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Abstract: Leber hereditary optic neuropathy (LHON) is one of the most common inherited 

optic neuropathies causing bilateral central vision loss. The disorder results from point muta-

tions in mitochondrial DNA and subsequent mitochondrial dysfunction. The primary cell type 

that is lost in LHON is the retinal ganglion cell, which is highly susceptible to disrupted ATP 

production and oxidative stress. Inheritance of LHON follows that of mitochondrial genetics, 

and it has a highly variable clinical phenotype, as other genetic and environmental factors also 

play a role. Although LHON usually presents with isolated vision loss, some patients suffer 

other neurological sequelae. For ill-defined reasons, male LHON mutation carriers are more 

affected than females. Most LHON patients remain legally blind, but a small proportion can 

experience spontaneous partial recovery, often within the first year of symptom onset. Unfor-

tunately, at this time there are no established curative interventions and treatment is largely 

supportive. Patients should be offered low vision services and counseled on mitigating risk 

factors for additional vision loss, such as smoking and consuming alcohol. Encouraging treat-

ments currently undergoing investigation includes ubiquinone analogs, such as idebenone, as 

well as gene therapy and stem cells to restore ATP synthesis and provide neuroprotection to 

surviving retinal ganglion cells.
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Introduction
Mitochondrial diseases were once thought of as rare disorders, in part due to failure 

to recognize the diagnosis because of the wide variability among phenotypes. They 

are increasingly recognized as a common cause of neurologic and visual dysfunction. 

Ophthalmic manifestations are frequent among mitochondrial disorders and can result 

in retinopathy, ocular motility disorders, or optic neuropathy. It is important for 

ophthalmologists to remain cognizant of mitochondrial disease when a patient presents 

with vision loss. Among the mitochondrial diseases, Leber hereditary optic neuropathy 

(LHON) is often considered a prototypical disorder. It was the first mitochondrial 

disease to be recognized by Dr Albrecht von Graefe in 1858, but it was named after 

Dr Theodore Leber who described 15 patients with the disease among four families.1 

LHON was the first disorder recognized to be maternally inherited and the first to be 

attributed to a point mutation in mitochondrial DNA (mtDNA).2,3 Vision loss from 

LHON results from selective degeneration of retinal ganglion cells (RGCs), which are 

highly sensitive to mitochondrial dysfunction and metabolic insult.4 The mechanisms 

involved in the pathogenesis of LHON continue to be elucidated, paving the way for 

research into potential therapeutic interventions.
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Epidemiology
LHON is the most common optic neuropathy caused by a 

primary mutation in mtDNA.5–7 The minimum prevalence of 

vision loss due to the three most common pathogenic point 

mutations in LHON is one in 31,000 in the northern UK.8 

Other epidemiological studies report a prevalence of one in 

39,000 and one in 50,000 in the Netherlands and Finland, 

respectively.9,10 LHON affects predominantly males (in 

80%–90% of cases).5 Symptom onset typically occurs in 

the second and third decades of life. LHON carriers rarely 

lose vision after the age of 50 years, but there have been 

reports of LHON onset from 2 to 87 years of age.5,7,11,12 

Most LHON patients are aware of a family member with 

LHON-compatible vision loss, although 40% deny a known 

family history. Given that de novo mutations are rare, this 

relatively high percentage without a family history could be 

attributable to unrecognized mutation carriers in the family 

who had never lost vision or to the innate difficulty in accu-

rately tracing family history.8,13

Clinical features of vision loss
LHON usually presents as painless, subacute, central visual 

loss in one eye. Weeks to months later, the second eye 

becomes involved, with a median delay of 6–8 weeks.7,14 

Within 1 year, 97% of those affected have involvement of 

the second eye, such that a patient presenting with a unilateral 

optic neuropathy for longer than 1 year is highly unlikely to 

suffer from LHON-related vision loss.5,12,15 Approximately 

25% have bilateral simultaneous vision loss, but in some 

individuals it may be that vision loss in the first eye is not 

noticed before the second eye becomes involved.5,12,14

The majority of individuals progress to a visual acuity 

of 20/200 or worse.16 Due to preferential involvement of the 

papillomacular bundle, the earliest visual field abnormality 

is a cecocentral scotoma (Figure 1), which can enlarge to 

become a larger central defect.16 Dyschromatopsia is common 

and usually parallels the degree of visual acuity loss.5,12,16 

Pupillary light reflexes usually remain intact due to relative 

sparing of melanopsin-containing RGCs. This subset of 

RGCs are thought to be more resistant to metabolic insult 

from mitochondrial dysfunction when compared with all 

RGCs.4,17,18 In cases of asymmetric bilateral or monocular 

vision loss, however, a relative afferent pupillary defect 

can occur.19

On fundus examination preceding or during the acute 

stage of vision loss, there can be characteristic findings, 

including optic disc hyperemia, peripapillary telangiectatic 

blood vessels, vascular tortuosity, and swelling of the retinal 

nerve fiber layer (RNFL) around the optic disc (Figure 2A) 

