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ABSTRACT Resistance-nodulation-division (RND) superfamily efflux systems have been
widely studied for their role in antibiotic resistance, but their native biological func-
tions remain poorly understood. We previously showed that loss of RND-mediated
efflux in Vibrio cholerae resulted in activation of the Cpx two-component regulatory
system, which mediates adaptation to stress resulting from misfolded membrane pro-
teins. Here, we investigated the mechanism linking RND-mediated efflux to the Cpx
response. We performed transposon mutagenesis screening of RND-deficient V. cholerae
to identify Cpx suppressors. Suppressor mutations mapped to genes involved in the
biosynthesis of the catechol siderophore vibriobactin. We subsequently demon-
strated that vibriobactin secretion is impaired in mutants lacking the VexGH RND ef-
flux system and that impaired vibriobactin secretion is responsible for Cpx system
activation, suggesting that VexGH secretes vibriobactin. This conclusion was bol-
stered by results showing that vexGH expression is induced by iron limitation and
that vexH-deficient cells exhibit reduced fitness during growth under iron-limiting
conditions. Our results support a model where VexGH contributes to cellular homeo-
stasis by effluxing vibriobactin. In the absence of vexGH, retained vibriobactin ap-
pears to chelate iron from iron-rich components of the respiratory chain, with the
deferrated proteins functioning to activate the Cpx response. Our collective results
demonstrate that a native function of the V. cholerae VexGH RND efflux system is in
vibriobactin secretion and that vibriobactin efflux is critical for maintenance of cellu-
lar homeostasis.

IMPORTANCE RND efflux systems are ubiquitous Gram-negative transporters that
play critical roles in antimicrobial resistance. In addition to antimicrobial resistance,
RND transporters also affect the expression of diverse phenotypes, including viru-
lence, cell metabolism, and stress responses. The latter observations suggest that
RND transporters fulfill unknown physiological functions in the cell independently of
their role in antimicrobial resistance. Vibrio cholerae is representative of many Gram-
negative bacteria in encoding multiple RND transporters that are redundant in anti-
microbial resistance and affect multiple phenotypes. Here we describe a novel func-
tion of the V. cholerae VexGH RND transporter in vibriobactin secretion. We show
that vibriobactin production in VexGH-deficient cells impacts cell homeostasis, lead-
ing to activation of the Cpx stress response and reduced fitness under iron-limiting
conditions. Our results highlight a native physiological function of an RND trans-
porter and provide insight into the selective forces that maintain what was thought
to be a redundant multidrug transporter.

Vibrio cholerae is a Gram-negative bacterium and the causative agent of the life-
threatening diarrheal disease cholera. V. cholerae is a native inhabitant of aquatic

environments from which humans acquire cholera through the ingestion of V. cholerae-
contaminated food or water (1, 2). Following ingestion, V. cholerae colonizes the small
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intestine, where it produces a variety of virulence factors that result in the production
of a severe secretory diarrhea that is the hallmark of the disease cholera (2).

The ability of V. cholerae to colonize and replicate in the human gastrointestinal (GI)
tract is dependent upon its ability to adapt to its environment. This includes overcom-
ing colonization barriers provided by the presence of toxic antimicrobial compounds
such as bile salts, fatty acids, and products of the innate immune system. Many of these
compounds also serve as environmental cues that activate the expression of
adaptive responses in V. cholerae that facilitate survival and replication in the GI
tract. One component of these adaptive responses is enhancement of antimicrobial
resistance. This is accomplished by a multifactorial response that includes the expres-
sion of active efflux systems, reduced outer membrane permeability, and the expres-
sion of stress response systems that mitigate cellular damage resulting from expo-
sure to toxic molecules (3).

Active efflux systems belonging to the resistance-nodulation-division (RND) super-
family are critical for intrinsic and induced antimicrobial resistance in Gram-negative
bacteria, including V. cholerae (3). The RND efflux systems are ubiquitous tripartite
transporters that exhibit a broad substrate specificity that includes antibiotics, deter-
gents, antimicrobial peptides, and dyes (4). For this reason, RND transporters play a
critical role in the evolution of multiple-antibiotic-resistant bacteria. However, the
native function of the RND efflux systems in most bacteria is poorly understood.
Numerous studies across multiple genera have linked RND transporters to the expres-
sion of diverse phenotypes, suggesting that their function in bacterial biology extends
beyond their well-established role in antimicrobial resistance (5). However, the mech-
anisms by which RND transporters contribute to most of these phenotypes are not
known.

The V. cholerae genome encodes six RND efflux systems. In addition to mediating
resistance to antimicrobial compounds, the V. cholerae RND efflux systems are also
required for virulence gene expression and colonization of the infant mouse (6–8). We
recently showed that two V. cholerae RND multidrug efflux systems (i.e., vexAB and
vexGH) and the Cpx envelope stress response were reciprocally regulated (9). The Cpx
system is a two-component system that regulates adaptive responses to perturbations
that generate misfolded envelope proteins (10). Environmental stimuli that activate the
V. cholerae Cpx response include high salinity, iron stress, proteins containing aberrant
disulfide bonds, and loss of RND-mediated efflux (9–11). We found that mutation of
vexAB and vexGH resulted in constitutive activation of the Cpx system and that
activation of the Cpx system resulted in the upregulation of vexAB and vexGH. While the
molecular mechanism involved in the reciprocal regulation of the RND transporters and
the Cpx system is unknown, the genetic linkage between the Cpx response and the
expression of these two broad-spectrum RND transporters indicates that V. cholerae
employs a multifaceted strategy to alleviate extracytoplasmic stress by activating efflux
to remove deleterious molecules from the cell while mitigating cellular damage via
the Cpx response.

