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A digital nervous system aiming 
toward personalized IoT healthcare
Astrid Armgarth1,2, Sandra Pantzare2, Patrik Arven3, Roman Lassnig2, Hiroaki Jinno4,5, 
Erik O. Gabrielsson1, Yonatan Kifle6, Dennis Cherian1, Theresia Arbring Sjöström1, 
Gautier Berthou7, Jim Dowling7,8, Takao Someya4,5, J. Jacob Wikner6, Göran Gustafsson2, 
Daniel T. Simon1 & Magnus Berggren1* 

Body area networks (BANs), cloud computing, and machine learning are platforms that can 
potentially enable advanced healthcare outside the hospital. By applying distributed sensors and 
drug delivery devices on/in our body and connecting to such communication and decision-making 
technology, a system for remote diagnostics and therapy is achieved with additional autoregulation 
capabilities. Challenges with such autarchic on-body healthcare schemes relate to integrity and safety, 
and interfacing and transduction of electronic signals into biochemical signals, and vice versa. Here, 
we report a BAN, comprising flexible on-body organic bioelectronic sensors and actuators utilizing 
two parallel pathways for communication and decision-making. Data, recorded from strain sensors 
detecting body motion, are both securely transferred to the cloud for machine learning and improved 
decision-making, and sent through the body using a secure body-coupled communication protocol to 
auto-actuate delivery of neurotransmitters, all within seconds. We conclude that both highly stable 
and accurate sensing—from multiple sensors—are needed to enable robust decision making and limit 
the frequency of retraining. The holistic platform resembles the self-regulatory properties of the 
nervous system, i.e., the ability to sense, communicate, decide, and react accordingly, thus operating 
as a digital nervous system.

The internet-of-things (IoT) paradigm is currently being implemented, in the widest sense, in society and indus-
try, and has become a reality thanks to synergetic progress in electronics, computer science, communication 
technology, informatics, as well as social and medical sciences1. On the hardware side, IoT includes sensors 
and actuators, placed on and inside items, systems, animals, and humans, that together form wired or wireless 
networks connected to information technology infrastructure. On the software side, various protocols2 assist the 
accumulation of sensory data, for cloud/cloudlet/fog computation3,4 and decision-making, which further instruct 
various actuations and services. For humans, IoT solutions are already in use and heavily explored to support and 
assist us in daily life, for safety, entertainment, and in healthcare5. For personalized and participatory medicine 
there is a particularly promising pathway for advanced healthcare operated outside the hospital. Here, monitor-
ing and regulation/actuation of the ambience, as well as the parameters and functions expressed on the skin and 
inside our body, defines an array of crucial factors to initiate or fine-tune therapy and other healthcare solutions.

Over the past several years, an array of tools and microfabricated technologies have been developed for 
monitoring health status and providing personalized/remote therapy6–10. In parallel, machine learning algorithms 
have been developed for early disease detection, as well as enhanced patient care and utilization of community 
services11. Finally, body-area networks (BANs)12 of sensors and therapeutic devices have been proposed as a 
solution to the fundamental challenges of security13 and patient privacy. BANs can provide a highly localized 
“cloudlet” limited to the body connecting bioelectronic nodes on/in the body with a personal digital assistant 
(e.g., mobile phone) and thereby limiting—and securing—the connection to cloud-based machine learning 
algorithms for optimized personalized medicine14–16. To date, healthcare-focused BANs and the vast majority of 
e-health wearables (e.g., FitBit, Apple Watch) have been focused on monitoring health status parameters via one 
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or more sensors. More recent developments in healthcare-focused BANs have included either machine learn-
ing for optimized signal processing and health-status recognition14,16–19 or included drug-delivery components 
for more closed-loop care20 (similar to other closed-loop systems such as the “artificial pancreas” for diabetes 
treatment21). However, the three advances in healthcare technologies detailed above—(i) bioelectronic sensors/
therapeutics, (ii) machine learning algorithms for personalized medicine, and (iii) healthcare BANs—have not 
been integrated into a unified, secure, “smart” e-health system.

Here, we report just such a smart healthcare BAN integrating all three components. Health status monitoring 
(motion sensing) is wirelessly coupled with treatment (neurotransmitter delivery) using organic bioelectronic 
sensors and actuators (Fig. 1) operating on the scale of 1 Hz (sensing-to-delivery time, Supplemental Video 1) 
and controlled by machine learning algorithms. The system is a proof-of-concept whereby sensor information 
can be securely relayed to a decision-making hub (by encrypted/authenticated protocols) where appropriate 
actions can be initiated based on instantaneous need, e.g., contact physician, administer treatment, alter drug 
dosage, or initiate other auto-responses. Wireless communication of data between separate nodes is achieved 
using the human body itself as the data transmission pathway and enhancing security by obviating the need for 
broadcasting over radio. Data can additionally be transmitted outside the BAN from a central unit to a cloud 
data handling service for further processing, analysis, and improved prediction models, thereby moving towards 
continuously optimized and autonomous treatment schemes. To illustrate the concept, we created a functioning 
web from wearable nodes of sensors and actuators (chemical delivery devices) joined through the capacitive field 
of the human body itself. The network nodes were seamlessly integrated using IoT-compatible solutions such 
as low-cost embedded systems (e.g., open-source Arduino platforms) and custom-made solutions. The system 
unifies the advances in healthcare technologies described in the previous paragraph into a platform resembling 
the self-regulatory properties of the nervous system, i.e., the ability to sense, communicate, decide, and react 
accordingly. In this sense the smart healthcare BAN operates as digital nervous system (DNS, Table 1) with the 
potential to augment the biological nervous system and even supplant dysfunctional/diseased nervous system 
components.

