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Background: The endoplasmic reticulum (ER) is an important organelle in eukaryotic
cells. It is involved in many important biological processes, such as cell metabolism,
protein synthesis, and post-translational modification. The proteins that reside within the
ER are called ER-resident proteins. These proteins are closely related to the biological
functions of the ER. The difference between the ER-resident proteins and other non-
resident proteins should be carefully studied.

Methods:We developed a support vector machine (SVM)-based method. We developed
a U-shaped weight-transfer function and used it, along with the positional-specific
physiochemical properties (PSPCP), to integrate together sequence order information,
signaling peptides information, and evolutionary information.

Result: Our method achieved over 86% accuracy in a jackknife test. We also achieved
roughly 86% sensitivity and 67% specificity in an independent dataset test. Our method is
capable of identifying ER-resident proteins.

Keywords: pseudo-amino acid composition, support vector machine, endoplasmic reticulum resident protein,
leave-one-out cross-validation, weight transfer
INTRODUCTION

The endoplasmic reticulum (ER) is an important subcellular organelle in eukaryotic cells. Two
major functions are usually recognized for ER. One is that it selectively transports secreted proteins
and membrane proteins. The other is that it retains some proteins to maintain its own structure and
function (Lavoie and Paiement, 2008). The ER proteins are sorted precisely with quality controls
(Ellgaard and Helenius, 2003; Araki and Nagata, 2011). An understanding of these processes
contributes to the elucidation of endoplasmic reticulum function and the pathogenesis of many
diseases (Paschen and Frandsen, 2001; Verkhratsky, 2002).

ER-resident proteins are an important topic in ER-related studies. Some of the ER-resident
proteins possess sorting signals, such as KDEL or KXXX, while some others do not (Stornaiuolo
et al., 2003). Over the last two decades, several efforts have been made to determine the ER sorting
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signals experimentally. For example, Teasdale and Jackson
(1996) found that UGT2 localizes to the endoplasmic
reticulum when they studied the UDP-galactosyl transporter
(UGT). They also reported that the C-terminal sequence
“LLTKVKGS” of the UGT2 is useful in the sorting process.
Kabuss et al. (2005) proved that mutating this part of the
sequence will result in re-localization of UGT2 to the Golgi
apparatus. Although wet experiments for detecting protein
localization signals can provide clear evidence and distinguish
between maintenance and return signals, performing these
experiments is always costly and time-consuming. Therefore,
computational predictions are recognized as an alternative
approach that provides useful and informative guidance to the
experimental methods.

Computational predictions of protein subcellular
localizations have been heavily studied in bioinformatics. In
the early 1990s, computational systems were developed to
recognize the sorting signals from the primary sequences of
proteins (Nakai and Kanehisa, 1991; Nakai and Horton, 1999;
Wang et al., 2014). When statistical sequence features were
introduced to represent protein sequences, machine learning-
based algorithms were employed to predict protein sorting
destinations. Many studies have tried to apply various
algorithms to predict protein subcellular localizations at
different levels in different contexts. Several online services
have proved useful in this regard. These services include
ProLoc-GO (Huang et al., 2007; Huang et al., 2008),
KnowPredsite (Lin et al., 2009), SlocX (Ryngajllo et al., 2011),
iLoc-Animal (Lin et al., 2013), iLoc-Euk (Chou et al., 2011), Cello
v-2.5 (Yu et al., 2006), HybridGO-Loc (Wan et al., 2014),
mGOASVM (Wan et al., 2012), Hum-mPloc (Shen and Chou,
2007; Shen and Chou, 2009; Zhou et al., 2017), Euk-mPloc (Chou
and Shen, 2007; Chou and Shen, 2010), HPSLPred (Wan et al.,
2017), and many others (Chou and Shen, 2008; Briesemeister
et al., 2010; Du et al., 2011; Du and Xu, 2013; Almagro
Armenteros et al., 2017; Wei et al., 2018; Chen et al., 2019).

The general-purpose protein subcellular location predictors
take ER as only one of many subcellular locations. The dataset
used for training and testing these methods does not distinguish
between ER-resident proteins and non-ER-resident proteins.
Since both of these types of proteins may be annotated with
subcellular localization ER, constructing a high-quality dataset
that is capable of separating them is important. Kumar et al.
(2017) proposed the ERPred method, using a carefully curated
dataset to distinguish the ER-resident proteins from the non-ER-
resident proteins. By using split amino acid compositions
(SAAC), they achieved a very promising result. Their results
confirmed that the peptide sequences at the terminals of proteins
are very informative in guiding the protein sorting process in the
ER. Moreover, their results revealed that even if no known
sorting signals were found on the sequence, the terminal
peptides were still very useful in identifying ER-resident
proteins (Kumar et al., 2017).