In this study, we sought to define the molecular mechanisms linking RND-mediated
efflux to the activation of the V. cholerae Cpx system. To identify genes involved in this
process, we performed a transposon mutagenesis screen to identify suppressors of the
Cpx system in a RND-deficient V. cholerae mutant. The results of this screen identified
several suppressors that mapped to genes involved in biosynthesis of the catechol
siderophore vibriobactin. Subsequent analyses showed that vibriobactin secretion was
impaired in RND-deficient V. cholerae and that the inability of the RND mutants to
secrete vibriobactin resulted in activation of the Cpx system. These findings supported
the novel conclusion that the RND efflux systems function in vibriobactin secretion. We
further found that vexGH expression was regulated by iron and that VexGH directly
contributed to vibriobactin secretion, suggesting that a native function of VexGH is to
efflux vibriobactin. The intracellular accumulation of vibriobactin in mutants lacking
vexGH appeared to be directly responsible for the activation of the Cpx system. Further,
this vibriobactin-dependent activation of the Cpx system was dependent on aerobic
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respiration and succinate dehydrogenase; suggesting that retained vibriobactin directly
impairs the function of iron-rich components of the respiratory chain. The inability to
efficiently secrete vibriobactin in RND-deficient cells led to attenuated growth under
iron-limiting conditions. Our collective studies demonstrate a physiological function of
a V. cholerae RND efflux transporter in iron acquisition and the maintenance of cellular
homeostasis.

RESULTS
Identification of Cpx suppressors in RND-negative V. cholerae. We recently

found that mutation of the V. cholerae RND family transporters resulted in constitutive
expression of the Cpx system (9, 10). To elucidate the mechanism behind this pheno-
type, we performed a transposon mutagenesis screen to identify suppressors of the Cpx
system in RND-negative strain JB485. We generated a transposon library in JB485
bearing a chromosomal cpxP-lacZ reporter and screened ~10,000 mutants on lysogeny
broth (LB) 5-bromo-4-chloro-3-indolyl-�-D-galactopyranoside (X-Gal) agar plates for
white colonies; cpxP is positively regulated by CpxR and serves as a reporter of the
activation state of the Cpx system (9–11). The transposon screen resulted in the
identification of six transposon mutants that contained insertions in four independent
genes.

Three of the six transposon insertions mapped to vibriobactin biosynthesis genes
vibF (two hits) and vibD (1 hit). Vibriobactin is a catechol siderophore utilized for iron
acquisition and is the only known siderophore produced by V. cholerae (12). Vibrio-
bactin is produced by a sequential biosynthetic pathway that consists of the products
of the vibABCDEFGH genes (see Fig. S1 in the supplemental material). Strains containing
mutations in any of the vib genes do not produce vibriobactin (13). Thus, the finding
that vibD and vibF insertions suppressed the Cpx system suggested that vibriobactin
contributed to induction of the Cpx system in JB485. Two hits mapped to sdhA, which
encodes a subunit of succinate dehydrogenase (i.e., complex II). Succinate dehydroge-
nase is an iron-sulfur protein that catalyzes the oxidation of succinate to fumarate in the
electron transport chain (ETC) and the Krebs cycle (14). One insertion mapped to epsK,
which encodes a component of the type II secretion system. Interestingly, all four of the
suppressor genes are regulated in response to iron (15, 16), suggesting that RND
efflux-dependent activation of the Cpx system might be linked to vibriobactin produc-
tion and/or iron homeostasis.

Vibriobactin is responsible for Cpx activation in strains lacking RND-mediated
efflux. The above described screening implicated vibriobactin production in the acti-
vation of the Cpx system in JB485. To confirm this, we constructed a clean vibF deletion
in wild-type (WT) strain JB58 and mutant strain JB485. We then introduced the
chromosomal cpxP-lacZ reporter into each of the respective strains before assessing the
activation status of the Cpx system on LB X-Gal agar plates. The results showed that
JB58 and its isogenic ΔvibF mutant produced white colonies on LB X-Gal agar (Fig. 1A),
indicating that the Cpx system was inactive. RND-negative strain JB485 produced blue
colonies on LB X-Gal agar, confirming constitutive Cpx activation as previously reported
(9). In contrast, the JB485ΔvibF mutant produced white colonies on the same agar,
confirming the results of our transposon screening. As a control, we examined the test
strains on LB X-Gal agar containing CuCl2, a documented inducer of the Cpx system
(10). All of the test strains produced blue colonies in the presence of CuCl2, confirming
that the Cpx system was functional in each strain.

We further verified that vibF was responsible for Cpx induction in JB485 by per-
forming vibF complementation studies. We cloned vibF under control of the arabinose-
regulated promoter in pBAD18 and transformed the resulting plasmid (i.e., pBAD18-
vibF) and the empty-vector control into the WT and JB485ΔvibF strains bearing a
chromosomal cpxP-lacZ reporter. We then examined the activation state of the Cpx
system in the presence or absence of arabinose on LB X-Gal plates. The results revealed
that all of the strains produced white colonies in the absence of arabinose (Fig. 1B).
Growth of the strains in the presence of arabinose demonstrated that ectopic vibF
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expression in JB485ΔvibF activated cpxP-lacZ expression, as indicated by the production
of blue colonies. This confirmed that vibF is required for Cpx activation in the absence
of RND-mediated efflux. These results supported the conclusion that induction of the
Cpx system in cells lacking RND-mediated efflux is dependent on vibriobactin produc-
tion.

