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Background
In recent years, scATAC-seq provides the opportunity to accurately and sensitively iden-
tify and characterize the cells in complex tissues. scATAC technologies enable profil-
ing the epigenetic landscapes of thousands of individual cells in a relatively easy and 

Abstract 

Background:  The technologies advances of single-cell Assay for Transposase Accessi-
ble Chromatin using sequencing (scATAC-seq) allowed to generate thousands of single 
cells in a relatively easy and economic manner and it is rapidly advancing the under-
standing of the cellular composition of complex organisms and tissues. The data struc-
ture and feature in scRNA-seq is similar to that in scATAC-seq, therefore, it’s encouraged 
to identify and classify the cell types in scATAC-seq through traditional supervised 
machine learning methods, which are proved reliable in scRNA-seq datasets.

Results:  In this study, we evaluated the classification performance of 6 well-known 
machine learning methods on scATAC-seq. A total of 4 public scATAC-seq datasets vary 
in tissues, sizes and technologies were applied to the evaluation of the performance 
of the methods. We assessed these methods using a 5-folds cross validation experi-
ment, called intra-dataset experiment, based on recall, precision and the percentage of 
correctly predicted cells. The results show that these methods performed well in some 
specific types of the cell in a specific scATAC-seq dataset, while the overall performance 
is not as well as that in scRNA-seq analysis. In addition, we evaluated the classification 
performance of these methods by training and predicting in different datasets gener-
ated from same sample, called inter-datasets experiments, which may help us to assess 
the performance of these methods in more realistic scenarios.

Conclusions:  Both in intra-dataset and in inter-dataset experiment, SVM and NMC are 
overall outperformed others across all 4 datasets. Thus, we recommend researchers to 
use SVM and NMC as the underlying classifier when developing an automatic cell-type 
classification method for scATAC-seq.
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cost-effective way, resulting in the development of computational methods to analyze 
and interpret data. Due to the similarity of data structure and feature selection between 
scRNA-seq and scATAC-seq data, the procedures for analyzing the composition of 
cells in complex tissues from scRNA-seq [1] can also apply in scATAC-seq dataset. To 
be more specific, the analysis of a scATAC-seq dataset typically start by unsupervised 
clustering of cells based on the peaks feature in chromatin accessibility profile, and then 
followed by the clustered group annotation by assigning a label to each cell based on spe-
cific markers. These steps are convinced and valuable in identifying and characterizing 
various cell types by extensive results carried out before, which has resulted in the atlas 
of chromatin accessibility in mouse [2]. However, the traditional annotation approach 
mentioned above is still deficient with wasting a great large amount of time on litera-
ture review and manual inspection of cluster-specific marker. With the huge increase of 
cell population size and sample size, such labor-intensive shortage on cell-types anno-
tation become more fatal than before, preventing accurate, sensitive and efficient cell 
identification.

In order to overcome such challenges in cell-type annotation, a plenty of classifica-
tion methods including support vector machine (SVM) [3, 4], neural network (NN) 
[5, 6], Linear Discriminant Analysis (LDA) [7], random forest (RF) [8–10], k-Nearest 
Neighbors (KNN) [11] and nearest mean classifier (NMC) [11] have been developed as 
underlying algorithm for automatically labeling cells in scRNA-seq datasets. A recent 
result [12] showed that SVM [13] performs best on the cell-type classification in several 
scRNA-seq datasets vary in species, sizes and technologies. Meanwhile, other traditional 
machine learning methods also perform as good as the mainstream tools on some spe-
cific datasets and scenarios. Hence, we anticipate that those machine learning methods 
proved convincing and valuable in scRNA-seq can also perform well in scATAC-seq 
thanks to the similarity in data structure and peak feature selection between scRNA-seq 
and scATAC-seq. By far, there is still no practical guidance for those machine learning 
methods available and lacking studies that comprehensively compare their performance 
on scATAC-seq. Obviously, the assessment result of these machine learning methods 
can both benefit the future developing of tools in this filed and provide significant guid-
ance on the choice of methods for improving its performance and thus prevent unneces-
sary complexity.