Pseudo-amino acid composition, which was proposed by
Chou (2001), has been widely applied in representing protein
sequences for predicting various attributes of proteins. By
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coupling this with many different machine-learning algorithms,
a series of consecutive successes have been achieved. These
successful efforts provide consolidated evidence that the
pseudo-amino acid compositions are capable of representing
protein sequences of various lengths using a fixed-length
numerical vector without losing much of the sequential
information (Chou, 2011; Chou, 2013; Chou, 2015).

In this study, we introduced a U-shaped weight-adjustment
function to improve the pseudo-amino acid compositions. The U-
shaped weight-adjustment function transfers weights from the
middle-positioned residues to those at the terminals. Besides the
weight-adjustment function, we have made two more
augmentations to the original pseudo-amino acid compositions.
One is to introduce the auto-cross covariance pseudo-factor form,
which has been applied in finding protein folding patterns (Dong
et al., 2009). The other is to incorporate positional-specific
physicochemical properties, which have been applied in
predicting protein submitochondrial locations and sub-Golgi
locations (Du and Yu, 2013; Jiao and Du, 2017; Zhao et al., 2019).

Our method actually emphasizes the terminal signaling
peptide information in pseudo-amino acid compositions. We
expect that our approach can be applied not only in predicting
ER-resident proteins but also in other topics associated with
analyzing protein sorting and localization processes.
MATERIALS AND METHODS

Benchmarking Datasets
In this study, we took the ERPred dataset as our benchmarking
dataset. Kumar et al. (2017) released this dataset along with their
ERPred study. The ERPred dataset contains two parts: the
training set and the independent testing set. Table 1 gives a
breakdown of the entire ERPred dataset. The training set
contains 124 ER-resident proteins and 1200 non-ER-resident
proteins. The independent testing set contains 65 ER-resident
proteins and 2900 non-ER-resident proteins. It is obvious that
this dataset is highly imbalanced. The number of non-ER-
resident proteins is about 10 times that of the ER-resident
proteins in the training set and over 40 times that in the
independent testing set. The identifiers of the proteins in the
benchmarking dataset are listed in the supplementary materials
(Tables S1–S3).

Sequence Representations
The ERPred study applied SAAC sequence representations. The
result of ERPred implied that the terminal peptides contain more
TABLE 1 | Breakdown of the dataset.

Data set ERRP
a

non-ERRP
b

Training set 124 1200
Independent testing set 65 2900
Dece
mber 2019 | Volume 10 |
aERRP, Endoplasmic reticulum resident proteins.
bnon-ERRP, Non-endoplasmic reticulum resident proteins.
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information for sorting proteins to ER (Kumar et al., 2017).
Therefore, we introduced a U-shaped weight-adjustment
function to transfer weights from those residues in the middle
part of the sequence to those at the terminals of the sequence.
Besides this improvement, we incorporated the sequential
evolution information using the posit ional-specific
physicochemical properties (PSPCP) (Du and Yu, 2013; Jiao
and Du, 2017), as well as the auto-cross covariance form pseudo-
factors (Dong et al., 2009).

In order to explain our method properly, we developed a new
set of matrix-based notations to describe the Type-II classic
pseudo-amino acid compositions, also known as the amphiphilic
pseudo-amino acid compositions (Chou, 2005). These new
formulations, in mathematics, equal the original ones but with
a much simpler appearance. We first give the definitions of the
all-ones vector and the shifting matrix.

