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Abstract
Inflammation is currently considered a prime target for the development of new stroke therapies. In the acute phase of 
ischemic stroke, microglia are activated and then circulating immune cells invade the peri-infarct and infarct core. Resident 
and infiltrating cells together orchestrate the post-stroke inflammatory response, communicating with each other and the 
ischemic neurons, through soluble and membrane-bound signaling molecules, including cytokines. Inflammation can be 
both detrimental and beneficial at particular stages after a stroke. While it can contribute to expansion of the infarct, it is also 
responsible for infarct resolution, and influences remodeling and repair. Several pre-clinical and clinical proof-of-concept 
studies have suggested the effectiveness of pharmacological interventions that target inflammation post-stroke. Experimental 
evidence shows that targeting certain inflammatory cytokines, such as tumor necrosis factor, interleukin (IL)-1, IL-6, and 
IL-10, holds promise. However, as these cytokines possess non-redundant protective and immunoregulatory functions, their 
neutralization or augmentation carries a risk of unwanted side effects, and clinical translation is, therefore, challenging. This 
review summarizes the cell biology of the post-stroke inflammatory response and discusses pharmacological interventions 
targeting inflammation in the acute phase after a stroke that may be used alone or in combination with recanalization thera-
pies. Development of next-generation immune therapies should ideally aim at selectively neutralizing pathogenic immune 
signaling, enhancing tissue preservation, promoting neurological recovery and leaving normal function intact.
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TACE  Tumor necrosis factor-alpha converting 

enzyme
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TNF  Tumor necrosis factor
TNFR  Tumor necrosis factor receptor
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Ischemic stroke

Ischemic stroke is the second leading cause of preventable 
deaths and the third leading cause of long-term disability 
worldwide [84]. This review focuses on the possibility of 
targeting post-stroke inflammation to improve tissue pres-
ervation, neurological outcome, and long-term survival. 
Ischemic stroke, accounting for approx. 90% of all stroke 
cases [84], is caused by embolism or thrombosis of a cer-
ebral artery. This typically occurs in the middle cerebral 
artery (MCA), which supplies the lateral convexity of the 
cerebral hemisphere and thereby the majority of the pri-
mary motor and sensory cortex, leading to contralateral 
hemiplegia with reduced sensation. Today, recanaliza-
tion by intravenous (i.v.) thrombolysis and thrombectomy 
are first-line treatments for ischemic stroke patients [95]. 
One of the major criteria for i.v. thrombolysis is the 4.5-h 
‘therapeutic time window’, although the recent DAWN and 
DEFUSE 3 trials, which combine thrombectomy and i.v. 
thrombolysis, suggest expanding the therapeutic window up 
to 24 h when using perfusion imaging to guide treatment [2, 
127]. Importantly, these studies additionally document that 
restoring perfusion not only leads to smaller infarcts, but that 
smaller infarcts correlate with a better neurological outcome 
[2, 127]. Given the low number of stroke patients eligible for 
treatment using thrombolysis and/or thrombectomy (approx. 
10%), novel treatment options are critically needed. New 
therapies targeting key pathogenic mechanisms, including 
post-stroke inflammation, are currently being pursued exper-
imentally and clinically, either alone or in combination with 
thrombolysis and/or thrombectomy [23]. Such treatments 
might also benefit stroke patients with good collateral blood 
supply who suffer permanent ischemia or patients in whom 
recanalization treatment is contraindicated.

The ischemic penumbra as target 
for post‑stroke intervention

The ischemic penumbra consists of electrophysiologically 
silenced, potentially salvageable tissue [7], that can be 
assessed clinically using the “mismatch” between perfu-
sion- and diffusion-weighted magnetic resonance images 
(PWI–DWI mismatch) [142] or positron emission tomog-
raphy (PET) [77]. The cerebral metabolic rates for oxygen 
measured by PET define cerebral blood flow in cortical 
grey matter below 12 ml/100 g/min as infarct core, flow 
between 12 and 22 ml/10 g/min as critically hypoperfused 
penumbral tissue, and flow between 22 and 35 ml/100 g/
min as an area of oligemia, i.e. hypoperfused tissue with-
out risk for infarction [77]. This should be compared to 
the flow in normal grey matter, which is between 50 and 
55 ml/100 g/min [95]. In tissue sections, the penumbra is 
defined as areas with reduced protein synthesis but pre-
served ATP content. This matches brain areas with tran-
sient heat shock protein 70 mRNA expression from 3 to 
4 h after MCA occlusion (MCAO) [74, 75]. Using these 
definitions, the penumbra presents 30% of the final infarct 
volume at 1 h, approx. 18% at 6 h, and 5% at 24 h after 
permanent MCAO (pMCAO) [74]. After transient MCAO 
(tMCAO), the penumbra is initially increased as a result of 
edema associated with reperfusion, after which it is gradu-
ally recruited into the infarct and regresses to the final 
infarct volume at day 3 [75]. In rats, the infarct volume 
measured at 24 h after proximal pMCAO is significantly 
larger than after 60 min of proximal tMCAO, but is similar 
to that observed after 180 min of proximal tMCAO [112].