Results
Neurological disorders represent a particularly challenging use case scenario for IoT in healthcare. To combat the 
effects of these disorders, such as epileptic seizures or Parkinsonian tremors, there is a need for many distributed 
sensor signals as well as specifically-targeted and personalized drug delivery. The highly individual nature of 
indicators, such as respiration, motion, and tremors, and other detectable changes prior to a disease event (e.g. 
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Figure 1.   The digital nervous system (DNS), a smart healthcare body-area network (BAN). Separate nodes on 
the human body work in unison to sense and communicate health parameters and actuate medical treatments. 
Sensor nodes (e.g., breathing/sweat, pulse, motion) convert physiological information into digital signals which 
are wirelessly relayed to a central decision-making base unit, and actuator nodes, exemplified by an implantable 
drug delivery device, convert digital signals into biochemical fluxes. Data transferred from the BAN to cloud 
data handling services can be utilized for direct contact with care providers or emergency services, as well 
as decision making, analysis, and improved treatment schemes (which can be relayed back to the BAN). The 
features labeled in black are included in the DNS proof-of-concept while greyed-out features are meant to 
illustrate the broader vision for the DNS platform. X-ray illustrations adapted from SciePro/Shutterstock with 
permission.
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seizure) implies that personalized solutions would have an immense impact on early prevention22. For these 
reasons, we chose a significantly simplified model of a movement disorder to demonstrate the DNS: movement 
was exemplified by motion/gestures and therapy was exemplified by highly localized chemical delivery.

The sensory input comprised wearable sensors incorporated into textiles that were able to capture human 
motion. We chose to use wearable strain sensors, as this type of sensor has been shown previously as a viable 
system for capturing such motion23. The wearable strain sensors chosen—based on mechanical durability and 
robustness—were comprised of stretchable carbon electrodes separated by a dielectric (polyurethane, PU), all 
encased by acrylic tape and polydimethylsiloxane (PDMS) layers and a textile cover (Fig. 2a)24. The sensors 
exhibit variation in capacitance depending on geometrical changes with low hysteresis characteristics. In brief, 
as the sensor is stretched along its long axis, the width and thickness are reduced in accordance with the Pois-
son effect resulting in an overall increased capacitance. Assuming the elastomer behaves as an isotropic and 
incompressible material, the capacitance follows the ideal parallel-plate model with a linear relationship between 
capacitance and strain. This model predicts a capacitive gauge factor of 1, defined as (ΔC/C0)/ε where ΔC denotes 
change in capacitance, C0 initial state capacitance, and ε strain. We investigated the samples’ sensitivity and 
stretchable capabilities by cycling the sensors at a deformation rate of 5 mm/s with increasing strains. Defor-
mation and relative capacitive changes of sensors of two different lengths, short and long (30 and 50 mm, both 
10 mm wide), showed excellent linearity with strain ranging from 0 to 50% and a capacitive gauge factor of 1.0 
(r2 = 0.98, Fig. 2b). The sensors maintain their sensitivity for strains up to 50% and exhibit high durability (1000 
cycles between 20 and 40% and 30–50% strain repeated twice, Figs. S1, S2). The capacitive sensors exhibit low 
hysteresis behaviour as quantitatively assessed by calculations of the degree of hysteresis according to previously 
established methods (Fig. S3 and Table S1)25, i.e., comparing the repetitive loading and unloading of the strain 
sensor. For 1000 cycles, experiencing the same window of applied strain, the recorded output data between the 
5th to 95th percentile falls within a relative capacitance range less than 3%.

The goal was to integrate wearable sensor nodes to detect physiologically relevant body motion and differenti-
ate between symbolic healthy and unhealthy states, using simplified model systems in place of more advanced 
healthcare applications such as detecting epileptic seizures. These model systems enabled us to determine the 
healthcare BAN’s overall abilities and to ascertain the advantages afforded by implementing deep learning on 
the sensor signals. The first model system to demonstrate monitoring of health parameters comprised a strain 
sensor fixed to a flexible belt worn across the chest or abdomen to monitor respiration via readouts using 
an Arduino platform. Sensors placed in both positions recorded distinct magnitude and frequency variations 
between inhalation and exhalation, and normal and deep breathing (Fig. S4, relative capacitive changes ranging 
between ~ 5–10% and ~ 25–30%, respectively). In contrast, abnormal breathing, such as shallow/chest breathing, 
was denoted by a lack of motion response (relative capacitive changes < 1%) in sensors placed on the abdomen, 
illustrating how multiple positions or separate sensing nodes can be used to monitor and distinguish various 
basic physiological patterns. An additional model system for monitoring distinguishable body movements and 
patterns is gesticulation, i.e., hand or finger movement (Fig. 2c). We thus manufactured a gesture capture glove 
with four wearable sensors attached to the index, middle, ring, and pinky fingers. Again, the sensor response was 
recorded via an Arduino. In this application, the sensors were strained upon finger bending resulting in relative 
capacitive changes from 0 to ~ 25% when starting from an open position and proceeding to a closed palm posi-
tion. From this it is easy to distinguish various gestures in real time, as exemplified by the familiar rock-paper-
scissor hand game (Fig. 2c). In future smart wearables, the movement repertoire can of course be expanded and 
fine-tuned by incorporating more sensor nodes. For example, as the sensors are capable of accurately detecting 
even small displacements and motions, such dynamic ∆C/C0 patterns would be capable of detecting even small 
displacements or other abnormal motion patterns.

Table 1.   Comparison of the digital nervous system (DNS) to the biological nervous system.