An n-D all-ones vector is defined as follows:

Jn = d1 d2 ⋯ dn½ �T , (1)

where di = 1 (i = 1, 2, …, n).
An n-sized shifting matrix is defined as:

Mn = mi,j

� �
n�n, (2)

where

mi,j =
1 , when i − j = 1;

0 , otherwise
(i = 1, 2, :::, n, j = 1, 2, ::, n)

(
(3)

A given protein sequence p with length l can be represented as
a string:

p = r1r2 ⋯ rl , (4)

where rj (j = 1, 2,…, l) is the j-th residue on the protein sequence.
Every residue represents one of twenty different kinds of amino
acids. We use a 20-D binary vector Aj to represent rj (j = 1, 2,
…, l):

Aj = a1,j a2,j ⋯ a20,j
� �T , (5)

where

ai,j =
1 ,when rj is the i−th type amino acid;

0 , otherwise
i = 1, 2,…, 20, j = 1, 2,…, lð Þ

(

(6)

The whole sequence can be represented using a matrix,
as follows:

A pð Þ = ½A1 A2 ⋯Al�T , (7)

where A(p) is a matrix-based sequence representation, and Aj

(j = 1, 2, …, l) as in Eq. (5).
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When the PSSM can be created using the PSI-BLAST
program for protein p, we can obtain a normalized PSSM
scoring matrix for p, as elaborated in (Du and Yu, 2013). The
normalized PSSM scoring matrix is denoted as follows:

B pð Þ =

b1,1 b1,2 ⋯ b1,l

b2,1 b2,2 ⋯ b2,l

⋮ ⋮ ⋱ ⋮

b20,1 b20,2 ⋯ b20,l

2
666664

3
777775

T

, (8)

where the following normalization condition is satisfied:

o
20

i=1
bi,j = 1 j = 1, 2,…, lð Þ (9)

We define the following matrix to combine matrix B(p) and
matrix A(p):

S pð Þ =
EB pð Þ , when PSSM can be created for protein p;

EA pð Þ , otherwise :
,

(

(10)

where matrix E is a weight-adjustment matrix. It can be defined
as a diagonal matrix, as follows:

E = diag e1 e2 ⋯ elð Þ, (11)

where ej (j = 1, 2,…, l) is a weight-adjustment factor for the j-th
residue on the sequence. It is computed by a U-shaped function,
as follows:
ej = l
exp k 2j − lð Þ=l½ � + exp k l − 2jð Þ=l½ �

o
l

j=1
exp k 2j − lð Þ=l½ � + exp k l − 2jð Þ=l½ �ð Þ

j = 1, 2,…, lð Þ,

(12)

where k is a weight distribution parameter, exp(.) is the
exponential function, l is the length of the sequence, and j is
the j-th residue.

Given a type of physicochemical property H, the values for
20 different types of amino acids can be represented using a
20-D vector.

H = h1 h2 ⋯ h20½ �T , (13)

where hi (i = 1, 2,…, 20) is the physicochemical property value of
the i-th type amino acid. We use the following method to
standardize the physicochemical property vector:

Ĥ = H −m Hð ÞJ20ð Þ=sd Hð Þ, (14)

where J20 is a 20-D all-ones vector,

m Hð Þ = HTJ20=20, (15)
December 2019 | Volume 10 | Article 1231
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and

sd Hð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HTH=20 −m2 Hð Þ

q
: (16)

In this study, we took two different kinds of physicochemical
properties into consideration: the hydrophobicity and
hydrophilicity of amino acids. We denote them as H1 and H2,
respectively. We define the sequence auto-cross covariance
matrix of physicochemical properties as:

Ru,v pð Þ = S pð ÞĤuĤ
T
v S

T pð Þ, (17)

where u, v ∈{1,2}.
The k-th order covariance factor can be defined as:

tk,u,v pð Þ = tr Ru,v pð ÞMk
l

� �
= l − kð Þ, (18)

where tr(.) computes the trace of a matrix,Ml the l-sized shifting
matrix, and u, v as in Eq. (17). For every given value of k, a 4-D
covariance vector can be generated as:

qk pð Þ = tk,1,1 pð Þ tk,1,2 pð Þ tk,2,1 pð Þ tk,2,2 pð Þ½ �T : (19)

By setting the maximum value of k, which is denoted as l, we
can use a 4l-D vector to contain all covariance factors as:

Vl pð Þ = qT1 pð Þ qT2 pð Þ … qTl pð Þ� �T
: (20)

Considering the weight-adjustment factors, the 20-D
conventional amino acid composition vector can be
constructed as follows:

C pð Þ = S pð ÞJl=l : (21)

We can combine the Vl(p) and the C(p) to create a (20 + 4l)-
D vector to represent the protein sequence p, as follows:

F pð Þ = CT pð Þ
CT pð ÞJ20+wVT

l pð ÞJ4l
wVT

l pð Þ
CT pð ÞJ20+wVT

l pð ÞJ4l

h iT
, (22)

where w is a balancing parameter between 0 and 1. We use F(p)
to represent protein p in this study.