Here, we evaluated 6 popular machine learning methods (SVM, KNN, RF, LDA, NMC 
and Decision tree (DT)) to automatically assign cell labels in scATAC-seq datasets. These 
6 machine learning methods were evaluated using 4 public available scATAC-seq data-
sets (Detailed in Table 1) including data of human immune cell (hereafter Corces2016) 
[14], data of human hematopoietic system cell (hereafter Buenrostro2018) [15] and data 
of peripheral blood mononuclear cell from the same healthy donor but prepared in two 
different libraries (hereafter 10 × PBMCs v1 and 10 × PBMCs Next Gem). Based on the 4 
scATAC-seq datasets above, we evaluate the classification performance of these 6 meth-
ods through two steps: (1) intra-dataset experiments in which we applied a fivefold cross 
validation on each dataset and (2) inter-dataset experiments in which we compare the 
prediction ability of each method between 10 × PBMCs v1 and 10 × PBMCs Next Gem 
(Detailed in Fig. 1). Compared to the intra-dataset experiment for testing the classifica-
tion ability of each method on a single dataset, inter-dataset experiment is much more 
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practical and realistic as for each machine learning method, a reference dataset will be 
trained, and then its trained model will be applied to predicte cell types in a different 
unannotated datasets with same cell-type composition. Since there are only a small 
number of labeled scATAC-seq datasets available at this time, we applied 10 × PBMCs 
v1 data and 10 × PBMCs Next Gem data, which are generated in different prepared 
libraries and technologies from the same healthy donor are applied in the inter-dataset 
experiments, to evaluate the performance of each method on precision and efficiency 
identifying the cell types. For intra-dataset experiment, SVM and NMC both showed the 
competence of predicting the cell types in complex issues with satisfactory performance 
than other four machine learning methods. For inter-dataset experiments, SVM overall 
is the best performing one in all these supervised machine learning methods, which is 
consistent with results in scRNA-seq. SVM is also the most potential methods among 
all the supervised machine learning methods mentioned above, which means the SVM-
based development of cell-type classification tools may be more efficient and accurate.

Results
SVM performs best on intra‑dataset experiments across all datasets

We have compared the 6 methods based on their ability to profile and identify the vari-
ous cell types. Generally, SVM performed best among all machine learning methods in 
intra-dataset experiments across most cell types in various datasets (Fig. 2). In contrast, 
KNN no matter with setting 9 or 50 nearest neighbors performed poorly in all datasets 
with only a few cells are correctly characterized.

Corces2016 dataset consisting only four human immune cell types (Blast, LMPP, LSC 
and Monocyte) which make the identification and classification easier than other data-
sets for all the machine learning methods. For Corces2016 dataset, SVM performed best 
in all 4 cell types. SVM as the top performing scATAC-seq data analysis method had 
the F1 score of all cell types surpassed 0.85, followed by RF and LDA with the average 
of F1 obtained 0.75 and 0.79 respectively. However, both KNN with setting 9 nearest 
neighbors (KNN9) and KNN with setting 50 nearest neighbors (KNN50), only got F1 

Table 1  Overview of datasets used in this study

Dataset No. of cells No. of 
populations

Description Protocol Source

Corces2016 575 4 Human immune 
cell

Illumina NextSeq 
500

[14]

Buenrostro2018 2034 10 Human hemat-
opoietic system 
cell

Illumina NextSeq 
500

[15]

10 × PBMCs v1 3917(2927 
labeled)

7 Peripheral blood 
mononuclear cell

10 × Chromium 
Next GEM Single 
Cell ATAC Rea-
gent Kits v1.1

https://​suppo​rt.​
10xge​nomics.​com/​
single-​cell-​atac/​
datas​ets/1.​2.0/​
atac_​pbmc_​5k_​
nextg​em

10 × PBMCs Next 
Gem

4585(3670 
labeled)