By showing that the therapeutic window can be 
expanded, the DAWN and DEFUSE 3 trial results, com-
bining the use of thrombectomy and thrombolysis [2, 127], 
have ‘thrown the ball back in the ring’ in experimental 
stroke research. Some tMCAO models mirror thrombec-
tomy in terms of reperfusion dynamics (review by [107]), 
encouraging testing of novel combination treatments. Fur-
thermore, the clinical documentation that smaller infarcts 
translate into better neurological outcome [2, 127] empha-
sizes the importance of infarct volume reduction, ideally 
in conjunction with improved functional recovery, as an 
important outcome in experimental stroke research. The 
size of ischemic damage is typically presented as: 1—total 
infarct volume (‘direct infarct volume’ given in  mm3), or 
2—percentage of infarcted tissue in the ipsilateral hemi-
sphere, corrected for edema formation and infarct resorp-
tion (‘indirect infarct volume’) (for details see [140]). 
Infarct volumes given as percentages and corrected for 
edema/resorption remain largely constant from 24 h to 
24 weeks [140]. Direct infarct volumetric data obtained 
at 24 h after occlusion are robust, while data obtained at 
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5 days represents the cumulative effect of infarct formation 
and resorption [94, 140].

The inflammatory response in stroke

Inflammation is integral to the pathophysiology of ischemic 
stroke and a prime target for the development of new stroke 
therapies. The first immune cells to sense a stroke are the 
brain-resident microglial cells, which are innate immune 
cells that are perfectly situated and equipped to sense imbal-
ances in the CNS. Microglia express receptors that are 
involved in immune signaling and modulation, recognition 
of danger signals elicited from dying cells, pathogens and 
self-antigens, as well as neurotransmitter receptors in both 
human [56] and mouse [78]. Like other cells, the micro-
glia are sensitive to ischemia. 12 h after pMCAO,  CD11b+ 
microglia in the infarct show signs of fragmentation, and by 
24 h the number of microglia within the infarct is reduced 
[81, 94]. Microglia in the ‘peri-infarct’ show signs of activa-
tion in the form of process retraction from 30 min to 1 h after 
pMCAO, followed by upregulation of CD11b, CD45 and 
Iba1 in the peri-infarct from 3.5 to 6 h [32, 81, 94], where 
also the first  CD11b+ macrophage-like cells (and  Gr1+ neu-
trophils) appear [32, 94]. Microglial activation in the peri-
infarct persists weeks after MCAO [94, 131]. Importantly, 
the microglia in the peri-infarct and infarct display different 
pro- and anti-inflammatory phenotypes [32, 33, 115], which 
include the expression of the pro-inflammatory cytokines 
tumor necrosis factor (TNF), interleukin (IL)-1β, and the 
anti-inflammatory IL-1 receptor antagonist (IL-1Ra) (Fig. 1) 
[32, 33, 92]. Microglia appear not to display classical M1 
and M2 phenotypes after experimental stroke [61]. During 
later stages microglia, like monocytic macrophages, contrib-
ute to the resolution of the infarct by phagocytosing dead 
cells or debris, which is considered beneficial (review by 
[124]). However, microglia can also engulf viable ischemic 
neurons, that transiently express “eat-me” signals [122], and 
if dysregulated thereby increase neuronal cell death in the 
peri-infarct.