Vibriobactin biosynthesis is negatively regulated by the master iron regulator Fur.
On the basis of this fact, we hypothesized that if induction of the Cpx system in JB485
is a result of vibriobactin production, then addition of iron to the growth medium
would repress vibriobactin production and suppress the Cpx system. To test this, we
cultured the WT, JB485, and isogenic ΔvibF mutant strains bearing the cpxP-lacZ
reporter on LB X-Gal plates containing 500 �M FeSO4. The results revealed that FeSO4

suppressed cpxP-lacZ expression in JB485, confirming our hypothesis (Fig. 1A). Manga-
nese can also complex with Fur to repress Fur-regulated genes (17, 18). We therefore
repeated these experiments with LB X-Gal plates containing 500 �M MnCl2. The results
revealed that manganese also suppressed the Cpx system in JB485 (Fig. 1A). Together,
these results were consistent with the notion that vibriobactin production was respon-
sible for activation of the Cpx system in V. cholerae cells that lacked RND-mediated
efflux.

JB485 culture supernatants contain reduced amounts of siderophore. The above-
described results indicated that vibriobactin production is required for activation of the
Cpx system in RND efflux-deficient V. cholerae. Vibriobactin is produced in the cyto-
plasm before being secreted by an unknown mechanism. On the basis of this, we
hypothesized that the V. cholerae RND efflux systems functioned in vibriobactin secre-
tion and that activation of the Cpx system in JB485 might have resulted from intracel-
lular vibriobactin accumulation due to the absence of RND-mediated efflux. If this was
true, we posited that JB485 culture supernatants should contain reduced amounts of
iron-chelating compounds than the WT. To test this, we quantified siderophore secre-
tion in the WT and JB485 strains by using the chrome azurol S (CAS) assay. We used a
vibC mutant as a negative control in these studies because VibC catalyzes the first step
in vibriobactin biosynthesis (see Fig. S1). This circumvents potential problems associ-
ated with downstream vib mutations (e.g., vibF) that may accumulate biosynthetic
intermediates that could influence the CAS assay. The CAS assay is based on the
formation of a chromogenic complex made up of CAS (20), hexadecyltrimethylammo-
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FIG 1 Expression of the Cpx system in RND efflux-deficient V. cholerae is dependent upon vibriobactin
production. Strains harboring a chromosomal cpxP-lacZ reporter were inoculated onto the surfaces of LB
X-Gal agar plates and incubated overnight at 37°C before being photographed. (A) Effects of FeSO4,
CuCl2, and MnCl2 on cpxP-lacZ expression in the V. cholerae strains indicated. All three compounds were
added to the LB agar at a final concentration of 500 �M. (B) Effect of ectopic vibF expression on cpxP-lacZ
expression in the WT and JB485ΔvibF strains. The WT and JB485ΔvibF strains harboring the expression
plasmids indicated following growth on LB X-Gal agar plates containing 0 or 0.01% arabinose.
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nium bromide, and Fe3� that can be quantified spectrophotometrically. The presence
of strong iron chelators like siderophores titrates Fe3� from the dye complex, resulting
in decreased absorbance at 630 nm. Thus, the absorbance is inversely proportional to
the amount of iron-chelating agents present in the culture supernatant (20).

We cultured the WT, JB485, and ΔvibC mutant strains in minimal T medium without
iron supplementation to equivalent optical densities (ODs), growth conditions demon-
strated to induce V. cholerae siderophore production (21). Cell-free supernatants from
the resulting cultures were then assessed with the CAS assay. The results showed a
higher absorbance ratio in JB485 than in the WT, indicating that the JB485 supernatants
contained lower amounts of siderophore than the WT supernatant (Fig. 2A). In contrast,
a vibC mutant showed the greatest increase in the absorbance ratio, which was
consistent with its defect in vibriobactin production. Analysis of whole-cell lysates
showed that there was no difference in total siderophore production between the WT
and JB485, while siderophore production in the ΔvibC mutant was decreased (Fig. 2B).
Together, these data demonstrated that siderophore secretion was impaired in JB485
and suggested that the RND transporters functioned in siderophore secretion. How-
ever, the fact that the vibC supernatants contained lower amounts of siderophore than
the RND-deficient cells suggests that other mechanisms must also contribute to
siderophore export.

Vibriobactin secretion is impaired in JB485. The CAS assay is nonspecific and
does not discriminate between specific siderophores (i.e., vibriobactin) and other iron-
binding compounds. We therefore performed growth stimulation cross-feeding assays
to determine if the secreted iron-binding compound observed as described above was
vibriobactin (22, 23). The cross-feeding assays assess the ability of a vibriobactin-
producing test strain to stimulate the growth of a vibriobactin-negative indicator strain
in iron-limiting agar. The indicator strain in our assays was JB58 ΔvibC. The vibC mutant
cannot produce vibriobactin but retains the ability to use exogenously supplied
vibriobactin (23).

The results of the cross-feeding assays showed that the WT strongly stimulated the
growth of the indicator strain, whereas an isogenic ΔvibC mutant failed to stimulate
growth (Fig. 3). This indicated that transcomplementation of the ΔvibC mutant indicator
strain was dependent upon vibriobactin production by the test strains. JB485 showed
a lesser ability to stimulate the growth of the indicator strain than the WT (Fig. 3). This
finding was consistent with the CAS assay and further supported the conclusion that
JB485 was impaired in vibriobactin secretion. Deletion of vibC in JB485 completely
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FIG 2 Culture supernatants from RND efflux-deficient V. cholerae contain reduced siderophore concen-
trations. The CAS assay was used to quantify siderophore production in cell-free culture supernatants (A)
and whole-cell lysates (B) of the strains indicated following growth to saturation in T medium without
iron supplementation. The data are presented as the average � the standard deviation of three
independent experiments. *, P � 0.05.
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blocked its ability to stimulate the growth of the ΔvibC mutant indicator strain. This
suggested that the growth-stimulatory compound secreted by JB485 was vibriobactin.
These results, combined with the CAS assay results, strongly suggest that vibriobactin
secretion is impaired in JB485 and support the novel conclusion the V. cholerae RND
transporters function in vibriobactin secretion.