Prediction Algorithm
We employed a support vector machine (SVM) as the prediction
algorithm. The SVM searches for an optimal separating hyper-
plane in the high-dimensional feature space, which is widely used
in bioinformatics problems (Liao et al., 2018; Meng et al., 2019a;
Meng et al., 2019b). The hyper-plane can maximize the margin
in the feature space. We applied the radial basis function (RBF)
as the kernel function in SVM, because the RBF kernel function
is the most flexible and the most widely used of such functions. It
can be defined as follows:

K F pð Þ,F qð Þð Þ = exp � g F pð Þ − F qð Þj j2	 

, (23)

where p and q are two proteins, and |.| is the operator that
computes the Euclidean length of a vector.

Due to the dataset imbalance, we developed a voting scheme
to use all samples in the dataset. We partitioned the negative
samples into m subsets. The first m - 1 subsets have an equal
number of negative samples as that of all the positive samples.
The remaining subset contains all the remaining negative
samples. For each of these m subsets, all the positive samples
Frontiers in Genetics | www.frontiersin.org 4
were replicated to compose a training subset. We trained the
SVM classifier on each of these training subsets. The final
prediction result is the majority result of these m classifiers.
Figure 1 is a flowchart of the entire algorithm.

Evaluation Method
Three validation methods are commonly applied in evaluating a
bioinformatics predictor. They are known as the self-consistency
test, jackknife test, and independent dataset test (Jiao and Du,
2016). Of them, the jackknife test is usually considered as the
most objective and rigorous (Chou and Zhang, 1995). However,
some recent studies have shown that the independent dataset test
can provide even better estimation to the true performance if a
sufficiently large testing dataset can be given (Jiao and Du, 2016).
Due to the limited size of the training dataset and the fact that
our training dataset is highly imbalanced, we applied the
jackknife test to estimate the prediction performance of our
method. We also evaluated our method using the independent
testing dataset, which allowed us to compare our method to the
state-of-the-art methods in a fair manner.

Four statistics were applied to measure the prediction
performances of our method quantitatively. They are the
FIGURE 1 | Flowchart of the algorithm. The input sequence will be first
converted to matrix-based notations. These notations will be converted into
fixed-length numerical vectors, which can represent the sequence order
information, the evolutionary information, and the importance of the terminal
signaling peptides.
December 2019 | Volume 10 | Article 1231
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sensitivity, specificity, overall accuracy, and the Matthew’s
Correlation Coefficient (MCC). They are defined as follows:

Sen =
TP

TP + FN
, (24)

Spe =
TN

TN + FP
, (25)

Acc =
TP + TN

TP + TN + FP + FN
, (26)

MCC =
TPTN − FPFNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ FP + FNð Þ TN + FNð Þp , (27)

where Sen is the sensitivity, Spe the specificity, Acc the overall
accuracy, MCC the Matthew’s Correlation Coefficient, and TP,
TN, FP, and FN are the number of true positives, true negatives,
false positives, and false negatives, respectively.

Parameter Calibrations
Several parameters can be adjusted in our method. The values of
these parameters affect the prediction performances. We applied
a grid-search strategy to optimize the jackknife test performance
by scanning different combinations of the values of k, l, and w.
The parameter k was scanned in the set {0, 0.01, 0.1, 1, 1.5}, the
parameters l from 2 to 20 with a step of 1, and the parameter w
from 0.05 to 0.95 with a step of 0.05. For each parameter
combination, we use another grid-search to find the best values
of c, g, and w, where c is the cost parameter of SVM, g is the
parameter in the RBF kernel, and w is the class weight ratio
between two classes. In this study, we applied the SVM functions
in the scikit-learn python package. The grid search of SVM
parameters was conducted automatically with a python script.
RESULTS AND DISCUSSION

Performance Analysis and Comparison
We obtained the optimized combination of parameters when k =
0.1, l = 16, w = 0.55, c = 1000, g = 0.01, and w = 1.2. The PSSM
matrix was created using the PSI-BLAST program with three
iterations and 0.001 as the threshold of e-values.

In the jackknife test, our method can correctly identify 111
out of all 124 ER-resident proteins. The prediction performance
values are recorded in Table 2, with comparison to the
ERPred method.