without corresponding leakage on fluorescein angiography 

(sometimes termed “pseudoedema”). The fundus can look 

normal in 20%–40% of those in the active stage of vision 

loss, which can delay diagnosis.12,20,21 Eventually, as the 

disease progresses, disc hyperemia, peripapillary telangi-

ectasias, and pseudoedema resolve. Approximately 6 weeks 

after onset of vision loss, optic disc pallor develops and can 

be accompanied by cupping of the optic disc, reflecting the 

death of RGCs that occurs in the chronic atrophic phase 

(Figure 2B).5,22

Fundus changes seen in LHON can be further characterized 

and quantified through optical coherence tomography. In the 

acute phase, the RNFL thickens first in the temporal and 

inferior quadrants, then the superior and nasal quadrants.23 

This is consistent with early preferential involvement of the 

papillomacular bundle of RGCs. RNFL thickening is related 

to axonal swelling from impaired mitochondrial function 

Figure 1 Automated 30-2 protocol Humphrey visual field study of the right eye 
showing a dense cecocentral scotoma on the grayscale (A) and total deviation map 
(B) in a patient with acute LHON-related vision loss.
Abbreviation: LHON, Leber hereditary optic neuropathy.
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and axonal transport.4 The RNFL then becomes thinned 

during the chronic phase in the months following the onset of 

vision loss.24 Macular thickness may thin before the RNFL, 

suggesting that disease progression could be better monitored 

with both macular thickness and RNFL measurements by 

optical coherence tomography.25

Visual evoked potentials (VEPs) and electroretinograms 

(ERGs) are often abnormal in affected LHON patients, as 

they reflect optic nerve fiber degeneration and RGC loss, 

respectively. In a study of two brothers with LHON who 

had normal VEP latencies and configurations prior to the 

onset of symptoms, earliest abnormalities included pro-

longed VEP latency and abnormal VEP morphology. With 

symptom progression, there was a progressive prolongation 

of VEP latency.26 In a Brazilian family with a strong history 

of LHON, three affected members had increased latencies, 

decreased amplitudes, or absent responses for pattern-

reversal VEP. Two family members also had reduced ERG 

cone responses.27 Another study found that affected LHON 

patients had increased VEP latency and decreased VEP 

amplitude that was associated with a decreased pattern ERG 

N50–N95 amplitude.28 Notably, VEPs were normal in unaf-

fected carriers in these studies. VEPs and ERGs can therefore 

be useful in diagnosing and monitoring disease progression 

in affected patients.

Magnetic resonance images of the brain and orbits are 

usually normal in affected LHON patients.29 There are, how-

ever, reports of patients with non-specific increased signal 

in the retrobulbar optic nerve on T2-weighted fast spin echo 

and short time inversion recovery sequences months after 

vision loss.30,31 Intravenous gadolinium magnetic resonance 

imaging contrast leads to optic nerve enhancement in patho-

logic states in which there is disruption of the blood–brain 

barrier within the optic nerve.32 Patients with LHON have 

rarely demonstrated optic nerve enhancement on post-contrast 

images, suggesting that in some cases there may be an inflam-

matory component to the pathogenesis of LHON.32

Interestingly, unaffected LHON point mutation carriers can 

display subclinical signs of disease on fundus examination, 

including peripapillary microangiopathy, zones of mild 

disc pseudoedema, and telangiectasias.33 Some seemingly 

asymptomatic carriers do exhibit subclinical dyschromatopsia.34 

Among asymptomatic carriers, temporal RNFL thickening 

on optical coherence tomography may be present, further 

highlighting early involvement of the papillomacular bundle 

in subclinical LHON.35 One study that recorded the pattern 

ERG in asymptomatic LHON mutation carriers showed a 

significant decline in N95 amplitude by ~40% from baseline 

over 36 months, suggesting that subclinical RGC loss is 

progressive in unaffected carriers and precedes the onset of 

visual field defects.36 Pattern ERG may therefore be a useful 

tool to monitor subclinical disease progression in LHON 

mutation carriers.