The expression of the vexGH RND efflux system has been reported to be under the
influence of both the Cpx system and Fur (9, 24). We found that activation of the Cpx
system resulted in vexGH upregulation via CpxR, while vexGH mutation resulted in
activation of the Cpx system (9). A separate study showed that the vexGH promoter
contains a Fur box and is regulated in response to iron availability (11). On the basis of
these findings and our above-described data, we hypothesized that VexGH is directly
involved in vibriobactin secretion. To test this, we examined a vexH mutant in the
cross-feeding bioassay. The results showed that the ΔvexH mutant phenocopied JB485
for growth stimulation of the indicator strain, confirming that VexGH functions in
vibriobactin secretion (Fig. 3).

There was a large difference between the levels of growth stimulation observed
in the RND mutant and the ΔvibC mutant (Fig. 3). This indicated that vibriobactin
can be secreted by additional mechanisms besides RND-mediated efflux. To determine
if other active efflux systems contribute to vibriobactin export, we examined a tolC
mutant. TolC serves as the outer membrane pore protein for many different transport
systems, including the RND family, major facilitator family, and ATP binding cassette
transporters (25). The expression of tolC is also influenced by CpxR (9, 11). The ΔtolC
mutant was slightly less able to stimulate indicator strain growth than the RND mutant
(Fig. 3). This suggests that other active transport systems likely contribute to vibrio-
bactin secretion. However, the fact that tolC deletion did not completely abrogate
growth stimulation indicates that vibriobactin can escape from the cell in the absence
of TolC-dependent active efflux. It is unknown how this occurs, but it is possible that
vibriobactin could escape through porin channels. The fact that the ompT porin is
regulated by Fur supports this idea (26). Taken together, the cross-feeding results
suggested that the RND efflux systems, and VexGH in particular, function in vibriobactin
secretion.

vexGH regulation by iron is independent of the Cpx system. The above-
described results indicated that the RND transporters are involved in iron acquisition.
The expression of many RND efflux systems are regulated in response to environmental
cues and/or by their respective efflux substrates (9, 27). Thus, we hypothesized that if
any of the RND transporters are involved in iron acquisition then their expression would
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be regulated in response to iron. We tested this by assaying for iron-dependent
changes in the expression of each of the six V. cholerae RND systems following growth
in LB broth plus or minus the iron-chelating chemical dipyridyl. The results revealed
that dipyridyl increased vexGH expression (Fig. 4) but did not significantly affect
the expression of the other five RND systems (data not shown). The addition of an
equimolar amount of FeSO4 to the dipyridyl cultures returned vexGH expression to a
level that was equivalent to that of cells grown in the absence of dipyridyl (Fig. 4),
confirming that increased vexGH expression was a result of iron limitation and not due
to a nonspecific effect of dipyridyl. These results indicated that vexGH is regulated in
response to iron, a conclusion that is consistent with a report linking vexGH to the Fur
regulon (24).

We previously reported that vexGH was positively regulated by the Cpx system (9),
while others reported that the Cpx system was activated in response to iron limitation
during growth in the presence of dipyridyl on LB agar lacking NaCl (11). This suggested
the possibility that the Cpx system was responsible for vexGH activation under the
iron-limiting conditions described above. To address this possibility, we repeated the
above-described experiments with a ΔcpxR mutant. The ΔcpxR mutant mirrored the WT
results (Fig. 4). The fact that vexGH was induced to similar levels under iron-limited
conditions in both the WT and the ΔcpxR mutant indicated that the iron-dependent
regulation of vexGH transcription occurred by a cpxR-independent mechanism. We
presume that the iron-dependent regulation occurred by a Fur-dependent process as
previously reported (24), but additional work is required to confirm this.

RND-deficient mutants are not iron stressed. We hypothesized that the defect
in vibriobactin secretion in JB485 may result in a reduced ability to obtain iron. In
V. cholerae, as in many bacteria, the control of iron homeostasis is mediated by the
ferric uptake regulator (Fur), which regulates the expression of iron acquisition genes
in response to iron availability (24, 28, 29). Fur functions primarily as a repressor. Under
iron-replete conditions Fur binds Fe2�, which enables binding to conserved DNA
sequences (i.e., Fur box) in the promoters of target genes to repress their expression.
Under iron-depleted conditions, the Fe2� binding equilibrium is shifted and iron is
released from Fur, resulting in the derepression of target genes (30, 31). On the basis
of this, we postulated that if the RND-negative mutant was iron stressed, then the
expression of Fur-regulated genes would increase relative to that in the WT. We
therefore compared the expression levels of four Fur-regulated genes (irgA, hutA, tonB,
and vibF) in the WT and JB485 strains (24, 28). The results revealed no significant
difference in irgA, tonB1, or vibF expression between the WT and JB485 (Fig. 5A). In
contrast, hutA expression was higher in JB485 than in the WT. We previously showed
that hutA was one of the most highly upregulated genes in the V. cholerae Cpx regulon
(9); suggesting that hutA expression, like vexGH expression, is regulated by both Fur and
the Cpx system. It is noteworthy that CpxR has also been linked to the expression of
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some iron acquisition genes in V. cholerae (11). To determine if increased hutA expres-
sion in JB485 was due to an iron acquisition defect or due to the Cpx system, we
compared hutA expression in the WT, a ΔcpxR mutant, JB485, and JB485ΔcpxR during
growth in LB broth. The results showed that deletion of cpxR in the WT did not affect
basal-level hutA expression but that cpxR deletion in JB485 reduced hutA expression to
WT levels (Fig. 5B). This confirmed that the increased hutA expression in JB485 was due
to CpxR and not due to an iron acquisition defect. From these results, we concluded
that loss of RND-mediated efflux did not result in an iron acquisition defect under the
conditions tested.