According to these performance values, our method performed
better than the ERPredmethod. Our method achieved a sensitivity
of 83.06% and a specificity of 86.38%, which are both higher than
the values for ERPred on the same dataset.
Frontiers in Genetics | www.frontiersin.org 5
Independent Dataset Test
The training dataset of our work is identical to that used for
ERPred. This dataset is highly imbalanced. To further eliminate
the concern of over-estimated performances, we performed
testing with an independent dataset. We took the same
independent testing dataset as used in the ERPred method.
The independent testing dataset was processed by the predictor
that was trained with the training dataset. The prediction
performances of our method are recorded in Table 3.
Although the specificity is lower than that from the jackknife
test, the sensitivity value remains almost unchanged. Therefore,
we think the prediction performance is not over-estimated.

We also entered the same testing dataset into several other
predictors for comparison. The compared predictors include
ERPred (Kumar et al., 2017), Cello v2.5 (Yu et al., 2006), iLoc-
Euk (Chou et al., 2011) and Euk-mPLoc 2.0 (Chou and Shen,
2007; Chou and Shen, 2010), which all provide the option to
identify ER proteins. According to the prediction performance
values, our method has the best sensitivity. However, the
specificity of our method is lower. The results indicate that
Cello and iLoc-Euk tend to assign non-ER locations to an ER-
resident protein. They increase the specificity by severely
sacrificing the sensitivity. As the nature of the ER-resident
proteins is that the number of non-ER resident proteins is
much larger than the resident ones, we think it is acceptable to
sacrifice some specificity for the balance to the sensitivity. The
ERPred method, Euk-mPLoc 2.0, and our method have a better
balance between sensitivity and specificity. Particularly, it seems
that the Euk-mPLoc 2.0 method has the best performance, as it
achieves over 66% sensitivity while maintaining over 99%
specificity. However, it should be noted that Euk-mPLoc 2.0 is
not specifically designed to identify ER-resident proteins. Some
of the proteins in the testing dataset may have already been used
as training samples when Euk-mPLoc 2.0 was developed. This
may result in an over-estimated performance value in the
comparison. Another factor that should be noticed for Euk-
mPLoc 2.0 is that it relies on GO annotations, which makes it not
an ab initio predictor. Although using GO annotations is
common in developing this kind of predictor (Du and Xu,
2013), comparing an ab initio predictor with a homology
search-based method is not a fair comparison. Therefore, we
believe that our method has, at least, comparable prediction
performance to other existing methods. Especially in identifying
ER-resident proteins, our method should be considered with a
h igher pr io r i t y than genera l -purpose subce l lu l a r
location predictors.
TABLE 2 | Prediction performance estimations using a jackknife test.

Methods Sensitivity Specificity Accuracy MCC

This work 83.1% 86.4% 86.1% 50.6%
ERPred 79.8% 81.6% 81.4% 42.0%
TABLE 3 | Prediction performance comparison using the independent dataset.

Methods Sensitivity Specificity

This work 85.7% 67.2%
ERPred 72.3% 83.7%
Cello 2.5 16.9% 99.9%
iLoc-Euk 15.4% 99.8%
Euk-mPloc 2.0 66.2% 99.0%
December 2019 | Volume 10 |
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Effects of the Residue Weight-Transfer
Function
The ER-resident proteins can be roughly divided into two
different types. One type is proteins with a specific C-terminal
tetra-peptide signal, which usually has a form like KDEL or
HDEL. The other type is proteins without this kind of signaling
peptide on either its C-terminal or N-terminal. The latter types
of proteins usually have an N-glycan modification or similar
modifications like cereal prolamin storage proteins (Stornaiuolo
et al., 2003). In our training dataset, we searched for the tetra-
peptide signals by using ProSite. We found only 41 signaling
peptides in all of the 124 ER-resident proteins. In our testing
dataset, we performed the same search. We found only 11
singling peptides in all of the 65 non-ER-resident proteins.
Therefore, it is not practical to identify ER-resident proteins
using only the signaling peptide information. This observation is
consistent with the motivation of the ERPred study.