Prognosis
The visual prognosis in LHON is poor. Most individuals 

have permanent vision loss and are legally registered as 

visually impaired.37 Although vision loss is unlikely to 

progress after the active phase of the disease, patients report 

that the acute phase vision loss has a strong negative impact 

Figure 2 Right optic nerve (A) of a patient with acute LHON-related vision loss showing mild hyperemia, blurring of the disc margin, and elevation of the optic nerve head 
from swelling of the peripapillary retinal nerve fiber layer. LHON-related vision loss in the left eye had occurred 6 months prior leading to prominent temporal optic nerve 
pallor (B) from atrophy of the retinal nerve fiber layer.
Abbreviation: LHON, Leber hereditary optic neuropathy.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Ophthalmology 2015:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1168

Meyerson et al

on quality of life.37 Spontaneous visual improvement is a 

well described phenomenon in LHON, usually occurring 

within the first year following vision loss. Recovery can also 

occur decades later.5 Recovery typically presents first with 

the appearance of small islands of vision within the central 

defect bilaterally.20,21 Spontaneous visual recovery is more 

common in patients with the 14484 mutation, with a partial 

recovery rate of 37%–58%, while the 11778 mutation has 

the lowest partial recovery rate of 4%.7,8,14,38 Patients with 

the 3460 mutation have an intermediate prognosis, with an 

approximate 20% partial recovery rate.39 Earlier age of onset 

(younger than 20 years), a subacute time course of vision 

loss, and a larger optic disc are all associated with a better 

visual prognosis.24,40,41

Mitochondrial function and 
oxidative phosphorylation
Mitochondria are double-membraned intracellular organelles 

present in nucleated eukaryotic cells that play a vital role in 

energy generation through production of ATP used for cell 

growth and function.42,43 The number of mitochondria present 

in a particular cell type depends on the energy demands of 

the cell. Cells in highly metabolically active tissues, includ-

ing RGCs within the papillomacular bundle, the cardiac 

conduction system, pancreas, kidney, liver, and muscle, have 

high ATP requirements and high numbers of mitochondria. 

Therefore, mitochondrial diseases predominantly affect 

these tissues, as they are most susceptible to disrupted ATP 

production.4,44,45

ATP generation occurs via oxidative phosphorylation 

(OXPHOS) through the mitochondrial respiratory chain. The 

respiratory chain is made of five complexes (I–V) embedded 

in the inner membrane. Complexes I–IV oxidize NADH and 

FADH
2
 generated from glycolysis and beta-oxidation of 

fatty acids. Complex V, also known as ATP synthase, then 

pumps protons into the intermembrane space and generates an 

electrochemical gradient that facilitates phosphorylation of 

ADP to ATP. Several cofactors, including ubiquinone, play 

an important role in shuttling electrons between respiratory 

chain complexes.4,15,45–47

While ATP production is an essential task of mitochondria, 

the organelles also play other vital roles for the cell, includ-

ing detoxification of reactive oxygen species (ROS), iron 

metabolism, fatty acid oxidation, amino acid biosynthesis, 

and regulation of cellular apoptosis.4,48 Although dysfunction 

of the OXPHOS pathway is one of the most important fac-

tors in the pathogenesis of mitochondrial diseases, defects 

of other cofactors or in the cell machinery that assembles 

mitochondrial components can also disrupt the ATP supply 

and increase production of ROS, which can have devastating 

effects on cells.

Mitochondrial genetics
The genetics of the mitochondria reflect the organelle’s 

evolutionary origins; autonomous proto-mitochondrial 

prokaryotic organisms were thought to be phagocytosed 

by larger eukaryotic cells, forming an endosymbiotic rela-

tionship in which the proto-mitochondria supplied ATP 

and detoxified ROS for the eukaryotic cell.48,49 Similar to 

their proposed prokaryotic origin, mitochondria also have 

a genome in the form of circular double-stranded mtDNA. 

Importantly, mitochondria rely heavily on nuclear DNA 

to encode proteins required for mitochondrial function. 

More than 80 subunits required for the OXPHOS system 

are encoded in the nuclear genome and are imported into 

mitochondria.4 Diseases with mutations in the nuclear 

genome often follow Mendelian inheritance (eg, autosomal 

dominant, autosomal recessive, or X-linked inheritance). 

In contrast, those with primary mutations in mtDNA have 

unique patterns of inheritance and penetrance governed by 

the principles of maternal inheritance, heteroplasmy, replica-

tive segregation, and the critical threshold.50

Transmission of the mitochondrial genome occurs from 

a mother to her progeny. There is no paternal contribution, 

as the few mitochondria present in sperm are proteolytically 

destroyed by the zygote.51 Therefore, LHON results when 

a mother carrying the mutation transmits it to her children, 

while fathers cannot transmit the mutation to offspring.