The above-described conclusion was further validated by comparing the growth of
the WT, ΔvibF mutant, JB485, and JB485ΔvibF strains in iron-limited T medium. The
results revealed that the WT and the ΔvibF mutant exhibited equivalent growth in
iron-limited T medium (Fig. 5C). Since vibF is essential for vibriobactin production, these
results demonstrate that vibriobactin is dispensable for V. cholerae growth in iron-
limited T medium. In contrast JB485 exhibited impaired growth in iron-limited T
medium, whereas an isogenic JB485ΔvibF mutant exhibited WT growth kinetics
(Fig. 5C); suggesting that the inability to efflux vibriobactin was deleterious to growth
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indicated bearing a hutA-lacZ transcriptional reporter were cultured as described for panel A. *, P � 0.05 relative to the WT.
MU, Miller units. (C) RND-deficient V. cholerae has impaired fitness in iron-depleted medium. Overnight T medium cultures
of the strains indicated were diluted 1:100 in fresh T medium without (C) or with (D) FeSO4 supplementation and cultured
at 37°C with shaking in a microtiter plate reader. Cell growth was recorded every 30 min as the OD600. The data are
presented as the average � the standard error of the mean of three independent experiments.

Kunkle et al. ®

May/June 2017 Volume 8 Issue 3 e00126-17 mbio.asm.org 8

http://mbio.asm.org


under iron-limiting conditions. Control experiments in iron-sufficient T medium con-
firmed that JB485 did not exhibit a nonspecific growth defect in T medium (Fig. 5D).
Collectively, these results suggested that RND-mediated efflux is dispensable for
growth under iron-sufficient conditions but enhances fitness during growth under iron-
limiting conditions. The decreased fitness of the RND-negative mutant under iron-
limiting conditions was likely due to the combined effects of increased vibriobactin
production and a defect in vibriobactin efflux.

Oxidative stress activates the Cpx response in V. cholerae. Our collective data
suggest that an inability to secrete vibriobactin results in activation of the Cpx system.
However, the mechanism by which retained vibriobactin activated the Cpx system was
unclear. The fact that we identified sdhA as a Cpx suppressor in JB485 suggested that
aerobic respiration is required to generate the Cpx-activating signal. SdhA is part of
complex II (i.e., succinate dehydrogenase) of the ETC (14, 32). Reactive oxygen species
(ROS) are produced by the ETC as a byproduct of aerobic respiration. ROS can oxidize
proteins and result in the formation of aberrant disulfide bonds and misfolded proteins,
which can serve as activating signals for the Cpx system (10). If aerobic respiration is
required for activation of the Cpx system in JB485, then growth under anaerobic
conditions should suppress Cpx expression in JB485. We tested this by culturing JB485
cpxP-lacZ on LB X-Gal agar under anaerobic conditions. The results confirmed our
hypothesis and showed that anaerobic growth completely suppressed the cpxP-lacZ
reporter in JB485 (Fig. 6).

We next tested if ROS alone could induce the Cpx response. This was done by
culturing the cpxP-lacZ reporter strains on agar plates containing paraquat. Paraquat is
an oxidative-stress-inducing agent that catalyzes superoxide formation (33). Growth on
paraquat activated the Cpx system in the WT, ΔvibF mutant, JB485, and JB485ΔvibF
strains under aerobic conditions but not under anaerobic growth conditions (Fig. 6).
These findings confirmed that oxidative stress generated by paraquat was sufficient to
activate the V. cholerae Cpx system. We performed similar experiments with hydrogen
peroxide. However, hydrogen peroxide did not activate the Cpx system, which was
consistent with a previous report (11). These divergent results may stem from the fact
that paraquat was reported to catalyze superoxide production in V. cholerae, whereas
hydrogen peroxide abrogated superoxide production (34). From these results, we
concluded that ROS can activate the Cpx response in V. cholerae.

The fact that Cpx suppressors in JB485 mapped to respiratory complex II suggested
that complex II may be directly responsible for generating the Cpx-activating signal. We
therefore tested if chemical inhibition of complex II in the WT or JB485 affects Cpx
activation. To do this, we inoculated the WT, ΔvibF mutant, JB485, and JB485ΔvibF
cpxP-lacZ reporter strains onto LB X-Gal agar containing thenoyltrifluoroacetone
(TTFA). TTFA binds to the quinone biding site on complex II, preventing ubiquinone
binding and thus electron transport (35). Growth of the WT and the ΔvibF mutant in the

vibF

TTFA +O2

WT

JB485

JB485 vibF

-O2

Paraquot
+O2 -O2

LB

FIG 6 ROS activate the V. cholerae Cpx system. The V. cholerae strains indicated bearing a chromosomal
cpxP-lacZ reporter were inoculated onto the surfaces of LB X-Gal agar plates or plates containing the
complex II inhibitor TTFA at 2.5 �M or the superoxide-producing drug paraquat at 500 �M. The plates
were incubated overnight at 37°C in the presence or absence of oxygen before being photographed.
Anaerobic conditions were achieved with a BD GasPak EZ Pouch System.
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presence of TTFA did not affect the activation state of the Cpx system (Fig. 6),
suggesting that inhibition of complex II activity was not sufficient to activate the Cpx
system in the WT or to suppress Cpx activation in JB485. In contrast, TTFA activated the
Cpx system in a vibF-independent manner in JB485. This was evidenced by the fact that
JB485 produced dark blue colonies and JB485ΔvibF produced diffuse light blue colo-
nies on the TTFA plates (Fig. 6). We cannot explain the RND efflux-dependent effects of
TTFA on the Cpx system. It is possible that TTFA is a substrate for the RND transporters.
This would result in increased TTFA uptake in JB485, which could serve to activate the
Cpx system through an ROS-specific pathway, as electrons are unable to be efficiently
passed from complex II. Alternatively, the absence of RND-mediated efflux may result
in pleiotropic effects on the Cpx system in JB485 that are compounded by TTFA.