7 Peripheral blood 
mononuclear cell

10 × Chromium 
Single Cell ATAC 
Reagent Kits

https://​suppo​rt.​
10xge​nomics.​com/​
single-​cell-​atac/​
datas​ets/1.​2.0/​
atac_​pbmc_​5k_​v1

https://support.10xgenomics.com/single-cell-atac/datasets/1.2.0/atac_pbmc_5k_nextgem
https://support.10xgenomics.com/single-cell-atac/datasets/1.2.0/atac_pbmc_5k_nextgem
https://support.10xgenomics.com/single-cell-atac/datasets/1.2.0/atac_pbmc_5k_nextgem
https://support.10xgenomics.com/single-cell-atac/datasets/1.2.0/atac_pbmc_5k_nextgem
https://support.10xgenomics.com/single-cell-atac/datasets/1.2.0/atac_pbmc_5k_nextgem
https://support.10xgenomics.com/single-cell-atac/datasets/1.2.0/atac_pbmc_5k_nextgem
https://support.10xgenomics.com/single-cell-atac/datasets/1.2.0/atac_pbmc_5k_v1
https://support.10xgenomics.com/single-cell-atac/datasets/1.2.0/atac_pbmc_5k_v1
https://support.10xgenomics.com/single-cell-atac/datasets/1.2.0/atac_pbmc_5k_v1
https://support.10xgenomics.com/single-cell-atac/datasets/1.2.0/atac_pbmc_5k_v1
https://support.10xgenomics.com/single-cell-atac/datasets/1.2.0/atac_pbmc_5k_v1
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about 0.50 in LSC, performed worst across all four cell types (more details in Fig. 2A). 
The performance on other three datasets showed large similarities with the Corces2016, 
but had a little bit difference. SVM still performed best in Buenrostro2018 dataset. 
For 10 × PBMCs v1 dataset, SVM got best performance on 4 cell types including B, 
CD14 + Mono, Memory CD4 + and Naive CD4 + T For 10 × PBMCs Next Gem dataset, 
SVM got the best performance on 5 cell types including B, CD14 + Mono, DC, Memory 

Fig. 1  Schematic overview of single-cell ATAC-seq. In data preprocessing step, raw sequencing data in.fastq 
format for each cell will be aligned first and stored in.bam format. Then we will sort bam files and remove 
duplicate reads in each cell. Finally we will integrate all files together to a merged and sorted bam file. In 
order to construct a cell-bin matrix, we will first call a fix-sized bins (window) list, then based on this peak file 
and bam file to construct a cell-bin matrix stored in dcCMatrix class. Both experiment will output predicted 
cell types for each method. These predicted cell types will be evaluated with ground truth cell types at the 
end in several aspect, including F1 score, confusion matrix, etc
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CD4 + and Naive CD4 + T. Though overall SVM still showed the best performance 
among all the 4 datasets, some methods worked better in specific cell types under differ-
ent datasets. To be more specific, LDA got a better F1 score on MPP in Buenrostro2018. 
NMC got a better F1 score on DC and FCGR3A + Mono, and DT got a better F1 score 
on CD8 + T, DC and FCGR3A + Mono in 10 × PBMCs v1. In 10 × PBMCs Next Gem, 
NMC performed better on CD8 + T and FCGR3A + Mono, which may be caused by the 
different underlying biology feature and population. Unfortunately, KNN9 and KNN50 
still didn’t competent enough to profile the cell types sensitively and accurately. They 
only had unsatisfactory F1 under 0.45 on CMP in Buenrostro2018, F1 less than 0.36 and 
0.30 on Naïve CD4 + T in 10 × PBMCs Next Gem and 10 × PBMCs Next Gem. In spite 
of this, KNN9 and KNN50 were still the worst methods in these three datasets.