The infiltrating leukocytes, predominantly polymorpho-
nuclear leukocytes (PMNs, neutrophils) and monocytes/
macrophages, play different and complex roles in ischemic 
stroke. Neutrophils infiltrate early after MCAO [26]. They 
attach to the endothelium by binding different adhesion 
molecules (review by [125]), and with CXCL1 and CXCL2 
as the main chemokines responsible for neutrophil extrava-
sation [176]. Neutrophils expressing Ly6G and myeloper-
oxidase have been identified in the leptomeninges from 6 h 
after occlusion, thereafter in the Virchow–Robin spaces and 
superficial cortical layers, to eventually become widespread 
in the infarct and peri-infarct [133, 176]. In rodent pMCAO 
models, the number of neutrophils in infarct and peri-infarct 

peaks at 24 h and gradually decreases from 48 to 72 h [133, 
176]. Differences in the peak of neutrophil recruitment 
have been reported between pMCAO and tMCAO [198]. 
Neutrophil accumulation has traditionally been considered 
detrimental post-stroke, either through the release of neu-
rotoxic proteolytic enzymes [4] or neutrophil accumulation 
causing further blood flow obstruction and the ‘no-reflow’ 
phenomenon (reviewed in [39]). Neutrophils have also been 
shown to cause disruption of the blood–brain barrier (BBB) 
and hemorrhagic transformation post-stroke, worsening the 
neurological outcome [83]. Blockade of neutrophil recruit-
ment has been shown to improve the functional outcome 
in rodent stroke models [83]. Neutropenia does not affect 
infarct size after MCAO [76] however, and none of the 
anti-neutrophil therapies tested so far have shown a benefi-
cial effect in stroke patients [83]. Interestingly, neutrophils 
appear to display different phenotypes (neurotoxic N1 and 
neuroprotective N2) that may shape the effector functions 
of other cells and they are themselves cleared by phagocytic 
microglia/macrophages, which is considered important for 
the resolution of inflammation post-stroke [36]. Therefore, 
inhibiting neutrophil recruitment could also prove damaging 
if applied at the wrong time point.

Recruitment of circulating monocytes to the 
ischemic brain equals that of neutrophils and is regu-
lated by adhesion molecules, chemokines, and cytokines. 
 CD11b+Ly6ChighCCR2+ monocytes appear to be the pre-
dominant cell type recruited after both pMCAO and tMCAO 
[27, 116]. Recruitment after tMCAO takes place in a CCR2-
dependent manner [41], while this appears not to be the case 
after pMCAO [27]. Histologically,  CD11b+ and  CD45+ 
macrophage-like cells are observed both in the infarct and 
peri-infarct from 6 to 48 h after pMCAO [94, 131]. From 
3 to 7 days after occlusion the infarct becomes infiltrated 
with  CD11b+,  CD45+, and  ED1+ macrophages, reminiscent 
of phagocytic ‘foam cells’ that are prominent in the infarct 
[81, 94]. Interestingly, when in the brain the  Ly6ChighCCR2+ 
monocytes change their phenotype by downregulating Ly6C 
expression, upregulating F4/80, and then expressing argin-
ase-1 and the chitinase-like protein YM-1, thereby devel-
oping into M2 phenotype macrophages [116]. This occurs 
from 1 to 3 days after pMCAO [116]. Histologically,  Ym1+ 
and  CD206+ cells have been shown to be abundant within 
the infarct core at 24 h, and to be even more numerous at 
7 days, along with cells expressing the lysosomal marker 
CD68 [131]. This is in line with a role in infarct resolution 
and repair.

Although monocytes/macrophages have been reported 
to exacerbate ischemic brain damage in the acute phase 
after tMCAO [41], blocking the infiltration of  Ly6Chigh 
monocytes (and neutrophils) using a CCR2 antagonist 
worsened the outcome after tMCAO, which was ascribed 
to CCR2 antagonism altering the polarization of infiltrated 
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macrophages [27]. Monocytes/macrophages have been sug-
gested to exert beneficial effects in the sub-acute phase after 
a stroke, by preventing hemorrhagic transformation [63], 
emphasizing that inhibition of monocyte recruitment might 
be damaging if done at the wrong time point. To add to 

the complexity, it appears that subsets of  CD11b+CD45high 
macrophages express different pro- and anti-inflammatory 
cytokines at different time points after pMCAO [27, 32, 33, 
92], raising the potential to modulate this expression and 
to stimulate the production of anti-inflammatory cytokines 