Component Attribute Biological nervous system Digital nervous system (DNS)

Physical sensor

Input signal Muscle extension/contraction Muscle to sensor extension/
contraction

Signal transducer Sensory nerve Stretchable sensor

Output signal Neurotransmitter, action potential Change in capacitance

Biochemical regulation node

Input/trigger signal Action potential, neurotrans-
mitter Wireless electronic signal

Biochemical release component Axon terminal, synapse Organic electronic ion pump 
(OEIP)

Output signal Neurotransmitter Neurotransmitter, neuro-active 
compound

Intra-body communication
Signal Action potentials Wireless electronic signals

Signal transporter Neurons, nerve bundles Body-coupled communication 
system (BodyCom™)

Processing and decision making
Central processing unit Central nervous system Cloud data handling system 

(Hopsworks)

Intelligence Biological neural network (brain, 
spinal cord) Deep-learning algorithms
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The organic electronic ion pump (OEIP)26,27 is an iontronic/electrophoretic delivery device exhibiting 
high electronic and pharmaceutical dose precision and established autoregulation capabilities when coupled 
to sensors28,29. For instance, electronic control over the delivery of the neurotransmitter γ-aminobutyric acid 
(GABA) resulted in highly localized suppression of epileptiform activity in rodent hippocampal slice models29. 
OEIPs are an ideal drug delivery node for the DNS because they are electronically addressable, can accurately 
translate electronic signals into precise delivery of (charged) biochemical substances (Fig. 2d–f), and have been 
demonstrated to regulate and provide therapy for neurological disorders including pain30 and epilepsy29. In 
OEIPs, the number of ions delivered is directly proportional to the time-integrated current (i.e., total charge) 
passed through the circuit. Based on this principle we manufactured a custom-made portable/wearable OEIP 
driver with current integrator circuitry. When activated, the unit supplied a constant voltage (0–5 V) to the 
OEIPs for a set amount of time or set quantity of charge delivered. The multipurpose and adaptable driver solu-
tion allowed operation of a wide range of OEIPs, which is important as pump designs and their requirements 
(voltage, delivery dynamics, etc.) vary depending on the application. The operation and control of OEIPs were 
tested using the custom driver as well as traditional source-meter units. OEIPs were either microfabricated by 
photolithographical patterning techniques31 or screen-printed32 as previously established.

OEIPs with a relatively short and wide channel (1–2 mm and 200–500 µm, respectively) exhibited the most 
noticeable visual response of actuation. The on-state of a pump (applied voltage of 3 V) was displayed through 
transportation of protons (H+) from the source reservoir containing 10 mM HCl(aq) to the target electrolyte 
containing a pH indicator (Fig. 2e; Supplementary Movie 1). This resulted in H+ gradients and nearly instant color 
change from yellow to red at the outlet, a pattern which diffused radially outward over time. Next, the controller 
circuit’s capabilities were tested by driving the OEIP at 4 V to transport the neurotransmitter acetylcholine (ACh+) 
from the source to the target. The charge limit, i.e., time-integrated current, was set over the range 100–200 µC 
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Figure 2.   Sensor and actuator/delivery nodes. (a) Capacitive strain sensors (short and long types) comprised 
of a polyurethane dielectric sandwiched by stretchable carbon electrodes encased in rubbers and textiles. (b) 
Relative change in capacitance (ΔC/C0) under repetitive cycling and increased strains, and the extracted linear 
response with strain up to 50% (2 devices of each length used/shown). (c) Signals from gesture capture glove 
with four individual finger sensors during a game of rock-paper-scissors and for incremental finger bending 
movements. (d) Illustration of an organic electronic ion pump (OEIP) delivery device comprised chiefly of 
electrodes and an ion exchange membrane (IEM), encapsulated on a flexible or rigid substrate. (e) Visualization 
of ion delivery by transportation of H+ from a source to a target electrolyte containing a pH indicator. The 
proton gradient increased and diffused radially away from the outlet during operation (3 V, on for 1 min). (f) 
Delivery of the neurotransmitter acetylcholine (ACh+, chemical structure inset) controlled by a portable driver 
unit (measuring charge as integrated current) compared to measured ACh+ amount.
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and compared to the actual amount of delivered ions in the target solution, quantified using a fluorometric assay. 
Figure 2f shows an excellent linear correlation between the set and measured amount of ACh+, revealing that the 
driver enabled direct control over delivery via determined charge limits.

A body-coupled communication (BCC) system (BodyCom system, Microchip Technology Inc.) was explored 
as a secure and energy-efficient BAN communication pathway. Our modified version of the system allowed for 
transmission of data between separate sensor nodes located at several locations on the body, granted that they 
were in close proximity (touching or within a few centimetres) to the same human body skin33. This custom setup 
thus offers a user-friendly secure connection between the sensing elements, which inform healthcare decisions, 
and actuating devices, which carry out appropriate therapies (e.g., delivery of relevant neurotransmitters). The 
electrical signal is propagated along the surface of the skin by means of a capacitive field as the communication 
pathway to transfer short messages, sensor/actuator data, keys, or identity information between BCC mobile 
tags and a base unit (Fig. S5). For this purpose, sensor responses were collected, locally processed (via Arduino) 
and translated into short messages, e.g., representing different states such as “one finger bent”, “open hand”, or 
even raw sensor data. The overall BCC systems used in our experiments consists of a base unit, provided by 
Microchip but with modified software, and a BCC mobile unit, usually referred to as the “BCC tag”, which we 
have designed and manufactured. In a typical setup there is one base unit managing communication between 
several mobile units using the capacitive coupling technique. The base unit continuously requested and received 
sensor data as well as transmitted this information to the actuator BCC tag for decision-making to trigger the 
corresponding action.