DISCUSSION

In this report, we have expanded on the function of the V. cholerae RND efflux
systems by demonstrating that the VexGH RND transporter contributes to vibriobactin
export. As discussed below, our results provide the first evidence to link RND-mediated
efflux to iron acquisition and the maintenance of cellular homeostasis in V. cholerae and
provide insight into the selective pressures for the maintenance of what was previously
thought to be a redundant RND transporter.

Our results demonstrate that the VexGH RND efflux system functions in vibriobactin
export. This conclusion was supported by several lines of evidence, including the fact
that there were reduced amounts of vibriobactin present in culture supernatants of
mutants lacking vexH (Fig. 2) and that vibriobactin export was impaired in strains
lacking RND-mediated transport (Fig. 3). Iron is a cofactor for many biological processes
and is therefore an essential nutrient for nearly all life forms (36). Vibriobactin is
produced by V. cholerae as a mechanism to acquire environmental iron (12). Vibrio-
bactin is synthesized in the cytoplasm before being secreted. In many Gram-negative
bacteria, siderophore secretion appears to occur by a two-step process where the
siderophore is first translocated into the periplasm before being secreted into the
external environment. Once outside the cell, siderophores bind to ferric iron before
being taken back up into the cell via specific transporters, delivering the iron payload
to the cytoplasm for use in metabolism. Although the processes of vibriobactin
biosynthesis and uptake are well understood (37, 38), the mechanism by which
vibriobactin is secreted into the environment is unknown. Our results strongly sug-
gest that VexGH contributes to this process.

The finding that a vexGH mutant phenocopied an RND null mutant for vibriobactin
secretion (Fig. 3) suggested that the VexGH RND system may be the primary RND
transporter involved in vibriobactin secretion. This conclusion is bolstered by the
finding that vexGH is coregulated with the vibriobactin biosynthetic genes in response
to iron (24). However, we cannot completely exclude the possibility that other RND
transporters contribute to vibriobactin secretion. Other transporters may have been
missed because of the sensitivity of the assay. It is also possible that the mutation of
individual RND transporters effects increased expression of redundant transporters,
which could mask the phenotype of specific RND mutants in vibriobactin export. In
addition to being regulated by Fur, vexGH is also positively regulated by the Cpx system
in response to cell envelope perturbations (9, 11). This suggests that the function of
VexGH extends beyond vibriobactin secretion to protecting the cell from deleterious
effects of toxic environmental compounds. The latter function is consistent with
previous studies showing that VexGH is a multidrug efflux system that provides
resistance to bile acids, nonionic detergents, ampicillin, and novobiocin (8).

All six V. cholerae RND transporters were found to be important for virulence factor
production (7). The expression of vexAB was upregulated in human- and animal-shed
V. cholerae, while that of vexGH and vexIJK was induced in vivo in human volunteers (7,
39, 40). These collective studies highlight the importance of the RND transporters in
pathogenesis, but the contribution of each individual system to pathogenesis was
unclear. We previously showed that four of the V. cholerae RND transporters had
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overlapping substrate specificity for bile, an important barrier to colonization (7, 8).
VexB, VexD, VexH, and VexK functioned in bile salt resistance, with VexB and VexD
being major contributors relative to VexH and VexK, which provided modest but
equivalent contributions to bile salt resistance (8). Interestingly, while the antimicrobial
susceptibility profile of mutants lacking the VexBDH or VexBDK efflux pumps were
similar, the former strain was nearly 4 log units more attenuated during single-strain
colonization of the infant mouse intestine than the latter strain (8). This suggested that
VexH contributed much more to intestinal colonization than VexK. The mechanism
behind this is unclear, but on the basis of our results showing that VexG functions in
vibriobactin secretion and that vibriobactin retention is detrimental to growth under
iron-limited conditions, we suggest that the inability of the vexH mutant to secrete
vibriobactin likely contributed to its in vivo attenuation. It is also possible that the
inability of the vexH mutant to secrete vibriobactin attenuated colonization because of
impaired iron acquisition. The fact that vibriobactin-negative mutants are not attenu-
ated for infant mouse colonization argues against this possibility (41).

We previously showed that RND-mediated efflux maintained the V. cholerae Cpx
system in a suppressed state during growth under standard laboratory conditions (9).
Although the mechanism linking RND efflux to the Cpx system was unknown, we and
others proposed that Cpx activation in mutants with impaired RND transport likely
resulted from the intracellular accumulation of toxic metabolites that were normally
removed from the cell by the RND transporters (9, 11). Our results here demonstrate
that the RND-dependent toxic metabolite was vibriobactin. The inability of the RND
mutant cells to secrete vibriobactin was detrimental, as evidenced by the activation of
the Cpx system and the vibriobactin-dependent decreased fitness of an RND-deficient
mutant during growth under iron-limited conditions. V. cholerae is likely to encounter
iron limitation in both the host and aquatic ecosystems, which makes these results
particularly relevant to its biology (42–44).

V. cholerae, like many Gram-negative bacteria, encodes multiple RND efflux systems
with overlapping substrate specificities. Yet the selective pressures maintaining these
redundant systems in the V. cholerae genome are unclear. The fact that vibriobactin
retention was detrimental to the cell could provide the selective pressure for the
maintenance of vexGH in members of the family Vibrionaceae. The detrimental effects
of vibriobactin retention could also explain our finding that RND-independent mech-
anisms also contributed to vibriobactin export, including active transporters and porins.
It is interesting to speculate that the effects of siderophore retention defined here may
apply to other bacteria where efflux has been linked to Cpx activation and siderophore
export (45–49). The conservation of similar findings between distantly related genera
suggests that our results extend beyond V. cholerae.