Unlike nuclear DNA, mtDNA replicates continuously 

and independently of the cell cycle in both dividing and 

non-dividing cells. Often there are several thousands of 

mtDNA molecules present, and all copies are identical. This 

is called homoplasmy. However, a mutation can arise in one 

copy of mtDNA, resulting in coexistence of both mutant 

and wild-type mtDNA within a mitochondrion, termed 

heteroplasmy.45 The principle of heteroplasmy is critical 

when host cells divide and the mitochondria are separated 

between daughter cells. This process is termed replica-

tive segregation and occurs stochastically. The proportion 

of mutant and wild-type mtDNA between daughter cells 

is subject to random segregation and therefore unequal. 

Heteroplasmy and replicative segregation contribute to the 

heterogeneity of mitochondrial disease phenotypes, even 

among related individuals.

In the case of heteroplasmy, a certain amount of wild-type 

mtDNA can compensate for the mutant mtDNA in a cell 
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or tissue. If the effects of the mutant mtDNA exceed a 

certain threshold, however, the wild-type mtDNA can no 

longer compensate. This critical threshold level is often 

tissue-specific; metabolically active tissues, particularly 

the RGCs, which constitute the optic nerve and the cells of 

the retinal pigment epithelium, have a lower threshold than 

less metabolically active tissues.52 In addition, post-mitotic 

cells like neurons accumulate more mutant mtDNA copies 

over time, which eventually exceed the critical threshold 

and account for the age-dependent expression of many 

mitochondrial diseases.44

Over 200 point mutations in mtDNA account for 

mitochondrial diseases. Most point mutations that cause 

disease are heteroplasmic. However, there are several excep-

tions, including the common mutations in LHON, which 

are usually homoplasmic. Deletions and duplications in 

mtDNA can also lead to mitochondrial diseases including 

mitochondrial myopathies, which are often sporadic.15,45,53

Genetics and incomplete penetrance 
of LHON
Ninety percent of all cases of LHON are due to one of 

three  point mutations in mtDNA, which are located at 

nucleotide positions 3460, 11778, and 14484.5 The most 

common point mutation is 11778, which accounts for 70% of 

all cases.5 The 14484 and 3460 mutations account for ~14% 

and ~13%, respectively.20,50 An exception is among those 

of French Canadian descent, in which the 14484 mutation 

accounts for about 90% of cases within that population due 

to a founder effect.54 Other relatively rare mutations have also 

been discovered but occur in single families.20,21 All of the 

mutations occur in genes encoding subunits for complex I 

in the respiratory chain, particularly in those encoding the 

ND1 and ND6 subunits.55,56

LHON is notable for incomplete penetrance, meaning 

that not all mutation carriers will develop vision loss. While 

the mechanisms involved have not been fully elucidated, 

it appears that complex genetic and environmental factors 

play a role.