ERPred is a very powerful and useful computational method. It
introduces SAAC sequence representations, which successfully
emphasize the terminal signaling sequence information.
However, the sequence order information is lost in the amino
acid composition representations. Although the pseudo-amino
acid composition representation can preserve the sequence order
information, it cannot emphasize the terminal signaling peptides in
the protein sequence. Therefore, we introduced a U-shapedweight-
transfer function into the pseudo-amino acid composition in this
study. The purpose of this weight-transfer function is to emphasize
the terminal signaling information and also to incorporate the
sequence order information. However, it is difficult to decide how
many weights should be transferred to the terminals from the
Frontiers in Genetics | www.frontiersin.org 6
middle part of a sequence. We formulate this factor as a parameter
k in Eq. (12). Figure 2 illustrates the shape of the function with
different k values. Figure 2 enables an intuitive understanding of
this U-shaped weighting function. The larger the value of k, the
more weights are transferred to the terminals of a sequence. Please
also note that Figure 2 is only an intuitive illustration of the U-
shaped function when the length of a protein is 100. The crossing
point under this condition cannot be extended to other cases.

To find an optimized k value, we trained and tested predictors
with different k values. Figure 3 plots the performance values
with different k. The sensitivity increases slightly with an increase
in k. The specificity peaks when k = 0.1. Therefore, at least for
predicting ER-resident proteins, k = 0.1 creates a good weight-
transfer function.

The choice of using a U-shaped function rather than another
shape is not easy. Since we do not know how much weight should
be transferred, this must be an adjustable parameter in the
function. Besides, we need to make the function satisfy the
following conditions at the same time: (1) all weights are
positive; (2) the sum of all weights equals the sequence length;
(3) the portion of the weight-increased part and weight-decreased
part remains almost unchanged when we adjust the amount of
weight that is transferred. This will make the function only transfer
weights among residues, not create or remove total weight. The U-
shaped function not only satisfies all these conditions but also
provides us with a simple way to implement it.

Sequence Representation Augments
Besides the U-shaped weight-transfer function, we augmented
the classic amphiphilic pseudo-amino acid compositions in two
FIGURE 2 | Illustration of the U-shaped weight-transfer function with various k values. The U-shaped function transfers weights from the middle part of a sequence
to its terminals. The total weight of a sequence does not change after applying the U-shaped weight-transfer function. When the parameter k is 0, every residue on
the sequence has equal weights, which will produce identical results as where there is no weight-transfer function. When the value of k increases, more and more
weights are transferred from the residues in the middle part of a sequence to the residues on its terminals.
December 2019 | Volume 10 | Article 1231
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ways. One is to use auto-cross correlation to replace the auto-
correlation in the classic amphiphilic pseudo-amino acid
compositions, while the other is to use matrix-based notations
to represent the sequence itself.

The advantage of using auto-cross correlation over auto-
correlation has been proved in predicting protein folding
patterns (Dong et al., 2009). The matrix-based sequence
notations see each residue on the sequence as a 20-D
composition vector. The original sequence can then be
represented using the one-hot encoding scheme, which can be
unified with the normalized PSSM. Since PSI-BLAST cannot
generate PSSM for every protein sequence, the matrix-based
notation actually provides a mathematically compatible way to
compensate for the missing PSSM using the one-hot encodings. As
elaborated in Du and Yu (2013), when the PSSM is available for a
protein sequence, this matrix-based notation also adjusts the
weights of residues according to the evolutionary information.

Therefore, our sequence representation actually encoded the
sequence order information and the evolutionary information
with emphasis on the terminal signaling peptides in a (20 + 4l)-
D numerical vector. Compared to other studies, our sequence
representation has a much lower number of dimensions. On a
dataset with limited samples, the risk of over-estimated
performance increases with the number of dimensions of the
representation. Our method should be a better choice when the
number of samples is limited.
CONCLUSIONS

Many existing methods can predict protein subcellular locations.
However, only the ERPred method can specifically identify ER-
resident proteins. The ER may be the most important type of
Frontiers in Genetics | www.frontiersin.org 7
subcellular organelle, linking all the major subcellular structures,
including the nucleus, cytoplasm, and cell membrane. In this
study, we present a new method for predicting ER-resident
proteins. Although establishing a web server for a predictive
method is good practice, it is not easy for us to do so due to the
limitations of our resources and the complexity of this new
method. We will establish a web server for this method in the
future. The most important part of this work is to introduce a U-
shaped weight-transfer function into the pseudo-amino acid
compositions. Since the signaling peptide information is useful
in analyzing many different subcellular processes and this is the
first time that the signaling peptide information has been
empha s i z e d i n p s eudo - am ino a c i d compo s i t i on
representations, we believe that our method has great potential
for application in predicting various attributes of proteins.
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