Although we were unable to identify the precise mechanism by which vibriobactin
activated the Cpx system in the vexGH mutant, the fact that complex II mutations and
anaerobic growth suppressed the Cpx system suggested that the activating signal likely
involved a toxic byproduct of aerobic respiration, most likely ROS, which can attack
protein disulfide bonds, resulting in aberrant bond formation, a known Cpx-inducing
signal. Our results showing that the Cpx system was induced upon exposure to
oxidizing agents (e.g., CuCl2 and paraquat) support this idea. On the basis of these
observations, we propose a model (Fig. 7) whereby, in the absence of RND-mediated
efflux, iron-free vibriobactin accumulates within the cell and chelates iron from the
iron-rich components of the ETC. The removal of iron from ETC components then
generates the Cpx-inducing cue in one of two ways. The chelation of iron from the Fe-S
centers in complex II (or other ETC components) could directly result in the formation
of abnormal disulfide bonds in the deferrated proteins. Alternatively, the chelation of
iron from ETC components could result in increased ROS production, which could then
catalyze the formation of nonnative disulfide bonds in periplasmic proteins (50).
We note that these two scenarios are not mutually exclusive and it is possible that
combinations of both signals may contribute to Cpx activation. This model also explains
the observation that iron addition suppressed the Cpx system in RND-deficient cells.
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Iron addition could suppress the Cpx response by several mechanisms, including
repression of vibriobactin production (via Fur), inhibition of iron chelation from ETC
components, and/or replacement of iron in deferrated ETC components. This model is
consistent with recent reports showing that dipyridyl activated the Cpx response in
V. cholerae (11) and can be extended to other organisms where efflux has been
associated with activation of the Cpx response and/or the induction of stress responses
(45–49, 51).

MATERIALS AND METHODS
Bacterial strains and culture conditions. The bacterial strains used in this study are listed in Table 1.

E. coli strain EC100Dpir� was used for cloning, and E. coli strain SM10�pir was used to conjugate plasmids
into V. cholerae. V. cholerae O1 El Tor strain N16961 ΔlacZ was used as the WT control in all experiments.
Bacteria were routinely grown in LB broth or on LB agar at 37°C. Modified T medium was prepared as
previously described (21). Anaerobic conditions were achieved with the BD GasPak EZ Pouch System.
Antibiotics were used at the following concentrations: streptomycin, 100 �g/ml; carbenicillin, 100 �g/ml;
kanamycin, 50 �g/ml.

Plasmid and mutant construction. The plasmids used in this study are listed in Table 1; for the
oligonucleotides used in this study, see Table S1. Transcriptional reporters for irgA (VC0475), vibF
(VC2209) and hutA (VC0576) were constructed by cloning the promoter region of each respective gene
in front of the lacZ gene in pTL61T. Briefly, N16961 genomic DNA was used as a template for PCR with
primers P-VC0475 and F-XhoI/P-VC0475-R-BamHI. The resulting amplicon was digested with the XhoI and
BamHI restriction endonucleases before being ligated into similarly digested pTL61T to generate pDK4.
pDK6 (vibF-lacZ) and pDK7 (hutA-lacZ) were constructed similarly using the promoter specific PCR
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FIG 7 Putative model of Cpx system activation in a vexGH mutant. (A) In WT cells, vibriobactin is
produced and exported into the periplasmic space by an unknown transporter. Periplasmic vibriobactin
is then secreted into the external environment by the VexGH-TolC RND efflux system, and the CpxRA
system is inactive. (B) In the absence of vexGH, iron-free vibriobactin accumulates in the periplasmic
space and chelates iron from the iron-rich, membrane-bound components of the respiratory chain.
Chelation of iron from the respiratory chain components leads to altered protein structures and/or
increased ROS production, both of which can activate the Cpx system. Unk, unknown vibriobactin
transporter; II, complex II; III, complex III; IV, complex IV; C, cytochrome C; P, phosphate.
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primers listed in Table S1. The vibF (VC2209) deletion construct was constructed as follows. Primers
vibF-F1 and vibF-R2 and primers vibF-F2 and vibF-R1 were used in separate PCRs with N16961 genomic
DNA. The resulting ~1.5-kb amplicons were collected and used as the template for second-round PCR
amplification with the flanking vibF-F1 and vibF-R1 PCR primers. The resulting ~3-kb amplicon was then
digested with the SpeI and SmaI restriction endonucleases before being ligated into similarly digested
pWM91 to generate pWM91-ΔvibF. The vibC (VC0773) deletion construct was constructed in a similar
manner with primers vibC-F1 and vibC-R2 and primers vibC-F2 and vibC-R1. Unmarked in-frame deletion
of vibC and vibF in each respective strain was constructed by allelic exchange with pWM91-ΔvibC and
pWM91-ΔvibF as previously described (7). The vibF gene was cloned into pBAD18 in a two-step cloning
procedure. N16961 genomic DNA was used as a PCR template for two concurrent PCRs with primers
VC2209-pBAD-F1 and VC2209-pBAD-R2 and primers VC2209-pBAD-F2 and VC2209-pBAD-R1 to produce
a 2,957-bp fragment and a 4,366-bp fragment, respectively. The 2,957-bp amplicon was digested with
the EcoRI and KpnI restriction endonucleases before being ligated into the similarly digested pBAD18
vector. The resulting plasmid was then digested with the KpnI and SalI restriction endonucleases and
ligated with the similarly digested 4,366-bp replicon to produce pBAD18-vibF.

Identification of Cpx suppressors. A mariner transposon library was generated in JB485::cpxP-lacZ
with pNJ17 as previously described (52). The transposon library was then plated onto LB–X-Gal plates and
incubated at 37°C. The following day, white colonies were selected and the transposon insertion sites in
the white colonies were identified by DNA sequencing of arbitrary PCR products as previously described
(52).