Fig. 1  Neuroinflammation in the post-ischemic human and murine 
brain. a–c Immunohistochemical staining of  CD45+ (a),  Iba1+ 
(b), and  CD68+ (c) microglia/macrophages in human post-mortem 
ischemic brain tissue. d–i Immunohistochemical staining of  TNF+ 
(d),  TNFR1+ (e),  TNFR2+ (f), IL-1β+ (g), IL-1α+ (h), and IL-1Ra+ 
(i) cells in human post-mortem ischemic brain tissue. (j, k) Immu-
nofluorescence double staining showing co-localization of IL-6 to 
 NeuN+ neurons (j), but absence of IL-6 to  CD11b+ microglia/mac-
rophages (k) in the murine brain after pMCAO. l Immunofluores-
cence double staining showing co-localization of IL-6R to  NeuN+ 
neurons in the murine brain after pMCAO. Unpublished images of 
CD45, Iba1, CD68, TNF, TNFR1, TNFR2, and IL-1Ra stained tis-
sue sections were acquired from human post-mortem ischemic brain 
tissue processed as previously described [31, 33] using already pub-

lished protocols, except for IL-1β and IL-1α. Staining for IL-1β and 
IL-1α was performed using similar protocols and the following anti-
bodies: Human IL-1α Ab (monoclonal mouse  IgG2A, clone #4414, 
1:1,200, R&D Systems) and human IL-1β Ab (monoclonal mouse 
IgG1, clone #2E8, 1:50, BioRad). Unpublished images of IL-6 and 
IL-6R co-localized cells were acquired from parallel tissue sections 
from mice subjected to pMCAO as described in [70]. In images a–i, 
Toluidine blue was used as a counterstain and in j–l, DAPI was used 
as a nuclear marker. Scale bars: a, i = 40 μm, j = 20 μm, and k, l = 20 
μm. IL interleukin, IL-6R interleukin-6 receptor, TNF tumor necro-
sis factor, TNFR tumor necrosis factor receptor. The use of human 
brains was approved by the Danish Biomedical Research Ethical 
committee for the Region of Southern Denmark (permission number 
S-20080042) as stated in the original references
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such as IL-1Ra [33]. The emerging understanding of how 
macrophages are stimulated by the ischemic environment to 
adopt distinct phenotypes or exert different functions might 
reveal new therapeutic strategies for controlling inflamma-
tion after ischemic injury.

Recent studies have also implicated lymphocytes in the 
pathogenesis of acute stroke. Since it is largely unknown as 
yet how these cells affect inflammation in the ischemic brain, 
the reader is referred to existing reviews on this topic [153].

Cytokines and cytokine therapies 
in experimental and human stroke

Treatment strategies aimed at preventing ischemia-induced 
cell death and promoting anti-inflammatory responses in 
ischemic tissue at risk have been studied both experimen-
tally and in clinical trials (Table 1). Special attention has 
been given to inflammatory cytokines and the possibility 
to modulate their pro- or anti-inflammatory properties. 
Cytokine therapies are based on administration of highly 
specific engineered antibodies, soluble cytokine receptors, 
and mutant or fusion proteins that bind and neutralize the 
activities of a given cytokine (Table 2). A number of drugs 
targeting the key pro-inflammatory cytokines TNF, IL-1, 
and IL-6 (Table 2) are already being used in patients for 
the treatment of non-neurological diseases such as rheuma-
toid arthritis, inflammatory bowel disease, and psoriasis. As 
cytokines have both beneficial and detrimental effects, their 
neutralization can result in unwanted side effects, including 
predisposing patients to infections, lupus-like syndrome, 
lymphoma, long-term effects on the cardiovascular system, 
and demyelinating disease [151]. Therefore, there is a need 
to develop and evaluate novel therapeutics that can better 
distinguish between detrimental and protective signaling 
of a given cytokine. Four cytokines have proven especially 
promising as potential therapeutic targets in experimental 
ischemic stroke: the pro-inflammatory cytokines TNF, IL-1, 
IL-6 and the anti-inflammatory cytokine IL-10.

Tumor necrosis factor

The most extensively studied cytokine in experimen-
tal stroke is the proinflammatory and immune regulatory 
cytokine TNF. It exists in a secreted form (solTNF) and a 
transmembrane form (tmTNF), which is also involved in 
reverse signaling [87]. solTNF is derived from tmTNF, 
which is cleaved by the protease ADAM-17, also known as 
TNF-alpha converting enzyme (TACE) [14]. tmTNF and 
solTNF signals are transmitted through two distinct recep-
tors, TNFR1 and TNFR2, that differ significantly both in cel-
lular expression and downstream effects. Although solTNF 
binds both receptors with high affinity, it preferentially binds 