Additionally, data collected by the base unit was communicated to external mobile devices via Bluetooth. The 
sensor and actuator data could thus be forwarded to a dedicated cloud data handling service for storage, analysis, 
training of machine learning models, and eventually prediction via these models for improved detection limits 
and therapies (Fig. 3a). Here, a Hopsworks34 cloud platform was utilized and further developed to streamline the 
flow and handing of large e-health data, as more nodes can be coupled to the BAN system to increase available 
health monitoring parameters. Data gathered from individual users, or from all users, can be fed into the platform 
to optimize the decision-making model and prediction accuracy of the neural network and improved models 
can thereafter be downloaded from the cloud to the BAN nodes. An instructive experiment was carried out in 
which 16 willing individuals wore the motion-capture glove while repetitively cycling through a determined list 
of five possible gestures. Notably, the individual users’ bending response ranges and patterns varied, partially 
due to the fit of the glove (Fig. S6). The collected data was then used to train a two-layer classification network 
implemented in TensorFlow. After running the hyperparameter exploration, an accuracy of 97% was reached 
(Fig. 3b). In contrast, our first solution to predict the hand position, i.e., setting a stretch threshold of 7% to 
correspond to a finger bending, had an accuracy of 53% and finding an optimal threshold (3%) with hindsight 
only provided an accuracy of 82%. To illustrate the advantage of continuously gathering data and training, we 
measured the evolution of the accuracy with respect to the quantity of data used for the training (Fig. 3b). This 
scenario was rather simple, leading to a rapid increase in accuracy when modelled despite variations in how well 
the glove fit the participant and associated variations in strain recordings depending on hand size. However, 
considerably more complex and medically relevant questions, e.g., epileptic seizure prediction, will require larger 
data sets and distribution of sensors.

In addition to improved accuracy compared to empirically chosen decision-making thresholds for sensor 
data, deep learning provides robustness. To demonstrate this, two separate experiments were carried out: a sensor 
drift simulation (e.g., due sensor degradation/aging) and an ablation test (e.g., complete loss of one of the sensor 
signals). The simulation showed that the deep learning system can handle up to 3% drift without losing less than 
one point of accuracy (Fig. 3c). The loss in accuracy thereafter increases linearly with higher drift. In comparison, 
applying a drift larger than 3% for a threshold-based system (with a threshold of 3%) rapidly results in accuracy 
of 0. Moreover, continuously sending data to Hopsworks would allow the system to detect the drift and to train 
the deep learning system to adapt accordingly. The accuracy after training with drift taken into account was 97%. 
With a threshold-based approach the ablation of one sensor results in the impossibility of differentiating between 
two hand positions. The accuracy is at best 80% and software correction is not possible. With the deep learning 
system, the accuracy also falls under 80%. However, retraining the system allows rapid detection of the absence 
of one of the sensors, and after the retraining an accuracy of 89% is obtained. This is because the bending of 
one finger also modifies the position of the other fingers and the deep learning system can detect and use even 
slight finger position modifications to improve the accuracy. This highlights the importance of having multiple 
sensors measuring different metrics for both increased accuracy and redundancy. It also becomes apparent that 
the deep learning system can detect and learn from complex and subtle patterns, as well as handle sensor failure 
thanks to its capacity to identify hidden patterns.

The DNS proof-of-concept was achieved by bringing together all the components in a fully functional wireless 
closed loop system, as visualized in Fig. 3a (Supplementary Movie 1). The sensor node comprised the gesture 
glove, Arduino controller, and BCC-tag. The actuator node comprised the OEIP, Arduino controller, BCC-tag, 
and additional indicator LEDs. Gestures corresponded to different states that each triggered a specific action 
within the BAN, as visualized in Fig. 4. Specifically, counting on one, two, or three fingers (Fig. 4i–iii) corre-
sponded to setting three drug delivery levels (charge limits of 100, 150, or 200 µC, respectively); the “rocker” 
gesture (Fig. 4iv) signalled activation of the pump (on-state until the specified amount had been delivered); open 
palm paused the action (Fig. 4v); and closed fist (Fig. 4vi) cleared all commands and brought the system back 
to its default off-state. The base unit continuously requests the status from all mobile tags coupled to the body 
(Supplementary Movie 2). Upon a change of the state in the glove multi-sensor node, the base unit pushed the 
state to the actuator BCC tag (in real-time), while simultaneously sending the information to a mobile device via 
Bluetooth to visually confirm the state alteration and to relay information to the cloud for machine learning and 
progressively improved decision-making. During the visual confirmation, a delay between the hand gesture and 
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display on the mobile device was noted (Supplementary Movie 1), which largely stemmed from a non-optimized 
Bluetooth connection between the BCC base unit and mobile device. As can also been seen (Supplementary 
Movie 1), there was no delay between the hand gesture and activation at the actuator tag (OEIP). Once the 
actuator tag receives a specific state, it transmits the corresponding decision for action to the controller unit to 
engage the OEIP according to the previously described protocols. OEIP operation was visually aided by an array 
of three LEDs, where setting of three drug delivery levels was represented by turning on one, two, or three LEDs 
(indicating 100, 150, or 200 µC, Fig. 4i–iii); the on-state was displayed by blinking (Fig. 4iv); and all LEDs were 
turned off as the system was cleared (Fig. 4vi). As soon as a given pumping sequence was completed, the status of 
the actuator node changed and was detected upon the next status request by the base unit and thereafter relayed 
to the mobile device via Bluetooth. Additionally, all data received by the mobile device could be uploaded to the 
cloud service. The stored sensor and actuator data can thereby be accessed by the user or their physician, and 
further evaluated to improve detection and treatment schemes.

Discussion
A key-component of future digital healthcare is a complete patient-adapted system for diagnosing and decision-
making, which initiates optimal protocols to suppress symptoms and therapy. It should be grounded on reli-
ably generated data, safe transfer and communication of information, accurate and swift decision-making, and 
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Figure 3.   Digital nervous system integration and implementation of machine learning. (a) The DNS proof-of-
concept, where the sensing node (glove) state was received by the base unit/tag (in contact with person, but out-
of-view during filming) and forwarded to the actuator node (ion pump) through the capacitive field of the body. 
The received state was further sent from the base unit to the mobile device via Bluetooth for interaction with 
the Hopsworks cloud-based machine learning system (steps 1–4 and a–e). (b) Accuracy of a neural network 
classification of the hand position as a function of the quantity of data used to train it, compared to the accuracy 
of an initial estimated threshold and an optimized threshold corresponding to bent fingers. (c) Accuracy of a 
neural network classification of the hand position as a function of the simulated drift in sensor measurements 
compared to the training data. The drift was applied on one finger (grey) or all fingers (orange) at the same 
magnitude. Photographs in part a taken by Thor Balkhed at Linköping University, and used with permission.
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personalized and precise delivery of treatments. Here, we have chosen two model systems (breath, gesticula-
tion) of highly personalized information to determine the DNS’s capabilities and ascertain if deep learning can 
be used to increase the robustness and utility of the system, making the leap from wellness applications (e.g., 
wearable fitness trackers) to true healthcare applications feasible. Therapy for neurological disorders is the ulti-
mate goal for the DNS. We thus aim to develop and demonstrate an integrated and complete digital healthcare 
system recording relevant physical parameters to dictate the delivery of neurotransmitters, e.g., for supressing 
epileptiform activity22.