Like several other mitochondrial disorders, heteroplasmy 

is thought to influence the penetrance of LHON. For 

instance, it has been observed that offspring born to mothers 

with less than 80% mutated mtDNA present in their blood 

are less likely to be symptomatic than offspring born to 

homoplasmic mothers.57 Even more variability is present 

because tissue-specific segregation of mutant mtDNA is 

stochastic during embryogenesis. Considering that 80%–90% 

of all LHON individuals carry homoplasmic mutations, 

heteroplasmy alone does not explain the incomplete 

penetrance of LHON.8,14

Another risk factor for vision loss is the set of inherited 

genes that commonly segregate with the pathogenic mtDNA 

mutation. Over the course of evolution, mtDNA polymor-

phisms have clustered together in groups called haplogroups, 

which tend to be inherited together. The other polymorphisms 

present within a haplogroup can have deleterious effects on 

the OXPHOS pathway, including decreased levels of protein 

synthesis and ATP production, which could then synergize 

with the deleterious effect of the primary LHON mutation.58,59 

For instance, among Caucasians, haplogroup J is associated 

with increased penetrance for the 11778 and 14484 mutation 

carriers, while haplogroup K is associated with increased 

penetrance for the 3460 mutation carriers.60 Chinese carriers 

of the 11778 mutation had an increased risk of vision loss 

when inherited with haplogroup M7b1′2 and a decreased risk 

with haplogroup M8a.61

Differences in mitochondrial mass have also been 

postulated to play a role in the incomplete penetrance of 

LHON. Unaffected LHON mutation carriers have sig-

nificantly higher mtDNA copy numbers in leukocytes than 

affected mutation carriers. Comparison of fibroblasts from 

unaffected, affected, and control patients has shown that cells 

from unaffected carriers have increases in mitochondrial 

transcripts, respiratory chain proteins, enzyme activity, and 

mitochondrial biogenesis factors relative to controls and 

affected carriers. Higher levels of mtDNA in leukocytes in 

unaffected carriers were also associated with milder signs 

of ocular pathology. Thus, mitochondrial mass increases in 

unaffected carriers may be protective, whereby the increased 

amount of mitochondria can compensate for complex I dys-

function. Although the specific factors that activate mitochon-

drial biogenesis remains to be discovered, these observations 

could have implications for the treatment of LHON.62

LHON is maternally inherited. Men cannot transmit the 

mutation. Both male and female offspring can, however, 

inherit the mutation, yet 50% of males and only 10% of 

females experience vision loss; this sex predilection can-

not be explained solely by the principles of mitochondrial 

inheritance.7 It has been hypothesized that there is a reces-

sive X-linked susceptibility gene that works in concert with 

the mitochondrial mutation, which could explain the male 

predominance among carriers who lose vision. Those female 

carriers who do lose vision may either have homozygosity at 

the X-linked locus or may have experienced an unfortunate 

X chromosome inactivation.63 Recent linkage analyses have 

discovered a region on the long arm of the X chromosome 
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that may contain the susceptibility gene, but the actual 

gene responsible has not yet been identified.64–66

Hormonal differences between males and females have 

also been hypothesized to influence the male predomi-

nance in LHON. In females, estrogens are thought to modify 

the severity of mitochondrial dysfunction, including defective 

ATP synthesis, oxidative stress, and apoptosis. In cybrid cell 

lines containing homoplasmic LHON mutations, addition of 

17β-estradiol led to activation of mitochondrial biogenesis, 

increased superoxide dismutase 2 (SOD2) activity, decreased 

production of ROS, and reduction of apoptosis. Estrogen 

receptor β was also shown to be particularly abundant in 

RGCs and their axons within the RNFL.67 The data obtained 

from the cybrid cell model may approximate the effects of 

estrogen on the in vivo target tissue affected in LHON.

Environmental factors have been implicated as contributing 

to vision loss in LHON mutation carriers. Alcohol consump-

tion and tobacco smoking have been associated with the onset 

of vision loss in those genetically predisposed to LHON. 

A retrospective study of 125 European LHON pedigrees 

showed an association between smoking and vision loss, in 

which heavy smokers were more likely to experience vision 

loss than light smokers.68 The study showed a 93% penetrance 

of vision loss in male smokers versus a 66% penetrance 

in male non-smokers. Cigarette smoke can compromise 

complex I activity, reduce cytochrome c oxidase activity, 

and increase production of ROS. Heavy alcohol intake was 

also associated with a greater likelihood of vision loss, but 

this relationship was less significant than that of smoking. 

Other associated environmental triggers include head trauma, 

industrial toxins, and drugs that have mitochondrial toxicity, 

such as antiretrovirals and ethambutol.20 Nutritional deficien-

cies have also been implicated as a trigger for vision loss in 

LHON carriers, including low vitamin B12 levels.69

Optic nerve vulnerability
In LHON, RGCs appear to be selectively vulnerable to 

mitochondrial dysfunction. The papillomacular bundle of 

RGCs responsible for central vision is affected first and 

more severely because of its small-diameter fibers and 

heavy dependence on mitochondria.70 Studies of RGC axons 

show mitochondrial clustering in the prelaminar nerve fiber 

layer, and mitochondria significantly decrease in number 

posterior to the lamina cribrosa where the axons are myeli-

nated. Such an uneven distribution of mitochondria partly 

explains why the unmyelinated portion of RGC axons is 

particularly affected.71–73 It is unclear whether the precipita-

tion of RGC loss is due to low ATP production, increased 

production of ROS, or both, and there are data that support 

both mechanisms.74 A mouse mtDNA mutant model was 

developed that expressed key features of LHON, including 

degeneration of the papillomacular bundle, axonal swelling, 

and dysmorphic mitochondria in unmyelinated segments. 