to TNFR1 (dissociation constant [Kd] 20 pM) versus TNFR2 
([Kd] ~ 400 pM), owing to a 30-fold faster dissociation rate 
from TNFR2 than from TNFR1 [69]. This has given rise to 
a ligand-passing hypothesis, stating that solTNF binding to 
TNFR2 is quickly passed to TNFR1. Binding by TNFRs to 
tmTNF or even TNF antagonists can induce reverse signal-
ing through tmTNF, leading to cell activation, cytokine sup-
pression, or apoptosis of the tmTNF-bearing cell (reviewed 
in [49]). While TNFR1 is expressed on virtually all cells, 
TNFR2 expression is restricted to cells of the immune sys-
tem, glial cells, and endothelial cells. TNF’s proinflamma-
tory effects are likely mediated through solTNF–TNFR1 
signaling, leading to activation of two major, well-under-
stood pathways. One leads to the induction of anti-apoptotic 
genes, mainly through activation of the transcription fac-
tor nuclear factor-kappa B (NF-κB). The second signaling 
pathway results in activation of cellular suicide programs, 
including the prototype of programmed cell death, apoptosis, 
but also the execution of programmed necrosis (necroptosis) 
[179]. Under physiological conditions, TNF does not induce 
cell death unless transcription, translation, or specifically 
the NF-κB pathway are blocked. Unlike TNFR1, TNFR2 is 
not associated with induction of apoptosis but preferentially 
promotes cell growth, and regeneration through NF-κB acti-
vation. TNFR1 can be activated by binding of either solTNF 
or tmTNF, whereas TNFR2 is only fully activated by tmTNF 
[68, 69]. A further level of complexity is added by the prote-
olytic cleavage of the extracellular domains of both TNFR1 
and TNFR2 [182], which is increased upon TNFR activa-
tion (reviewed by [1]). The soluble TNFR1 and solTNFR2 
ectodomains that are shedded can bind to TNF, albeit with 
low affinity, and can thus act as natural inhibitors of TNF.

Lymphotoxin-alpha (LTα), another TNFR agonist with 
important roles in immune regulation, also binds TNFR1 
and TNFR2 and mainly mediates NF-κB-mediated signal-
ing [134].

Tumor necrosis factor in experimental stroke

The low baseline levels of TNF in the CNS under physiolog-
ical conditions play an important role in neuronal function, 
by modulating glutamatergic synaptic transmission and plas-
ticity [164]. Furthermore, TNF regulates neuronal networks 
involved in cognition and behavior [9], thereby attributing 
importance to TNF both in the healthy and stroke-lesioned 
CNS. Multiple checks are in place to finetune TNF’s produc-
tion and activity, including regulation of TNF gene expres-
sion at transcriptional and translational levels, and the regu-
lated shedding of TNF [117] and its receptors [135].

A particular role of TNF/TNFR1 in the etiopathogenesis 
of stroke is suggested by genome-wide association studies 
that found a polymorphism in the TNF gene that increases 
the susceptibility for stroke [178]. After pMCAO, TNF is 
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acutely and significantly upregulated, peaks at 12–24 h 
(Fig. 2a), and remains elevated for days (Fig. 1d), making 
TNF a key player both in acute and chronic ischemia and 
in post-ischemic neuronal plasticity (reviewed by [91]). 
TNF is primarily produced by microglia in the early phase 
after experimental stroke and sustained by macrophages at 
later time points [20, 32, 92, 94], although other cell types 
like ependymal, astroglial and neuronal cells have also 
been reported to produce TNF during ischemic conditions 
(reviewed by [91]).

The use of genetically modified mice has been invalu-
able for establishing the role of TNF in the pathogenesis 
of ischemic stroke. Conventional TNF-knock out (KO) 
mice [92] and conditional TNF-KO mice with ablation of 
TNF in myeloid cells, including microglia [31] have larger 
infarcts and worse behavioral deficits than control mice after 
pMCAO. This suggests a neuroprotective role of microglial-
derived TNF in ischemic stroke, an effect which appears to 
be mediated via TNFR1 [92, 170]. Interestingly, mice with 
a loss of TACE-mediated cleavage preventing shedding of 
solTNF (and thus expressing only tmTNF) develop smaller 
infarcts than their littermates [104], suggesting that removal 
of solTNF but preservation of tmTNF is neuroprotective in 
ischemic stroke.

Finally, a polymorphism in the LTα gene (LTA) has been 
linked to increased susceptibility for stroke [178], suggesting 
that also LTα plays a role in the etiopathogenesis of stroke. 
However, LTα levels appear to remain relatively constant in 
the acute phase after pMCAO in mice (Fig. 2a, Lambertsen 
et al., unpublished data), suggesting that brain-derived LTα 
has no major role in the inflammatory response post-stroke.

