote the bidi-
rectional transfer of phospholipids between the PM and ER via
both the ORP5/8 and Nir2/3 exchange proteins, e.g. see.9 This
clearly has broader implications for the maintenance of PM
phosphoinositide homeostasis, as shown recently by the dem-
onstration that E-Syt2 dependent ER-PM junctioning enhances
the removal of PI(4)P via ORP5/8 and the Sac1 phosphatase.16

However, targeted inactivation of all 3 E-Syt genes in HeLa cells
had no effect on PtdIns(4,5)P2 dynamics following activation of
muscarinic receptor, though it did affect the rate of removal of
DAG from the PM.14 This latter effect is consistent with a
reduction in the rate of DAG to PA conversion or more likely
PA removal via the Nir2/3 exchange pathway,10,13 see also.9

Given the apparent importance of the E-Syts in the dynam-
ics of membrane lipid composition and in Ca2C, FGF and
potentially other signaling pathways, it is essential that we
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understand their role in vivo. It was, therefore, surprising to
find that inactivation of the mouse E-Syt2 and 3 genes had no
detectable phenotypic effect, and that esyt2¡/¡esyt3¡/¡ mice
were both viable and fertile. Here we have extended these in
vivo studies to the last of the E-Syts, E-Syt1. We find that the E-
Syt1 gene is discretely expressed in the developing embryonic
skeleton, but its functions are apparently also not essential for
mouse viability. Indeed, we show that esyt1¡/¡ and even esyt1¡/

¡esyt2¡/¡esyt3¡/¡ mice are viable and fertile and display no
overt functional or morphological anomalies.

Results

Insertional mutation of the E-Syt1 gene

Using a recombinant vector from the EUCOMM consortium,
we generated mouse embryonic stem (mES) cells carrying a
potentially conditional “flox-neo” insertion in the E-Syt1 gene.
Lox recombination sites were placed in intron 2 and intron 7,

and a ß-Gal marker gene and a neo selection gene flanked by
FRT (Flipper) sites were inserted within intron 2 (Fig. 1A).
Nine independent ES cell clones heterozygous for this esyt1flox-
neo allele were isolated and 2 of these (B11 and D7, Fig. 1B)
were used to generate mouse lines carrying this “knock-out
first” inactivating mutation (Fig. 1C). The mice were then
crossed with FLPo and Sox2-Cre recombinase expressing mice
to generate esyt1flox, and esyt1ßGal insertion and esyt1D (esyt1¡)
deletion alleles (Fig. 1D). Finally, the Cre and Flipper trans-
genes were removed by backcrossing.

E-Syt1 is strongly expressed in the embryonic skeleton and
in adult lung and spleen

Insertion of a b-galactosidase (bGal) gene into the esyt1 locus
permitted the expression pattern of this gene to be determined
during early mouse development. E-Syt1 expression was first
detected at 11.5 dpc within the developing mouse skeleton and
this expression became rapidly stronger and more striking,

Figure 1. Targeted disruption of the esyt1 gene in mouse. A) Maps of the EUCOMM esyt1 Knockout First vector PRPGS00088_C_F09, the wild type (WT, C) mouse esyt1
gene locus, the initial targeted (flox-neo) gene insertion and the subsequent ßGal insertion and exon 3 to 7 deletion (D) products generated by recombination respec-
tively of the inserted FRT and Lox sites. Positions of relevant restriction sites, genotyping PCR primers (thick arrows) and hybridization probes are indicated. B) Southern
analysis of the insertion mutant ESC clones used to generate mouse lines. C) Typical example of PCR genotyping of mouse lines carrying the insertion (flox-neo, ßGal) and
deletion (D) mutant esyt1 alleles in comparison with the WT allele. D) Typical example of PCR genotyping of homozygous esyt1, 2 and 3 wild type and esyt1, 2 and 3 null
mouse lines. In (C) and (D), the PCR primers used for esyt1 were those shown in (A), and those for esyt2 and esyt3 were as previously described 18.
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such that by 13.5 dpc it was observed in a very distinct pattern
throughout the developing thoracic skeleton, the cervical, tho-
racic and lumbar vertebrae, and within the limb buds (Fig. 2).
The detail of staining within the lateral mesodermal plate at
13.5 dpc suggested that E-Syt1 was initially expressed at the
outer edges of the mesenchymal condensations that presage
chondrogenesis (see enlargements in Fig. 2). In fact, its pattern
of expression at this stage somewhat resembled that of the
transcription factor Runx2, a master regulator of osteoblast
differentiation implicated in the process of mesenchymal
condensation.17