There was no reduction in ATP synthesis, but there was 

increased ROS production; this research suggests that oxida-

tive stress plays a larger role in the pathogenesis of LHON 

than defective ATP production.75

Of note, optic neuropathy can occur in other mitochon-

drial disorders that have prominent systemic manifestations, 

such as myoclonic epilepsy with ragged red fibers, mitochon-

drial encephalomyopathy, lactic acidosis, and stroke-like 

episodes (MELAS), Leigh syndrome, Friedreich ataxia, 

Mohr–Tranebjerg syndrome, and complicated hereditary 

spastic paraplegia. It remains unclear why mitochondrial 

mutations in other disorders lead to a phenotype with sys-

temic disease. With time, it has become more apparent that 

LHON can be associated with other non-visual neurologic 

sequelae.76

LHON plus
While the typical manifestation of LHON is vision loss, 

there have been other manifestations reported within select 

pedigrees. Cardiac arrhythmias, peripheral neuropathies, 

dystonia, and myoclonus can occur in LHON carriers.20 Some 

families from Holland, Australia, and North America have 

particularly severe manifestations, including ataxia, juve-

nile onset encephalopathy, spastic dystonia, and psychiatric 

disturbances. These phenotypes have been called “LHON 

plus syndromes” and have been linked to other mtDNA point 

mutations that affect OXPHOS complex I activity but differ 

from the three commonly seen in LHON.20,77,78

An association between the 11778 mutation in LHON and 

a demyelinating syndrome that is radiologically and clinically 

identical to multiple sclerosis was described in 1992 and 

named Harding syndrome after the reporting author.79 This 

posed an interesting hypothesis that vision loss in LHON 

may be caused by an abnormal immune response against the 

optic nerve because of mtDNA mutations. In females with 

the 11778 mutation, this immune response may involve other 

myelinated axons and result in a disorder indistinguishable 

from multiple sclerosis. It also poses the question of whether 

mitochondrial genes contribute to susceptibility to multiple 

sclerosis. Some report that the co-occurrence of LHON 

mutations and multiple sclerosis is likely due to chance and 

note that those patients present with atypical symptoms of 

LHON, in which there is a higher female predominance and 
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persisting unilateral vision loss.80 Others report a risk 50 times 

greater than expected for developing both multiple sclerosis 

and LHON, but given the rarity of the syndrome, much more 

remains to be elucidated.81

Treatment
Symptomatic and supportive treatments
The treatment of mitochondrial disorders is still in its infancy. 

Even though there is promising research underway, the 

mainstay of clinical treatment for LHON remains supportive 

rather than curative. Low vision aids can be of substantial 

benefit for those with central vision loss from LHON.82 In 

addition, low vision rehabilitation is a viable option because 

most LHON patients are young adults with intact peripheral 

vision. Patients should also be counselled to optimize envi-

ronmental risk factors for vision loss by avoiding tobacco 

use, heavy alcohol consumption, medications with mito-

chondrial toxicity, and exposure to environmental toxins.20,68 

Other supportive measures, particularly for the LHON plus 

syndromes, includes screening for extraocular manifesta-

tions of LHON, such as a screening electrocardiogram and 

neurological surveillance.83

Nutritional supplements
Several combinations of vitamins (eg, B2, B3, B12, C, E, 

and folic acid) and other supplements such as alpha-lipoic 

acid, carnitine, creatine, L-arginine, and dichloroacetate have 

been tried to treat mitochondrial disorders, including LHON. 

However, analyses have shown little proof of efficacy with 

these interventions.83,84 The rarity of mitochondrial disorders 

makes it particularly challenging to determine efficacy. One 

review noted that only 35 of 1,039 publications had trials 

with more than five patients.85

Brimonidine
Brimonidine is a topical α2-agonist that is used to manage 

patients with glaucoma. Brimonidine has been shown to be 

antiapoptotic, and it can protect RGCs from oxidative damage 

in animal models.86 Nine patients with monocular vision loss 

were treated with topical brimonidine in an open-label trial to 

prevent vision loss in the other eye. However, the study was 

stopped prematurely because all of the patients experienced 

vision loss in their second eye, and brimonidine did not appear 

to mitigate the amount of vision loss.87 Nonetheless, there 

are reports of patients who had both glaucoma and LHON 

in which vision loss was accelerated or worse than expected 

with either disorder alone. It has been proposed that increased 

intraocular pressure may further exacerbate axoplasmic stasis 

in RGCs already under high metabolic stress.88 Brimonidine 

could therefore be potentially useful in asymptomatic LHON 

carriers with glaucoma due to its pressure-lowering effects 

and putative neuroprotective effects.

Ubiquinone analogs
Ubiquinone is a molecule in the mitochondrial membrane 

that carries electrons from complexes I and II to complex III. 

LHON mtDNA mutations affect complex I, so the ubiquinone 

analog coenzyme Q10 is thought to help facilitate the flow of 

electrons and maximize the electrons shuttled to complex III. 

It has long been used in attempts to treat mitochondrial 

disorders, yet recent analyses have not shown significant 

benefit.83–85 Given that coenzyme Q10 is highly lipophilic, 

it is unlikely that oral administration allows for delivery to 

mitochondria.