After embracing these challenging criteria, we developed a comprehensive organic–inorganic sensor-actuator 
BAN, coupled to cloud-based deep learning. The resulting system comprises sensing and recording of body 
motion, parallel transmission of data to the cloud for neural network training and via body-coupled communi-
cation to electronically drive the delivery of biochemical substances (the neurotransmitter acetylcholine). This 
is achieved on the scale of 1 Hz (Fig. 2d–f, Fig. 4, Supplementary Movie 1) which is within the temporal range 
of neurological disorders and symptoms such as pain35, epilepsy22, and tremor36. In future embodiments of the 
system, advances in high-speed OEIP technology (on the scale of 1–10 ms switching37,38) could greatly enhance 
temporal dynamics.

In this demonstration of a digital nervous system we have included organic bioelectronic sensor and actuator 
nodes, owing to their desirable characteristics with respect to flexibility, stability, and biocompatibility, and with 
the focus on large-area wearable sensors and implantable electronic-to-biochemical actuation. One leg of the 
parallel communication pathways includes low-power body-coupled communication built up from inorganic 
(Si, metal) electronics, which is based on capacitive coupling operating at 125 kHz, providing secure transmis-
sion of low bitrates confined to the body. The other is based on Bluetooth, connectivity to the cloud and deep 
learning, the latter performed using the scalable Hopsworks cloud platform which is optimal for large data and 
multi-node systems. These two legs of the system also exhibit different timescales and thus different modes of 
application in e-health settings. The faster BAN (without relying on the cloud) would be ideal for rapid decision 
making such as treating an oncoming epileptic seizure. The cloud-enabled component, relying on local internet 
connectivity and latency to the nearest data center, would be more ideal for updating on-body algorithms/models 
or for much less time-sensitive decision making, such as adjusting dosages over the course of hours or days. In 
terms of power needs, the total peak power consumption is around 250 mW in the full setup. However, the most 
power-hungry components, e.g., Bluetooth and excessive amount of interfacing circuits, can be reduced. The 
system can be refined by putting more devices into sleep mode, migrating to the latest BLE standard, or reducing 
the complexity of the BCC base board. We find that the power can be reduced by a factor of almost 15 down to 
below 20 mW (almost 150 h with a coin cell battery) by optimizing the discrete components. Power consumption 
can be further reduced by integrating more functionality in dedicated ASICs. By strategically marrying organic 
and inorganic systems, we were able to harness the unique features of organic electronics and the computing/
communication power of inorganic systems39.

However, this integration also exposes a number of challenges, which provide crucial input for further devel-
opment within relevant research fields. Using machine learning, and particularly deep learning, in healthcare 
benefits early disease detection and patient care11 but it requires a significant amount of training data. Reli-
able wearable sensors that provide operational and long-term stability, with suitable output characteristics that 
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Figure 4.   Demonstration of the digital nervous system (DNS) proof-of-concept. Time-lapse and corresponding 
image panels (system overview, sense and actuator nodes; Supplementary Movie 1) displaying: setting the drug 
dispensing levels by counting to three (i–iii), pump activation by ‘rocker’ gesture (iv), pausing (v), and clearing 
the system (vi) and associated LED array responses next to an inserted ion pump. Photographs taken by Thor 
Balkhed at Linköping University, and used with permission.
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empower easy implementation into digital communication and processing, are therefore crucial. With body-
coupled communication, low operational and standby power is yet another important factor, suggesting the use 
and further development of organic sensors and actuators that consume minimal amounts of energy while in 
drift or at rest, as well as self-powered concepts40,41. Another challenge relates to the narrow bandwidth of body-
coupled communication, which results in an increased probability for data packet collisions as the number of 
pathways and nodes increases. Furthermore, connectivity to conventional complementary metal–oxide–semi-
conductor (CMOS) technology becomes challenging since the number of contact pads on the CMOS device 
drives cost. With multiplexers and demultiplexers, realised in printed organic electronics, fewer contact pads 
on lower-cost silicon chips can then handle a very large number of peripheral wearable sensor and actuator 
nodes. This then goes hand in hand with our results that clearly show that multiple sensors and accurate sensing 
facilitate robust deep learning for decision making and reduce the need for frequent retraining. To enable such 
complexity, while simultaneously miniaturizing individual nodes, custom-made application-specific integrated 
circuit application-specific integrated circuits (ASICs) can be implemented. ASICs would replace bulky circuit 
boards and generic controllers. Once the substantial ASIC development cost is overcome, the cost-per-unit could 
greatly reduce the cost of integrated healthcare systems as we demonstrate here. Finally, security, integrity, and 
reliability of connected wearable IoT technology is yet another challenge indicating the importance of develop-
ing and implementing tailor-made protocols for encryption and identification keys that ensure immunity to 
eavesdropping or interference of sensitive information and eventual therapies.

Methods
Sensor node.  Strain sensor fabrication.  Strain sensors (C-Stretch) were manufactured by Bando Kagaku. 
Sensors of two different lengths were utilized (10 mm wide, and 30 or 50 mm long for short and long sensors, 
respectively). The sensors are designed to be longer in the strain direction and are thus more sensitive to strain 
in the “intended” (long) direction. In terms of sensitivity, they exhibit a linear capacitance response up to 200% 
and limit of detection 10% (or lower)42.