Our previous data showed that E-Syt1 gene was strongly
expressed in the lung and spleen of adult mice.18 Given that
this pattern was quite distinct from that previously published
for adult human tissues,1 we repeated the analysis of E-Syt1
expression, and in parallel E-Syt2 and 3, in wild type adult
mouse tissues (Fig. 3A). The results concurred with our

previous data for all 3 E-Syts,18 showing strong E-Syt1 expres-
sion only in lung and spleen. To further confirm these data, we
repeated the extraction of total RNA from kidney, lung, spleen,
stomach, testes and heart tissues of wild type mice and deter-
mined E-Syt expression levels by Real-Time qRT-PCR
(Fig. 3B). Again here, E-Syt1 expression was found to be strong
in lung and spleen, weak in stomach and insignificant in kid-
ney, testes and heart, while the data for E-Syt2 and 3 expression
closely followed that obtained in Figure 3A and previously.18

The E-Syt1 gene is not essential in mouse

Given the very striking skeletal pattern of E-Syt1 expression, we
were very surprised to find that mice homozygous for the
esyt1flox-neo “knockout first” insertion mutation developed nor-
mally and were viable and fertile, suggesting that the E-Syt1
gene was not essential (Table 1A). Similarly, mice homozygous

Figure 2. Expression pattern of the esyt1 gene in early mouse embryos carrying the b-galactosidase (bGal) allele (Fig. 1A). Expression was determined at stages 11.5, 12.5
and 13.5 dpc by conversion of X-Gal (blue-green), see Materials and Methods. Enlarged panels below the whole mount views of the 13.5 dpc embryos show detail of the
lateral mesodermal plate and anterior limb-bud. The images are of embryos homozygous for the bGal insertion allele which lack a functional esyt1 gene. The pattern
staining in these embryos was indistinguishable from that of esyt1C/ßGal mice but was somewhat stronger consistent with a gene dosage effect.
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for the esyt1 deletion allele (esyt1D) displayed no evident phe-
notype or any significant effects on viability, fertility or indeed
longevity (of the 75 esyt1¡/¡ mice used for breeding, 47 were
sacrificed at > 5 months, 27 at > 6 months, 14 at > 7 months
and 7 > 8 months, none died of natural causes or suffered
from any obvious disorder). Further, the esyt1¡/¡ allele dis-
played Mendelian inheritance (Table 1A). To verify that the E-
Syt1 gene had in fact been inactivated, we analyzed a broad
range of tissues from esyt1¡/¡ and wild type mouse siblings for
E-Syt1, 2 and 3 mRNA levels, and both spleen and lung for E-
Syt1 protein (Fig. 3C and D). The esyt1¡/¡ mice expressed no
functional E-Syt1 mRNA, and no E-Syt1 protein could be
detected in either tissue. Thus, esyt1¡ represented a true null
allele. These data further showed that loss of E-Syt1 mRNA
was not compensated by an enhancement in the level of E-Syt2
or 3 mRNAs (Figure A and C). It was therefore concluded that
E-Syt1 is not essential for mouse viability, fertility or longevity.