The classification performance of methods does not depend on population size

Generally, a cell type with larger population number may contains more unique charac-
teristics, which benefit the classifier to separate discrete cell type from others in complex 
issues and organisms. On the contrary, the large number of cells may increase the com-
plexity of feature, make it hard to classify the cell types with high performance. We tried 
to find the dependence between the classification performance of methods and the cell 
population size. Unfortunately, in intra-dataset experiment, we did not find a strict con-
sistency between the performance of classifiers and population size in all the four data-
sets (Fig. 2B). Because of the relatively small population about 575 cells in Corces2016 
and its four cell groups size (Monocyte, LMPP, LSC and Blast) is relatively close, almost 
all machine learning methods had better performance on all the cell types. In Buen-
rostro2018 dataset, though there are two decreases on LMPP and MPP, these meth-
ods overall work well along with the cell numbers compared to the 10 × PBMCs v1 and 
10 × PBMCs Next Gem datasets. The trend of F1 scores in 10 × PBMCs v1 is consistent 

Fig. 2  A. Heat map displaying the performance comparison of machine learning methods for cell 
identification using different scATAC-seq datasets. Methods are ordered based on the mean of the F1-scores. 
B. Line plot displaying the performance comparison of machine learning methods for cell identification using 
different scATAC-seq datasets. The line plot of F1 score for a) Corces2016. b) Buenrostro2018. c) 10 × PBMCs 
v1. d) 10 × PBMCs Next Gem. Cell type in each method are ordered based on the population size. KNN9 and 
KNN50 are merged and displayed together
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with that in 10 × PBMCs Next Gem dataset, that is, all the classifiers performed rela-
tively bad on DC, CD8 + T and FCGR3A + Mono cells and performed better on other 
cell groups, except KNN9 and KNN50 performing bad in all cell types, which indicates 
that this trend is caused by the smaller cell groups with less character had more com-
plexity in classification. Though there is no strict consistency between the population 
size and the performance of method in all datasets, the larger number of cells generally 
performed well at a relatively higher level, compared to the performance of smaller cell 
population.

Performance evaluation across datasets (inter‑dataset experiment)

Intra-dataset, evaluating the classification performance within a dataset, is important to 
figure out the ability of these machine learning methods to discriminate the cell types. 
In addition, the realistic scenario in which a method is useful requires cross-dataset 
(i.e., inter-dataset) classification is essential in the evaluation. We applied these machine 
learning methods to 10 × PBMCs v1 and 10 × PBMCs Next Gem datasets from a same 
donor but profiled to a different molecular depth with a different library preparation 
method and different chromium system (v1 chemistry and Next Gem v1.1 chemistry) 
into the inter-dataset experiment. In detail, we first trained the model using 10 × PBMCs 
v1 dataset and then test the classification ability on 10 × PBMCs Next Gem dataset to 
get the methods that have the stronger ability to predict the cell types with higher per-
formance. All experiment results are summarized in Figs. 3, 4 and 5. Overall, SVM and 
NMC are the 2 best-performing machine learning methods among other classifiers in 
this experiment with the average F1-score at 0.61 and 0.73 (Fig. 3). SVM and LDA per-
formed best on B, CD14 + Mono, DC, Memory CD4 + and Naive CD4 + T these 5 cell 
types. NMC performed well on 6 cell types (B, CD14 + Mono, DC, FCGR3A + Mono 
Memory CD4 + and Naive CD4 + T). While DT is the best and only one method than 
could work on CD8 + T cell types though the performance was not satisfactory enough. 
Not surprisingly, KNN9 and KNN50 still performed worst with identifying all cells into 
one group (details in Fig. 4).

In this experiment, most of machine learning methods had competent ability to are 
distinguish B, Memory CD4 + and Naive CD4 + T cell types from each other correctly. 

Fig. 3  Bar plot for F1 score comparing the performance of each method in each cell type. Cell types are 
ordered based on the population size (from small to large). SVM and NMC got highest F1 score on these cell 
types, and KNN9 and KNN50 got the only F1 score on the last cell type. NMC got the highest mean F1 score 
of 0.73 while KNN9 and KNN50 got the lowest score of 0.04
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However, only NMC, DT and SVM successfully separated part of FCGR3A + Mono 
from CD14 + Mono, while others mistakenly mix these two cells together (Fig. 5). Simi-
larly, almost all methods failed to separate CD8 + T cells from Naive CD4 + T cell group, 
while only DT correctly identified a small number of CD8 + T cells. Additionally, most 
of machine learning methods mis-identified FCGR3A + Mono to CD14 + Mono. Despite 
the performance of these machine learning methods varied in inter-dataset experiment, 
the overall performance of these classifiers was relatively worse by comparing to the F1 
scores and percentage of cells of each cell type in scRNA-seq dataset. The results figured 
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out provided important guidelines for the further development of the scATAC-seq 
machine learning methods.