Characterization.  A linear stretcher equipped with a stepper motor controlled by a custom-made LabVIEW 
program was used to apply tensile strains. The sensors were fixed to the stage and repetitively loaded and unloaded 
with strains ranging from 0 to 50% increasing stepwise. The durability and stability were further assessed by 
cycling 1000 times between 20–40% and 30–50% strain (repeated twice). Sensors were fixed to a stretchable belt 
and glove for breathing and gesture capturing experiments. The sensors were coupled to an Arduino Uno or Pro 
Mini microcontroller board (ATmega328P) either directly or wirelessly (Arduino Bluetooth unit) connected to 
a computer for data acquisition of capacitive responses during stretching and on-body tests.

Communication nodes.  Body‑coupled communication.  The body-coupled communication system 
(BodyCom) base board development kit was acquired from Microchip Technology Inc. The development board 
makes use of capacitive coupling to communicate between sensors in or around the vicinity of the human body. 
Both base and mobile units were equipped with a touch sensor and a coupling pad as a means of contact to the 
human subject. BCC mobile-tags were re-designed to allow access to the microcontroller’s serial communica-
tion functionality such that they could easily communicate with the sensor and actuator nodes. The BCC units 
communicate at a default low frequency of 125 kHz, which does reduce the bandwidth, but offers a more secure 
communication as the signal will not radiate as much. The system can be made robust against interference from 
other sensors as the base board decides by polling which BCC mobile tag should be allowed a communication 
slot. Additional information on the BodyCom is found in the Supplementary Material.

Cloud service and security.  Hopsworks is a secure big data multitenant platform, relying on the concept 
of projects to ensure its security and multitenancy. A project is a set of users and datasets. Each user of the plat-
form is given a different identity (project user) for each of the projects they are part of, guaranteeing that a user 
cannot cross reference data from one project to the other. Datasets can be shared between projects only if the 
project administrator allows it. An example of utilization would be to have a project for a patient with the patient 
and their doctor as member of the project. They could then decide to share some of the project datasets with a 
deep learning project to improve the accuracy of the patient treatment. Thanks to the project isolation the data, 
scientists working on the deep learning project are not able to compare the data of this project to data they may 
have access to in other projects, thus ensuring privacy of the patient. Project users are securely identified using 
X.509 certificates and JSON Web Tokens (JWTs). The certificates are used inside Hopsworks to identify the pro-
ject user and to encrypt communication between machines (TLS). JWT tokens are used for the user to connect 
to Hopsworks. For the mobile phone to connect and send data to the cloud, the user needs to first download 
their JWT token on their phone. They then use this token to establish the connection with the cloud, and the 
communication between the phone and Hopsworks is secured using the HTTPS protocol.

Decision‑making and machine learning.  Deep learning.  Machine-learning algorithms are used to 
make predictions about events and trends of interest in the patient sensor readings. Sensor data flows from 
mobile phones to Hopsworks, and decisions can be taken at any point along the way. Time-critical decisions can 
be taken at the mobile phone, where embedded models, built e.g., with TensorFlow lite, can be used to identify 
critical events and notify the patients or systems immediately. The sensor data, used to train these models, is 
forwarded to Hopsworks that collects and archives all sensor data in HopsFS43, that can scale to store hundreds 
of petabytes. Decisions can also be taken in stream-processing applications deployed Hopsworks. These applica-
tions receive streams of sensor data from the mobile phones and can use higher quality models (that are too big 



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7757  | https://doi.org/10.1038/s41598-021-87177-z

www.nature.com/scientificreports/

to fit on a mobile phone), and further take actions at the level of groups—for example, it could notify groups of 
patients if an event is of relevance to the group as a whole. As Hopsworks contains the archived sensor data, it is 
also the place where machine learning models are trained, either on GPUs for deep learning or CPUs for classical 
approaches, such as decision trees and k-means clustering.

Actuator node.  Device manufacture.  Organic electronic ion pumps were manufactured by either stand-
ard photolithography methods or via screen-printing in accordance with previously reported procedures31.

OEIP control and testing.  Ion pumps were controlled and tested using a source meter (Keithley) or a custom-
made driver (combined voltage supply and integrator). Chemicals and solvents were purchased from Sigma 
Aldrich unless otherwise specified. For visualization experiments, 10 mM HCl(aq) was pumped to a target elec-
trolyte containing a pH indicator (2.5 mM methyl red in 100 mM KCl(aq)). OEIPs were filmed for ~ 3 min upon 
applying a voltage of 3 V and monitored for 5 min prior to pump activation. In experiments to assess dosage con-
trol for the OEIPs, 25 µl acetylcholine chloride (10 mM, aq) and KCl (10 mM, aq) were placed in the source and 
target reservoirs. The controller was used to apply a potential of 4 V until a determined charge limit was reached. 
The 25 µl target solution was collected and 95 µl of KCl solution was placed on the target, mixed and added to 
the collected target aliquot to ensure all delivered acetylcholine was collected. The concentration of acetylcholine 
in the collected samples was measured via an Amplex Red acetylcholine/acetylcholinesterase assay kit (A12217, 
Molecular Probes) using a plate reader (Synergy H1, BioTek). The delivered acetylcholine amounts from three 
devices were measured in duplicates, averaged, and compared to the respective charge limits.