Combined deletion of all 3 E-Syt genes has no effect on
viability and fertility

Given the surprising finding that the E-Syt1 gene was not
essential, we asked if its function was redundant in the presence
of the other 2 E-Syt genes. We had previously generated mice
lacking functional E-Syt2 and E-Syt3 genes and showed them
also to be viable and phenotypically normal.18 Thus, we
attempted to generate mice in which all 3 E-Syt genes were
inactivated. Unexpectedly, we found that mice lacking all 3
genes were viable and the null alleles displayed Mendelian
inheritance. For example, crosses of esyt1¡/¡/esyt2C/¡/esyt3¡/¡

mice showed Mendelian inheritance of the esyt2¡ allele
(Table 1B). Further, mice lacking all 3 E-Syt genes
(esyt1¡/¡/esyt2¡/¡/esyt3¡/¡) displayed no overt phenotype, dis-
played no premature mortality and were fertile. Indeed, when
E-Syt-null (esyt1¡/¡/esyt2¡/¡/esyt3¡/¡) mice were crossed they
generated typical sized litters and offspring displayed no evi-
dent phenotype. Thus, not one of the 3 E-Syt genes is essential
for normal mouse survival or fertility and mice lacking all 3
genes are phenotypically normal.

Loss of the E-Syts may be partially compensated by
upregulation of other ER-PM tethering proteins
The data from yeast suggest that loss of the E-Syt analogs Tcb1
to 3 is in greater part compensated by the actions of other the

Figure 3. A) RT-PCR analysis of E-Syt1, ¡2 and ¡3 mRNA levels in wild type adult
mouse tissues. B) Real-Time qRT-PCR analysis to verify E-Syt1, ¡2 and ¡3 mRNA
levels from a selected subset of wild type adult mouse tissues. C) RT-PCR analysis
of E-Syt1, ¡2 and ¡3 mRNA levels in E-Syt1-null (esyt1¡/¡/esyt2C/C/esyt3C/C)
adult mouse tissues. D) E-Syt1 protein levels in lung and spleen of mice carrying
homozygous or heterozygous deletions (¡/¡ and C/¡) of E-Syt1 as compared to
the tissues from wild type (C/C) mice. See Materials and Methods for primers.

Table 1. Genotype analysis of the progeny born A) from esyt1target/C and esyt1C/¡ crosses, and B) from esyt1¡/¡/esyt2C/¡/esyt3¡/¡ crosses. “n” indicates the number of
offspring.

A)
esyt2C/C/esyt3C/C/

Cross esyt1C esyt1C/¡ esyt1¡/¡

esyt1target /C x esyt1target /C 23%(nD 17) 50%(n D 37) 27%(n D 20)
esyt1C/¡ x esyt1C/¡ 42%(nD 8) 37%(n D 7) 21%(n D 4)
Total 27%(nD 25) 47%(n D 44) 26%(n D 24)

B)
esyt1¡/¡/esyt3¡/¡/

Cross esyt2C esyt2C/¡ esyt2¡/¡

esyt1¡/¡/esyt2C/¡/esyt3¡/¡x esyt1¡/¡/esyt2C/¡/esyt3¡/¡ 28%(nD 17) 48%(n D 29) 23%(n D 14)
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ER-PM tethering proteins.12 Hence we asked if loss of the
mouse E-Syts increased expression of other tethering proteins.
The Osh homologs Orp5/8, like the E-Syts, are ER membrane
proteins that bind PM phospholipids and induce ER-PM teth-
ering.8-10 The PM Ca2C channel protein Orai interacts with the
ER membrane protein STIM1 during Store Operated Calcium
Entry (SOCE) and also tethers ER to PM, an action stimulated
by TMEM110. The genes for Orp5, Orai1 and TMEM110 were
all strongly expressed in lung, coinciding with strong expres-
sion of E-Syts 1 to 3 (Fig. 3A and B and Fig. 4). Expression of
Orp5, Orai1 and TMEM110 was found to be 1.5 to 2 times
higher in lung from E-Syt-null mice as compared with wild
type mice of the same background. E-Syt 1 and 2 expression in
spleen corresponded with the expression of Orp8, Orai1,
STIM1 and TMEM110, and in each case expression was also
significantly increased in E-Syt-null mice. Thus, enhanced
expression of a range of tethering proteins may at least in part
have compensated for the loss of the E-Syts, providing a poten-
tial explanation for the lack of an E-Syt-null phenotype.