Anti‑tumor necrosis factor treatment 
in experimental stroke

The currently used FDA- and EMA-approved anti-TNF 
therapeutics block both solTNF and tmTNF (Table  2). 
These therapeutics appear to relieve fatigue and symptoms 
of depression that can be associated with chronic inflam-
matory diseases [177]. Despite reports of improved neuro-
logical outcome in patients with stroke or traumatic brain 
injury who are treated with perispinal etanercept [172, 174] 
(Table 1), none of the currently used anti-TNF therapeutics 
have so far been approved as a neuroprotective strategy in 
combination with tissue plasminogen activator treatment. 
This may be because targeting both solTNF and tmTNF can 
predispose patients to both cardiovascular and demyelinating 
diseases [151], which is in line with the finding that a single 
nucleotide polymorphism in the TNFR1 gene (TNFRSF1A) 
that mimics the effect of anti-TNF therapeutics, is a risk 
factor for developing multiple sclerosis [67]. In combina-
tion with the observation that not only TNF-KO mice but Ta
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also TNF-R1 KO mice develop larger infarcts than wild-type 
mice [92, 170], this calls for precaution in using the cur-
rently approved anti-TNF therapeutics and emphasizes the 
need for more specific anti-TNF therapeutics.

There has been little preclinical testing of therapeutics 
that exclusively target solTNF (XPro1595, XEN345, and 
possibly R1antTNF) (Tables 1, 2 and Fig. 3a) and leave sign-
aling via tmTNF–TNFR1/2 intact. A comparative study of a 

single i.v. dose of XPro1595 (a dominant-negative solTNF 
inhibitor) or etanercept, administered at a dose of 10 mg/kg, 
30 min after pMCAO, showed that both compounds affected 
the inflammatory response and improved motor functions 
and motor learning skills compared to vehicle 1 and 5 days 
after pMCAO, but had no effect on infarct volume [30]. This 
indicates that targeting solTNF alone may be efficient for 
the treatment of post-stroke inflammation. Similarly, recent 

Table 2  Mechanistic profile of cytokine and cytokine receptor agonists/antagonists for use in experimental stroke

Albu anti-serum albumin, cTfR transferrin receptor, dAb domain antibody, gp130 glycoprotein 130, Hu human, IL Interleukin, IL-1R interleu-
kin-1 receptor, IL-1Ra interleukin-1 receptor antagonist, IL-1RAcP IL-1 receptor accessory protein, LTα lymphotoxin-alpha, Mo mouse, solIL-
6R soluble interleukin-6 receptor, solTNF soluble tumor necrosis factor, tmIL-6R transmembrane interleukin-6 receptor, tmTNF transmembrane 
tumor necrosis factor, TNC tenascin, TNF tumor necrosis factor, TNFR tumor necrosis factor receptor
a FDA approved drug

Drug name Class Structure Specificity References

Etanercepta and biosimilars Dimeric Fc-fusion protein Hu  TNFR2exc:IgG1-Fcγ1 solTNF, tmTNF, LTα3, & 
LTα2β1

Infliximaba and biosimilars Monoclonal antibody Mo/Hu chimeric IgG1/κ solTNF & tmTNF
Adalimumaba and biosimilars Monoclonal antibody Hu IgG1/κ solTNF & tmTNF
Certolizumab  pegola Monoclonal antibody fragment PEGylated hu IgG1/κ Fab´ solTNF & tmTNF
Golimumaba Monoclonal antibody Hu IgG1/κ solTNF & (tmTNF)
XPro1595 Dominant-negative inhibitor TNF mutein solTNF [162]
XEN345 Dominant-negative inhibitor TNF mutein solTNF [162]
cTfRMAb-TNFR Fusion cTfR-protein TNFR2exc:IgG1-cTfR solTNF & tmTNF [197]
R1antTNF Inhibitor TNFR1 selective mutein TNFR1, solTNF? [155]
DMS5540 Monovalent domain antibody TNFR1-dAb:Albu-dAb TNFR1 [108]
TROS Dimeric nanobody Hu TNFR1-Nb:Alb-70-96-Nb 

IgG1
TNFR1 [163]

ATROSAB Monoclonal antibody Hu IgG1 TNFR1 [88]
EHD2-scTNFR2 Dimeric single-chain fusion 

protein
Hu TNFR2:EHD2 IgE TNFR2 [44]

TNCscTNF80 Trimerized single-chain fusion 
protein

Chicken TNC:huTNFR2 TNFR2 [25]

Anakinraa Recombinant protein IL-1Ra mutein IL-1R1
Rilonacepta Dimeric fusion protein Hu IL-1R1excIL-