Idebenone and EPI-743 are short-chain ubiquinone 

analogs that easily enter the brain and reach mitochondria, 

unlike coenzyme Q10. Idebenone has been shown to bypass 

complex I and maintain ATP production, and it inhibits 

lipid peroxidation to protect mitochondria from oxidative 

damage.89,90 Idebenone was initially successful in 1992 with 

a 10-year-old boy who had the 11778 mutation, but this is 

confounded by the fact that childhood-onset LHON has 

higher rates of spontaneous recovery.40,91 A randomized, 

double-blind, placebo-controlled trial called RHODOS 

(Rescue of Hereditary Optic Disease Outpatient Study) 

enrolled 85 LHON patients who had a disease duration of 

up to 5 years. After 24 weeks of idebenone 900 mg/day, the 

study did not show any benefit for the primary outcome of 

best recovery of visual acuity after 24 weeks. However, the 

data showed a positive trend for the secondary end points, 

including change from baseline in best visual acuity and 

change in visual acuity for both eyes, particularly for patients 

with discordant visual acuities.92 The study also found the 

largest treatment effect for patients with the 11778 or 3460 

mutation, while those with the 14484 mutation had a high 

spontaneous recovery rate in the placebo group, thought to 

abolish any treatment effect. In the observational follow-up 

study (RHODOS-OFU), 59 of the original patients were 

followed up 30 months later, and those who were treated 

with idebenone still showed beneficial effects, especially 

those who had a short disease history.93 In a retrospective 

study of 103 LHON patients, 44 patients with disease onset 

within one year were treated with idebenone and followed 

for 5 years or more. Those treated with idebenone recovered 

vision more than the control cohort, and the improvement 

was more prominent with early initiation of treatment and 
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longer duration of treatment.94 Another randomized, double-

blind, placebo-controlled trial of 39 LHON patients with a 

disease duration of less than 5 years treated patients with 

idebenone 900 mg/day for 24 weeks. The treatment group 

showed improvement in blue-yellow color vision and less 

impairment of red-green color vision, and this effect was 

more prominent in those younger than 30 years of age and 

with less than 1 year of symptoms.95 These trials show prom-

ise, but more research is needed to determine the optimal 

idebenone dose and treatment duration, as well as whether 

asymptomatic carriers and those with long disease duration 

can be treated. While not as widely studied as idebenone, 

EPI-743 was used in a trial including five patients with a 

disease duration of 90 days, and four of the five patients 

showed disease arrest and reversal after treatment for a 

minimum of 1 year.96

Pharmacologic activators of 
mitochondrial biogenesis
As noted previously, increased mitochondrial biogenesis 

is significantly associated with unaffected LHON mutation 

carriers and may have a protective effect.62 Mitochon-

drial biogenesis is partly regulated by the transcriptional 

activator PGC-1α, which is controlled by peroxisome 

proliferator-activated receptors and AMP-activated pro-

tein kinase.97 Pharmacologic activators of these proteins 

include fibrates, rosiglitazone, metformin, and AICAR 

(5-aminoimidazole-4-carboxamide ribonucleoside).98 In a 

mouse model of mitochondrial myopathy treated with bezafi-

brate, there was increased mitochondrial biogenesis, a delay 

in onset of the myopathy, and a longer life span.99 However, 

it remains to be seen whether pharmaceutical activation of 

PGC-1α will be beneficial for affected LHON patients or 

mutation carriers.