Discussion

We previously generated mice lacking the E-Syt2 and 3 genes and
found that they were viable, fertile and displayed no morphologi-
cal abnormalities. This finding was already very surprising given
the various studies implicating these proteins in plasma mem-
brane homeostasis and key cell signaling pathways. Here we have
shown that inactivation of the E-Syt1 gene, and even the com-
bined inactivation of all 3 E-Syt genes, also has no discernable
phenotypic effect, esyt1¡/¡/esyt2¡/¡/esyt3¡/¡

first (F1) and even
second generation (F2) mice being viable, fertile and displaying

normal survival. However, the present study would not have
revealed subtle changes in mouse tissue structure, physiology or
behavior. This said, despite the greatly increased complexity of the
mouse system, our findings are in fact in line with data on the
inactivation of the Tcbs of yeast.11,12 ER-PM junctions in yeast
were only significantly affected when all 6 ER-PM tethering pro-
teins (Ist2, Scs2 and 22, and Tcbs 1, 2 and 3) were inactivated, and
even then the growth rate in rich medium remained unaffected.12

It is, therefore, likely that also in mammals the E-Syts function
redundantly with other ER-PM tethering proteins. Indeed we
observed a significant enhancement in the expression of the Osh
homologs Orp5/8 and the SOCE associated proteins Orai1,
STIM1 and TMEM110 known to tether the ER to the PM. As we
recently discussed,9 the paradoxical finding that E-Syt2 knock-
down in early Xenopus embryos affects FGF signaling 5 may be
related to the size of these embryos, the complex nature of their
membranes and the need for extremely rapid lipid transport dur-
ing cleavage divisions. Thus, it may be necessary to study extreme
situations of ER or PM functioning or stress, or other behavioral
anomalies, before we can identify an in vivo requirement for the
mammalian E-Syts. One possible function for the E-Syts, one that
could explain their broad evolutionary conservation, is in the reg-
ulation viruses-cell interactions such as has been observed for the
Arabidopsis synaptotagmin SYTA protein.19

Materials and methods

Generation of the E-Syt1 conditional mutation

The esyt1 gene was mutated using the targeted KO-first, condi-
tional ready, lacZ-tagged mutant vector PRPGS00088_C_F09
vector from the EUCOMM targeting project 69413. The vector

Figure 4. Analysis of Orp5/8, Orai1, STIM1 and TMEM110 tethering protein expression levels in tissues from wild type and E-Syt-null mice. See Materials and Methods for
primers.
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was linearized and used to electroporate WW6 ES cells, which
were then selected with G418. Resistant clones were amplified
and analyzed by 50 and 30 Southern blotting to identify correctly
recombined clones (Fig. 1A and B). These clones were then
used to generate 2 independent mouse lines using the services
of the McGill Transgenic Core Facility. The subsequent cross-
ing to induce recombination of FRT and Lox sites used the
mouse strains codon-optimized FLP recombinase (FLPo)
(#012930) and Sox2-Cre (#004783) from the Jackson Labora-
tory. The mice were housed and manipulated according to the
guidelines of the Canadian Council on Animal Care and experi-
ments were approved by the institutional animal care
committee.