1RAcPexc:IgG1-Fc
IL-1α & IL-1β

Canakinumaba Monoclonal antibody Hu IgG1/κ IL-1β
MEDI-8968 Monoclonal antibody Hu IgG2 IL-1R1 [21]
Gevokizumab Monoclonal antibody Hu IgG2/κ IL-1β [144]
LY2189102 Monoclonal antibody Hu IgG4 IL-1β [156]
XOMA 052 Monoclonal antibody Hu IgG2/κ IL-1β [144]
IL-1RA-PEP Fusion protein IL-1Ra:PEP-1 IL-1R1 [195]
Tocilizumaba Monoclonal antibody Hu IgG1/κ tmIL-6R & solIL-6R
Siltuximaba Monoclonal antibody Mo/Hu chimeric IgG1/κ IL-6
Sarilumaba Monoclonal antibody Hu IgG1/κ IL-6R
Olokizumab Monoclonal antibody Hu IgG1/κ IL-6, gp130 [154]
Elsilimomab Monoclonal antibody Hu IgG1/κ IL-6 [184]
Sirukumab Monoclonal antibody Hu IgG1/κ solIL-6 [190]
Clazakizumab Monoclonal antibody Hu IgG1/κ IL-6 [110]
sgp130Fc (Olamkicept) Fusion protein Hu  gp130exc:IgG1-Fc IL-6/solIL-6R complex [86]
Pegliodecakin (AM0010) Pegylated recombinant protein PEG-rHuIL-10 IL-10R [118]
PEGylated-IL10 Pegylated recombinant protein PEG-rMuIL-10 IL-10R [50]
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findings showed that topical, but not systemic administra-
tion, of XPro1595 can rescue tissue at risk after experimen-
tal spinal cord injury, while etanercept had no effect [129], 
suggesting that topical administration of XPro1595 can 
inhibit solTNF present locally in the CNS. Clearly, more 
studies are needed to clarify whether XPro1595 is able to 
rescue tissue at risk in the peri-infarct. However, given the 
prevalence of post-stroke infections in humans, leaving 
tmTNF signaling intact may decrease the risk of infections.

While it seems relevant to retain the neuroprotective 
TNFR1 signaling in the acute phase after stroke, TNFR1 
also plays a role in sustaining chronic inflammation in mouse 
models of multiple sclerosis and TNFR2 is important for 
remyelination [18]. Although more studies are clearly 
required to clarify the role of neuronal TNFR1 signaling 
in the acute phase post-stroke, it is possible that TNFR1-
specific antagonists [R1antTNF, DMS5540, TROS (TNF 
receptor one silencer), ATROSAB (antagonistic TNF recep-
tor one-specific antibody)] (Table 2) that preserve TNFR2 
signaling, will be important in improving neuronal and syn-
aptic remodeling in the chronic phase of stroke.

Due to their large size, many biologic TNF inhibitors do 
not cross the BBB and must be modified to enable BBB 
penetration and access to the brain parenchyma. One such 
drug is cTfRMAb-TNFR (Table 2), which ferries TNFR 
across the BBB using the transferrin receptor (TfR) [197]. 
In a preclinical study, i.v. injection of cTfRMAb-TNFR was 
compared to etanercept in a tMCAO model and when admin-
istered 90 min after occlusion resulted in reduced infarct 
volumes and reduced neural deficit 1 and 7 days post-stroke, 
whereas etanercept had no effect [167](Table 1). Despite the 
fact that both cTfRMAb-TNFR and etanercept are TNFR2 
fusion proteins, the authors ascribed the beneficial effect of 
cTfRMAb-TNFR to the modification of this protein to allow 
it to be transported across the BBB [15].

In another preclinical study, sTNF-α R1 (solTNFR1) 
(Table 2) administered by intracortical infusion for 1 week 
after photothrombotic stroke was found to preserve depri-
vation-induced axonal plasticity in the cerebral cortex post-
stroke [98] (Table 1). This effect was ascribed to sTNF-α R1 
competing for solTNF with TNFR1 receptors, supporting 
the hypothesis that ablating solTNF is beneficial in ischemic 
stroke. This is in line with a preclinical study showing that 
intra-arterial injection of solTNFR1-overexpressing den-
dritic cells 6 h after tMCAO reduces infarct size and inflam-
mation 3 days post-stroke [186] (Table 1).