Human participants.  Experiments involving glove training and breath monitoring involved entirely CE-
marked components in contact with the body. Experiments involving the full demonstrator system involved 
non-invasive wearable components placed in short-term contact with skin. All results were obtained from vol-
unteers. The breath sensing experiments were tested on two people (both co-authors). The hand-gesture training 
utilized 16 volunteers from the Linköping University and RISE teams. The sole participant for the full demon-
strator gave written informed consent. All experiments were undertaken following Swedish state and local legis-
lation as well as Linköping University instructions for laboratory work according to the university’s Laboratory 
Safety Manual (https://​insid​an.​liu.​se/​miljo/​labor​atori​esake​rhets​handb​oken/?l=​en). All experimental protocols 
were carried out according to these regulations and approved by authority of Linköping University’s Department 
of Science and Technology which determined that ethics committee approval was not necessary.
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References
	 1.	 Atzori, L., Iera, A. & Morabito, G. The internet of things: A survey. Comput. Netw. 54, 2787–2805 (2010).
	 2.	 Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M. & Ayyash, M. Internet of things: A survey on enabling technologies, 

protocols, and applications. IEEE Commun. Surv. Tutor. 17, 2347–2376 (2015).
	 3.	 Bonomi, F., Milito, R., Zhu, J. & Addepalli, S. Fog computing and its role in the Internet of Things. in MCC’12 Proc. 1st ACM Mobile 

Cloud Comput. Workshop 13–15 (2012).
	 4.	 Verbelen, T., Simoens, P., De Turck, F. & Dhoedt, B. Cloudlets : Bringing the cloud to the mobile user. in MCS’12 Proc. 3rd ACM 

Workshop on Mobile Cloud Comput. Serv. 29–35 (2012).
	 5.	 Amendola, S., Lodato, R., Manzari, S., Occhiuzzi, C. & Marrocco, G. RFID technology for IoT-based personal healthcare in smart 

spaces. IEEE Internet Things J. 1, 144–152 (2014).
	 6.	 Famm, K., Litt, B., Tracey, K. J., Boyden, E. S. & Slaoui, M. Drug discovery: A jump-start for electroceuticals. Nature 496, 159–161 

(2013).
	 7.	 Simon, D. T., Gabrielsson, E. O., Tybrandt, K. & Berggren, M. Organic bioelectronics: Bridging the signaling gap between biology 

and technology. Chem. Rev. 116, 13009–13041 (2016).
	 8.	 Zhang, A. & Lieber, C. M. Nano-bioelectronics. Chem. Rev. 116, 215–257 (2016).
	 9.	 Liu, Y., Pharr, M. & Salvatore, G. A. Lab-on-Skin: A review of flexible and stretchable electronics for wearable health monitoring. 

ACS Nano 11, 9614–9635 (2017).
	10.	 Chung, H. U. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-

care units. Nat. Med. 26, 418–429 (2020).
	11.	 Jensen, P. B., Jensen, L. J. & Brunak, S. Mining electronic health records: Towards better research applications and clinical care. 

Nat. Rev. Genet. 13, 395 (2012).
	12.	 Chen, M., Gonzalez, S., Vasilakos, A., Cao, H. & Leung, V. C. M. Body area networks: A survey. Mob. Netw. Appl. 16, 171–193 

(2011).
	13.	 Li, M., Lou, W. & Ren, K. Data security and privacy in wireless body area networks. IEEE Wirel. Commun. 17, 51–58 (2010).
	14.	 Nagdeo, S. K. & Mahapatro, J. Wireless body area network sensor faults and anomalous data detection and classification using 

machine learning. in 2019 IEEE Bombay Section Signature Conference, IBSSC 2019 vol. 2019 (2019).
	15.	 Li, M., Enkoji, A., Key, M., Marroquin, A. & Prabhakaran, B. BSNCloud: Cloud-centered wireless body sensor data collection, 

streaming, and analytics system. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications 
Engineering, LNICST vol. 330 (2020).

	16.	 Mehrani, M., Attarzadeh, I. & Hosseinzadeh, M. Sampling rate prediction of biosensors in wireless body area networks using 
deep-learning methods. Simul. Model. Pract. Theory 105, 102101 (2020).

	17.	 Zhang, Q., Zhou, D. & Zeng, X. HeartID: A multiresolution convolutional neural network for ECG-based biometric human 
identification in smart health applications. IEEE Access 5, 11805–11816 (2017).

	18.	 Vineetha, Y., Misra, Y. & Krishna Kishore, K. A real time IoT based patient health monitoring system using machine learning 
algorithms. Eur. J. Mol. Clin. Med. 7, 2912–2925 (2020).

https://insidan.liu.se/miljo/laboratoriesakerhetshandboken/?l=en


10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:7757  | https://doi.org/10.1038/s41598-021-87177-z

www.nature.com/scientificreports/

	19.	 Nallakaruppan, M. K. & Kumaran, U. S. Hybrid machine learning model for healthcare monitoring systems. Int. J. Internet Technol. 
Secur. Trans. 10, 538–551 (2020).

	20.	 Kumar, N., Panda, S. N., Pradhan, P. & Kaushal, R. K. IoT based hybrid system for patient monitoring and medication. EAI Endorsed 
Trans. Pervasive Heal. Technol. 5, 162804 (2019).

	21.	 Tauschmann, M. & Hovorka, R. Technology in the management of type 1 diabetes mellitus—current status and future prospects. 
Nat. Rev. Endocrinol. 14, 464–475 (2018).

	22.	 Dumanis, S. B., French, J. A., Bernard, C., Worrell, G. A. & Fureman, B. E. Seizure forecasting from idea to reality. Outcomes of 
the my seizure gauge epilepsy innovation institute workshop. eNeuro 4, 0349 (2017).

	23.	 Yamada, T. et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296–301 (2011).
	24.	 Yamamoto, A. et al. Method for measuring tri-axial lumbar motion angles using wearable sheet stretch sensors. PLoS ONE 12, 

e0183651 (2017).
	25.	 Yoon, S. G., Koo, H. & Chang, S. T. Highly stretchable and transparent microfluidic strain sensors for monitoring human body 

motions. ACS Appl. Mater. Interfaces 7, 27562–27570 (2015).
	26.	 Simon, D. T. et al. Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. Nat. 