Genotyping of mice

Genotypes of animals derived from the various crosses were
routinely determined by PCR amplification of genomic DNA,
(Fig. 1C and D). Primers used for esyt1 were A (50-CTCTTTC
GATGCCTTTCCAC-30), B (50-AGGGTCCCAGAATCATGA
AG-30), C (50-CCACAACGGGTTCTTCTGTT-30), D (50-TCT
GGCTGAGCTCGAATTTGT-30), E (50-ATCCTGGGCAGAG
GTTCAGA-30) and F (50-CGGTCGCTACCATTACCAGT-30)

For esyt2, primers were: A (50-CCAATCAGCAGTCTTAC-
CAT), B (50-CGTCTCAAGGGAAGGAAATAA) and C (50-CG
CCATACAGTCCTCTTCAC). For esyt3, primers were A (50- C
TGAAGCCTCCCAGTAGGTG), B (50-CCATCACCCCTAGT
TGTTGC), and D (50-GAGGCTCCAGGCCTTAGTTT).

Gene expression analysis by RT-PCR and real-time RT-PCR
Total RNA was extracted from mouse tissues using Trizol
(Invitrogen) and analyzed by RT-PCR in the linear amplifica-
tion range (qRT-PCR) as previously described,18 or by Real-
Time qRT-PCR. For Real-Time qRT-PCR, the RNA was
reverse transcribed as for RT-PCR, but amplification was car-
ried out in triplicate in 20 ml reactions containing 10 ml Quan-
tiFast SYBR Green and 1mM of each primer. 35 reaction cycles
of 10 s at 95�C and 30 s at 58�C were carried out on a Multiplex
3005 Plus (Stratagene/Agilent). The primers used for the E-Syts
were: mE-Syt1.FOR (50-TGGGATCCTGGTATCTCAGC),
mE-Syt1.REV (50-CTGGGAGATCACGTCCATTT), mE-Syt2.
FOR (50- CGAATCACCGTTCCTCTTGT), mE-Syt2.REV (50-
GCTCTGGAAGATTTGGTTGC), mE-Syt3.FOR (50- CAAGC
CCTTCATAGGAGCTG), mE-Syt3.REV (50- AGCAAATG-
GACTCGGATCAC), mGAPDH.FOR (50- AACTTTGGCATT
GTGGAAGG), mGAPDH.REV (50 ACACATTGGGGGTAG-
GAACA). Amplicons were of the expected sizes of 296 bp for
E-Syt1, 192 bp for E-Syt2, 246 bp for E-Syt3 and 223 bp for
GAPDH. Products were sub-cloned and sequenced to confirm
their specificity. Primers for other tethering proteins were taken
from Primer Bank (https://pga.mgh.harvard.edu/primerbank/)
20; Orai1.FOR (50-GATCGGCCAGAGTTACTCCG), Orai1.
REV (50-TGGGTAGTCATGGTCTGTGTC), Orp8.FOR (50-A
TGGAGGCAGCCTTAGCAGA), Orp8.REV (50-CAAATGCT-
GAGGTTCGTCACT) STIM1.FOR (50-TGAAGAGTCTACC-
GAAGCAGA), STIM1.REV (50-AGGTGCTATGTTTCACTG
TTGG), TMEM110.FOR (50-GCGCTCATGCACAGTTTCG),
TMEM110.REV (50-ACAGTGAACAAGGGTCCTCTT), Orp5.
FOR (50-TTCTGGGCTGCGAAAATGAG), Orp5.REV (50-GT

CAGATCCATTGCATAGCCTG), GAPDH.FOR (50-AGGTC
GGTGTGAACGGATTTG), GAPDH.REV (50-TGTAGACCA
TGTAGTTGAGGTCA)

X-gal Staining
Mouse embryos were isolated at E11.5 to E13.5 and fixed for
30 minutes in 1% Formaldehyde, 0.2% Gluteraldehyde, 0.02%
NP-40 in 1 x PBS, washed 3 times 20 min. each in Wash Solu-
tion (2 mM MgCl2, 0.02% NP40, 1 x PBS). Embryos were pro-
tected from light and incubated overnight at R/T in the Staining
buffer solution (5 mM potassium ferricyanide, 5 mM potassium
ferrocyanide and 1 mg/ml X-gal in Wash Solution). Embryos
were rinsed 3 times, 20 min. each, in 1 x PBS. Clarification was
performed with “Scale” solution as described previously.21
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