Discussion
Taken together, we evaluated the performance of 6 current state-of-art machine learning 
methods for identify and classify the cell types automatically using 4 available scATAC-
seq datasets. In this study, we designed 2 testing scenarios, that is, an intra-dataset and 
an inter-dataset experiment, to test the ability to distinguish and profile the cell types 
of traditional machine learning methods in scATAC-seq comprehensively. Overall the 
4 datasets, several traditional methods including SVM, NMC and RF could distinguish 
the various cell types with relatively high performance in intra-dataset experiment. In 
contrary, compared to the intra-dataset experiment, we observed relatively worse per-
formance for the inter-dataset experiment, likely due to the technical and biological dif-
ferences between the datasets. SVM and NMC outperformed among the other methods 
both in intra-dataset and inter-dataset experiment, however, KNN9 and KNN50 per-
formed worst for the both experiments. It’s worth noting that, although adjusting the 
settings for a specific dataset might improve the performances, it increases the risk of 
overtraining. In order to reduce the risk, we evaluated all methods using the default set-
tings except setting 9 and 50 nearest neighbors for KNN9 and KNN50 used to identify 
smaller and larger population. Moreover, we observed that there is no significant con-
sistent trend between the population size of cell and the accuracy of classification. In 
another word, the performance of the methods didn’t depend on the population of the 
cell types.

In the inter-dataset experiments, we tested the performance of the methods to classify 
the populations using the trained model across different scATAC-seq protocols. Due to 
the limitation of available dataset, two 10 × PBMCs datasets which are sampled from a 
same healthy donor but sequenced with different prepared libraries and different chro-
mium systems were applied to the inter-dataset experiment. The results showed that 
these two datasets are compatible, SVM and NMC outperformed than other 4 machine 
learning methods in 5 cell groups. Unfortunately, KNN9 and KNN50 are still the per-
formed worst with barely correctly identifying and identifying all cells types into one 
group.

These results play an important role for research to choose the most high-performance 
traditional machine learning method for the analysis of scATAC-seq data as underlying 
classifier when researcher try to develop an automatic classification method based on 
scATAC-seq.

Conclusions
All in Although some methods performed well in the datasets we chose, the exist-
ing machine learning methods couldn’t produce convincing results for developing a 
scATAC-seq automatic classification method, thus they still cannot be used directly 
as underlying classifier. In order to obtain higher performance, we encourage that 
researcher to:
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•	 As far as possible to choose a machine learning method which is most compatible for 
the specific dataset including the biological problem and biological problem. SVM 
and NMC may performed better than other traditional method for general datasets. 
However, the default parameters and settings we used in these methods may not 
reach the best performance in specific datasets, thus the developer need to adapt and 
adjust accordingly.

•	 A modification to the kernel function or a correction and integration to the read 
signal in scATAC-seq data is essential and important for the accuracy and sensitiv-
ity of following classification. As mentioned before, there is a great loss in read sig-
nal because of the sequencing technique, we encourage the research to recover or 
enhance the read signal before training and predicting, which may enhance the rec-
ognition of features.

Methods
Machine learning methods

We evaluated 6 state-of-art machine learning methods on different scATAC-seq data-
sets, publicly available as Python packages (Fig. 1). These 6 traditional methods are all 
from the scikit-learn library in Python [13]: support vector machine (SVM) with linear 
kernel, nearest mean classifier (NMC), random forest (RF), decision tree (DT), linear 
discriminant analysis (LDA) and k-nearest neighbor (KNN). Specially, for KNN, both 
9 neighbors and 50 neighbors were chosen. For 9 neighbors, KNN could predict rela-
tively small populations with good performance, and for 50 neighbors, it may identify 
the cell types sensitive and accurate on large population. After filtering the scATAC-seq 
datasets, cell populations consisting of at least 10 cells would be remained to the further 
experiment.