Gene therapy
Gene therapy has shown some promise for mitochondrial 

diseases. For LHON in particular, it is an even more appeal-

ing treatment option because the RGC layer in the retina 

can be easily accessed. However, the ability to introduce 

genes directly into the mitochondrial genome has not been 

well developed, and a large obstacle is the double mem-

brane of the mitochondrion. Thus, researchers have utilized 

allotopic expression by transfecting the desired gene into 

the nuclear genome instead.100–102 For this technique, the 

desired wild-type gene is engineered with a mitochondria-

specific targeting sequence so that the wild-type protein 

product is imported into the mitochondria. The gene is 

then transfected into the nucleus with an adeno-associated 

virus (AAV) vector. One of the first successful attempts in 

vitro was on a cybrid cell line that was homoplasmic for 

the 11778 mutation, in which researchers used allotopic 

expression to complement the mutated ND4 subunit with 

a wild-type one, and rescued ATP synthesis.103 Two animal 

models expressing the mutated ND4 subunit also showed 

an improvement in vision and rescue of RGCs following 

intravitreal injection and allotopic expression of the wild-

type gene for ND4.104,105 However, limitations remain due 

to inefficient mitochondrial import of the hydrophobic 

ND4 subunit, and allotopic expression can be optimized 

by targeting the mRNAs to the mitochondrial surface to 

couple translation and translocation for a longer duration 

of gene expression.106 Clinical trials associated with the 

University of Miami, Huazhong University of Science and 

Technology, and Gensight Biologics are currently recruit-

ing patients with the 11778 mutation to assess the safety of 

gene therapy with an AAV vector carrying the wild-type 

ND4 gene.107–109

Another gene that has been allotopically expressed in 

cells harboring the 11778 mutation is the SOD2 gene, which 

detoxifies free radicals in mitochondria. Even though the 

SOD2 gene is encoded in the nuclear genome and expressed 

in LHON carriers, SOD2 activity is attenuated in cells 

homoplasmic for an LHON mutation.110 In LHON cybrids, 

overexpression of SOD2 through transfection with an AAV 

vector led to a decreased rate of apoptosis, which highlights 

how antioxidant mechanisms could improve RGC survival 

in LHON.111

More recent approaches have shown that it is possible 

to introduce genes into mitochondria, although it remains 

technically difficult. One study isolated whole mtDNA 

from healthy human donors and developed a construct with 

recombinant mitochondrial transcription factor A protein 

that could gain direct entry into mitochondria. This construct 

was then applied to LHON cybrids that were homoplasmic 

for the 11778 mutation, and it stimulated mitochondrial 

biogenesis.112 Another study used a mitochondrial targeting 

sequence on the AAV vector capsid that contained the wild-

type ND4 gene. The mitochondrial targeting sequence led 

to direct introduction of the wild-type ND4 gene into mito-

chondria in vitro and in a mouse model, in which there was 

restoration of ATP synthesis.113 The same researchers then 

discovered that the mitochondrial targeting sequence-guided 

gene construct did not recombine with the host mitochondrial 

genes but rather remained episomal in the mitochondria.114 

This discovery is encouraging, as it appears unlikely that the 
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gene construct recombines with endogenous genes, which 

could further disrupt the OXPHOS pathway. These studies 

show immense therapeutic potential, but research remains 

preliminary and further studies are required to evaluate 

adverse effects and determine how long the beneficial effects 

would last.

Stem cells
The use of stem cells to treat mitochondrial optic 

neuropathies is still in the preliminary stages, but two tech-

niques are currently under investigation. One technique 

involves transplantation of RGCs. However, harvesting 

mature and fully functioning RGCs from embryonic stem 

cells or induced pluripotent stem cells remains challenging, 

and is further compounded by the difficulty in ensuring that 

transplanted RGCs make the correct neuronal connections 

when integrated into the retina.115 For now, it appears that 

mature RGCs derived from stem cells can be used for fur-

ther in vitro research of LHON pathogenesis and potential 

treatments.

Also under current investigation is the use of stem cells 

to provide neurotrophic factors that protect RGCs.116 Because 

some patients with LHON experience visual recovery, 

they have some RGCs that survive despite mitochondrial 

dysfunction and oxidative stress. To protect these surviving 

RGCs, use of mesenchymal stem cells that secrete neu-

rotrophic factors and anti-inflammatory cytokines appears 

promising. Intravitreal injection of autologous mesenchymal 

stem cells in a rat model with glaucoma showed a neuropro-

tective effect with increased RGC axon survival.117 Another 

study used intravenous infusions of autologous bone-marrow 

derived mesenchymal stem cells in ten patients with sec-

ondary progressive multiple sclerosis, who experienced 

an improvement in visual acuity and an increase in optic 

nerve area without significant adverse effects.118 Given this 

proof-of-concept study, the same strategy could be employed 

in the future to slow the loss of RGCs in LHON. Patients 

should be cautioned that lucrative, unregulated stem cell 

treatments offered at clinics not affiliated with academic 

research centers may make inflated promises of efficacy and 

could be dangerous.

Conclusion
LHON remains the prototype mitochondrial optic neuropa-

thy and is marked by acute onset of sequential bilateral 

optic neuropathy due to point mutations in mtDNA. Symp-

tom onset typically begins in the second or third decade of 

life as a painless and subacute monocular loss of central 

vision that then progresses to involve the other eye. While 

partial visual recovery may occur, most patients remain 

legally blind and require low vision services. Optic nerve 

degeneration results from dysfunctional OXPHOS and 

increased production of ROS within mitochondria, and 

RGCs within the papillomacular bundle serving central 

vision are particularly susceptible to oxidative stress. 

The LHON inheritance pattern follows that of mitochon-

drial genetics and is maternally inherited. Incomplete 

penetrance occurs as a result of both genetic and envi-

ronmental factors, leading to wide symptom variability 

among mutation carriers.

Although research for LHON is ongoing and new 

discoveries are continuously made, many questions remain 

to be answered before a curative treatment becomes first-line 

therapy for patients with this debilitating disease. In vitro cell 

studies and animal models have shown promise, and now 

the field is progressing to early phase clinical trials. At this 

point, however, the efficacy, adverse effects, and duration 

of treatment benefit have yet to be determined.
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