Mater. 8, 742–746 (2009).
	27.	 Arbring Sjöström, T. et al. A decade of iontronic delivery devices. Adv. Mater. Technol. 3, 1700360 (2018).
	28.	 Simon, D. T. et al. An organic electronic biomimetic neuron enables auto-regulated neuromodulation. Biosens. Bioelectron. 71, 

359–364 (2015).
	29.	 Jonsson, A. et al. Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site. Proc. Natl. Acad. Sci. 113, 

9440–9445 (2016).
	30.	 Jonsson, A. et al. Therapy using implanted organic bioelectronics. Sci. Adv. 1, e1500039–e1500039 (2015).
	31.	 Arbring Sjöström, T. et al. Cross-linked polyelectrolyte for improved selectivity and processability of iontronic systems. ACS Appl. 

Mater. Interfaces 9, 30247–30252 (2017).
	32.	 Cherian, D. et al. Large-area printed organic electronic ion pumps. Flex. Print. Electron. 4, 022001 (2019).
	33.	 Kazim, M. I., Kazim, M. I. & Wikner, J. J. An efficient full-wave electromagnetic analysis for capacitive body-coupled communica-

tion. Int. J. Antennas Propag. 2015, 245615–245621 (2015).
	34.	 Ismail, M., Gebremeskel, E., Kakantousis, T., Berthou, G. & Dowling, J. Hopsworks: Improving user experience and development 

on hadoop with scalable, strongly consistent metadata. in Distributed Computing Systems (ICDCS), 2017 IEEE 37th International 
Conference on 2525–2528 (IEEE, 2017).

	35.	 Dubin, A. E. & Patapoutian, A. Nociceptors: The sensors of the pain pathway find the latest version: Review series Nociceptors: 
The sensors of the pain pathway. J. Clin. Invest. 120, 3760–3772 (2010).

	36.	 Sapir, N., Karasik, R., Havlin, S., Simon, E. & Hausdorff, J. M. Detecting scaling in the period dynamics of multimodal signals: 
Application to Parkinsonian tremor. Phys. Rev. E 67, 031903 (2003).

	37.	 Jonsson, A., Arbring Sjöström, T., Tybrandt, K., Berggren, M. & Simon, D. T. Chemical delivery array with millisecond neuro-
transmitter release. Sci. Adv. 2, e1601340–e1601340 (2016).

	38.	 Sjöström, T. A. et al. Miniaturized ionic polarization diodes for neurotransmitter release at synaptic speeds. Adv. Mater. Technol. 
5, 1900750 (2020).

	39.	 Berggren, M. et al. Browsing the real world using organic electronics, si-chips, and a human touch. Adv. Mater. 28, 1911–1916 
(2016).

	40.	 Hwang, G.-T. et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. 
Adv. Mater. 26, 4880–4887 (2014).

	41.	 Suarez, F., Nozariasbmarz, A., Vashaee, D. & Öztürk, M. C. Designing thermoelectric generators for self-powered wearable elec-
tronics. Energy Environ. Sci. 9, 2099–2113 (2016).

	42.	 Bando C-STRETCH product sheet. https://​www.​bando​grp.​com/​eng/​devel​opment/​pdf/​artic​le_​en_​01.​pdf.
	43.	 Niazi, S. et al. HopsFS: Scaling hierarchical file system metadata using NewSQL databases. in Proc. 15th USENIX Conf. File Storage 

Technol., FAST 2017 89–103 (2017).

Acknowledgements
Major funding for this work was provided by the Swedish Foundation for Strategic Research, Vinnova, and 
the Japanese Science and Technology Agency. Additional funding was provided by grants from the Knut and 
Alice Wallenberg Foundation and the Önnesjö Foundation. We wish to thank Andrey Maleev and Eric Claar 
(Linköping University) for electronic back end-design and implementation, Dr Tomoyuki Yokota and Hanbit Jin 
(University of Tokyo) for aid with sensor development and input, and Theofilos Kakantousis and Robin Anders-
son (RISE SICS). The authors also thank Thor Balkhed (Linköping University) for filming, Jonas Askergren 
(NyTeknik) for inspiration and assistance with Fig. 1, Per Janson and Dr Robert Brooke (conceptualized.tech) for 
visualization input and movie editing, and Dr Jae Joon Kim for significant assistance in reviewing the manuscript.

Author contributions
J.D., T.S., J.J.W., G.G., D.T.S., and M.B. conceived and supervised the project. A.A., S.P., P.A., R.L., H.J., E.G., 
Y.K., D.C., T.A.S., and G.B. designed and/or performed research. A.A., D.T.S., and M.B. wrote the manuscript 
with input from all authors.

Funding
Open access funding provided by Linköping University.

Competing interests 
AA, SP, PA, RL, GB, and JD are employed or contracted by the independent state-owned research institute RISE 
(Research Institutes of Sweden). GB and JD are affiliated with the company Logical Clocks AB (https://​www.​
logic​alclo​cks.​com) which commercializes the Hopsworks platform. EG, TAS, GG, DTS, and MB are shareholders 
in the small, researcher-controlled intellectual property company OBOE IPR AB (https://​www.​oboei​pr.​com), 
which owns the patents related to the ion pumps presented above. HJ, YK, DC, TS, and JJW declare no compet-
ing interests.

https://www.bandogrp.com/eng/development/pdf/article_en_01.pdf
https://www.logicalclocks.com
https://www.logicalclocks.com
https://www.oboeipr.com


11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7757  | https://doi.org/10.1038/s41598-021-87177-z

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​87177-z.

Correspondence and requests for materials should be addressed to M.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-87177-z
https://doi.org/10.1038/s41598-021-87177-z
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A digital nervous system aiming toward personalized IoT healthcare
	Results
	Discussion
	Methods
	Sensor node. 
	Strain sensor fabrication. 
	Characterization. 

	Communication nodes. 
	Body-coupled communication. 

	Cloud service and security. 
	Decision-making and machine learning. 
	Deep learning. 

	Actuator node. 
	Device manufacture. 
	OEIP control and testing. 

	Human participants. 

	References
	Acknowledgements