Growth analysis. Growth curves were generated in microtiter plates as follows. The strains indicated
were grown overnight in T medium with FeSO4 supplementation. The overnight cultures were then
washed once in 1 volume of phosphate-buffered saline (PBS) before being diluted 1:100 in fresh T
medium plus or minus FeSO4. Two-hundred-microliter volumes of the diluted cultures were then placed
in triplicate wells of a 96-well microtiter plate. The microtiter plates were then incubated at 37°C with
constant shaking, and the OD at 600 nm (OD600) was measured every 30 min. The OD at each time point
was averaged and plotted against time to generate the growth curves reported.

Analysis of Cpx expression on agar plates. A chromosomal cpxP-lacZ reporter was used to assess
the activation state of the Cpx system as previously described (9). Briefly, overnight LB broth cultures of
the test strains were inoculated into fresh LB broth and incubated with shaking for 1 h, and then the
cultures were normalized to an OD600 of 0.1. The cells were then collected by centrifugation and
resuspended in 1 volume of PBS. The cultures were then diluted 1:1,000 in PBS, and 2 �l of the diluted
culture was spotted onto the surfaces of LB agar plates containing 160 �g/ml X-Gal and other additives
as indicated. The inoculated plates were incubated overnight at 37°C before being photographed.

TABLE 1 Strains and plasmids used in this study

Strain or plasmid Genotype or description Source

E. coli
EC100Dpir� F� mcrA Δ(mrr-hsdRMS-mcrBC) �80dlacZΔM15 ΔlacX74 recA1 endA1

araD139 Δ(ara, leu)7697 galU galK �� rpsL (Strr) nupG pir�

Epicenter

SM10�pir thi-1 thr leu tonA lacY supE recA::RP4-2-4-Tc::Mu Kmr (� pirR6K) 53

V. cholerae
JB58 O1 El Tor strain N16961 ΔlacZ Smr Lab collection
JB485 JB58 ΔvexB ΔvexD ΔvexF ΔvexH ΔvexK ΔvexM 7
XBV247 JB58 ΔvibF This work
XBV251 JB485 ΔvibF This work
XBV310 JB58 ΔvibC This work
XBV307 JB485 ΔvibC This work
JB150 JB58 ΔtolC 54
JB116 JB58 ΔvexH 7
LSΔR JB58 ΔcpxR 10
DK56 JB58ΔvibF cpxP-lacZ This work
DK53 JB485ΔvibF cpxP-lacZ This work
DT1460 JB485cpxP-lacZ 9
DT1458 JB58cpxP-lacZ 9

Plasmids
pTL61T lacZ transcriptional reporter, Ampr 55
pXB229 pTL61T containing vexGH promoter 9
pDK4 pTL61T containing irgA promoter This work
pDK6 pTL61T containing the vibF promoter This work
pDK7 pTL61T containing hutA promoter This work
pWM91 Allelic exchange vector, Ampr 56
pWM91-ΔvibF Used for deletion of vibF This work
pWM91-ΔvibC Used for deletion of vibC This work
pBAD18 Arabinose-inducible expression vector, Ampr 57
pBAD18-vibF vibF expression vector This work
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Transcriptional reporter assays. V. cholerae strains containing the reporter plasmids indicated were
collected from the surfaces of LB agar plates and resuspended in LB broth to an OD600 of 0.6. The cultures
were then used to inoculate 5 ml of fresh LB broth (1:100), which was then incubated at 37°C with
shaking for 3 h, and then culture aliquots were collected in triplicate and the �-galactosidase activity was
quantified (time zero). The remaining cultures were then treated by addition of the carrier and dipyridyl
(130 �M), FeSO4 (130 �M), or both before being incubated at 37°C with shaking for an additional hour,
and then aliquots were taken in triplicate for the �-galactosidase assay. The experiments were performed
independently at least three times, and �-galactosidase production was calculated and displayed in
Miller units.

CAS assays. CAS assays were performed as previously described (20). Briefly, the test strains were
cultured in T medium without FeSO4 supplementation at 37°C with shaking for 18 h. Cleared culture
supernatants were then generated by centrifugation before triplicate 100-�l aliquots of the supernatant
were collected from each strain. The amount of siderophore in the supernatants was then assessed by
mixing 100 �l of modified CAS assay solution with 100 �l of culture supernatant in a 96-well microtiter
plate. The solutions were then allowed to equilibrate for 3 h, and then the absorbance at 630 nm was
measured with a Biotek Synergy 4 microplate reader. Total siderophore production was assessed by
using 18 h cultures of the strains indicated that had been subjected to five freeze-thaw cycles. The
resulting cell lysate were then used in the CAS assay as described above.

Cross-feeding growth stimulation assays. Cross-feeding growth stimulation bioassays were per-
formed as previously described (22). Briefly, the growth indicator plates were prepared by inoculating
10 �l of an overnight saturated culture of the V. cholerae ΔvibC mutant indicator strain into 20 ml of
~50°C LB agar containing 270 �M dipyridyl. The inoculated agar was then poured into 100-mm petri
plates and allowed to solidify. The use of 270 �M dipyridyl in the LB agar was empirically determined to
inhibit the growth of the ΔvibC mutant indicator strain. The solidified agar was then inoculated with the
test strains by spotting 5-�l aliquots of fresh overnight broth cultures in triplicate onto the surfaces of
the indicator plates. After drying, the plates were incubated at 37°C for 24 h, and then the diameter of
the zone of growth of the ΔvibC mutant indicator strain was measured.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00126-17.
FIG S1, EPS file, 0.2 MB.
TABLE S1, DOCX file, 0.01 MB.
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