Datasets

Corces2016, Buenrostro2018, 10 × PBMCs v1 and 10 × PBMCs Next Gem, these 4 data-
sets were used to assess all the 6 machine learning identification methods, from which 
all the 4 datasets were apply for the intra-dataset experiment using a fivefold cross-vali-
dation scheme, and the 10 × PBMCs v1 and 10 × PBMCs Next Gem datasets were used 
for further inter-dataset experiment. The datasets we used are various both in different 
tissue (Human immune cell, Human hematopoietic system cell and PBMC), size (from 
575 to 4585) and the sequencing protocol (Illumina NextSeq 500 and 10 × Chromium). 
The human immune cell (Corce2016) is available from the NCBI database (GSE74310). 
The peak and count file of human hematopoietic system cell could be downloaded 
at GSE96769.The 10 × PBMCs v1 dataset and 10 × PBMCs Next Gem dataset were 
obtained from 10 × website (Table 1). These two 10 × PBMCs datasets are downloaded 
with only cluster group ID available, then we assigned label to each cell by Seurat v3 [16] 
since it can assign labels for scATAC-seq data with high convincement when its scRNA-
seq and labels are available (Detailed in “Assign label for 10 × PBMCs data” section). The 
scRNA-seq and labels used for Seurat v3 is available from https://​suppo​rt.​10xge​nomics.​
com/​single-​cell-​gene-​expre​ssion/​datas​ets/3.​0.2/​5k_​pbmc_​v3.

https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_v3
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_v3
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Data preprocessing

For those raw sequencing data, we first aligned it to hg19 using BWA-MEM (version 
0.7.17-r1188) [17] and then remove the replicate reads through Picard [18] and Sam-
tools (version 1.9) [19]. Based on the aligned data and cell labels provided in the data-
sets, we then bin the full genome into fixed size windows (5 kb) and estimated read 
coverage for each bin to build a bins-by-cells binary count matrix. Bins that overlap 
ENCODE-defined blacklist regions are all set to zero. Cell population only more than 
10 will be remained and less than 10 will be filtered. Note that no column that all 
values are 0 is filtered, which could be a kind of feature for a machine learning classi-
fier. Each cell matrix is displayed in a compressed, sparse, column-oriented numeric 
matrix, in which a column represents a peak feature and a row represents a cell. These 
matrices are all stored in RDS files.

Assign labels for 10 × PBMCs data

For 10 × PBMCs v1 and 10 × PBMCs Next Gem data, no label is provided for each cell 
when the datasets were first downloaded from website. Based on the labeled scRNA-
seq data of the same healthy donor, we then predict the labels for scATAC-seq data 
using a Seurat v3, which is fast and can accurately detect the true biology connection, 
to select the high confidence labels as golden standard. Using this process, we totally 
labeled 2927 of 3917 cells and 3670 of 4585 cells for v1 dataset and Next Gem dataset 
respectively. Finally, only the labeled cells were kept for downstream analysis after fil-
tered the 10 × PBMCs v1 and 10 × PBMCs Next Gem dataset.

Intra‑dataset & Inter‑dataset classification experiment

For intra-dataset experiment, we evaluated the performance by applying a fivefold 
cross-validation across each dataset for those supervised machine learning methods. 
The folds were divided in a stratified manner in order to ensure equal proportions of 
each cell population in each fold. The training and testing folds were exactly the same 
for all methods. A total of 28 experiments (7 methods and 4 datasets) were applied for 
all methods.

For inter-dataset experiment, we used the 10 × PBMCs v1 and 10 × PBMCs Next 
Gem datasets to test the ability of machine learning methods in realistic scenarios. 
We trained a classifier using 10 × PBMCs v1 data and then test the performance of 
identifying various cell types on 10 × PBMCs Next Gem dataset. A total of 7 experi-
ments were applied for all methods.
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