Interleukin‑1

The IL-1 family comprises 11 members (IL-1α, IL-1β, IL-1 
receptor antagonist (IL-1Ra), IL-18, IL-33, IL-36α, IL-36β, 
IL-36γ, IL36-Ra, IL-37, and IL-38), forming a network of 
proinflammatory cytokines that regulate innate immune cells 

Fig. 2  Temporal profile of cytokine and cytokine receptor upregulation in 
the acute phase after pMCAO. a Graphical presentation of the temporal 
profile of TNF, LTα, TNFR1, and TNFR2 mRNAs in the same ischemic 
hemispheres from mice subjected to pMCAO. b Graphical presentation 
of the temporal profile of IL-1β, IL-1α, IL-1Ra, IL-1R1, and IL-1R2 
mRNAs after pMCAO. c Graphical presentation of the temporal profile 
of IL-6, IL-6R, and gp130 mRNAs after pMCAO. Data are presented as 
relative increases in mRNA levels compared with unmanipulated controls. 
TNF, TNFR1 and TNFR2 mRNA data have been obtained from [93, 94], 
whereas LTα mRNA data are unpublished data performed on the same 
experimental mice and conditions as [94]. The sequence of the LTα 
TaqMan probe was AGG AGG GAG TTG TTG CTC AAA GAG AAG CCA , 
for the LTα sense primer it was CTG CTG CTC ACC TTG TTG GG, and for 
the LTα antisense primer it was TAG AGG CCA CTG GTG GGG AT. IL-1α, 
IL-1β, IL-1Ra, IL-1R1, and IL-1R2 mRNA data have been obtained from 
[33]. IL-6, IL-6R, and gp130 mRNA data have been obtained from [70]. 
Note the logarithmic Y axis. gp130 glycoprotein 130, IL interleukin, IL-
6R interleukin-6 receptor, LTα lymphotoxin-alpha, TNF tumor necrosis 
factor, TNFR tumor necrosis factor receptor
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Fig. 3  Schematics presenting mechanisms of actions of approved and 
selected experimental cytokine and cytokine receptor agonists and 
antagonists. a–c TNF (a), IL-1 (b), and IL-6 (c) signaling via their 
receptors and mechanisms of actions of approved and selected novel 
inhibitors. Figures are modified using Protein Lounge Pathway Data-
base (www.prote inlou nge.com). Ab antibody, gp130 glycoprotein 
130, icIL-1Ra intracellular interleukin-1 receptor antagonist, IL inter-

leukin, IL-1Ra interleukin-1 receptor antagonist, IL-1R1 interleukin-1 
receptor type 1, IL-1R2 interleukin-1 receptor type 2, IL-1RAcP IL-1 
receptor accessory protein, sIL-1RAcP soluble IL-1 receptor acces-
sory protein, IL-6R interleukin-6 receptor, sgp130 soluble glycopro-
tein 130, solIL-6R soluble interleukin-6 receptor, solTNF soluble 
tumor necrosis factor, tmTNF transmembrane tumor necrosis factor, 
TNF tumor necrosis factor, TNFR tumor necrosis factor receptor

http://www.proteinlounge.com
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and function as key players in inflammation (review by [43]). 
Despite structural and functional similarities and evidence 
of a common ancestry [143], so far only IL-1α, IL-1β, and 
IL-1Ra have been studied extensively in ischemic stroke.

Both IL-1α and IL-1β are expressed and translated as pre-
cursor (pro) proteins. ProIL-1α is biologically active, but it 
lacks the signal peptide that allows it to leave the cell [143]. 
IL-1α is a ‘dual-function’ cytokine with both nuclear and 
cytoplasmic functions, but danger signals from necrotic cells 
can promote the secretion of IL-1α [48], causing neutrophil 
recruitment and exacerbation of inflammation [24]. Apop-
tosis causes IL-1α to translocate to the nucleus, where it 
binds to chromatin, a mechanism which is known to restrain 
inflammation [34]. IL-1α is considered to be an early danger 
signal that modulates a wide range of inflammatory reac-
tions through the interleukin-1 receptor type 1 (IL-1R1) [48, 
143]. Following injury, the proteolytic cleavage of IL-1α 
occurs through the actions of calpain, and possibly inflam-
masomes [194]. Membrane-bound, unprocessed IL-1α acts 
in a paracrine fashion on IL-1R expressing cells [42] to mod-
ulate angiogenesis, cell proliferation, senescence, apoptosis, 
and migration, and cytokine production ([149] and review 
by [43]).

In contrast to proIL-1α, proIL-1β is a biologically inac-
tive protein, and both proIL-1β and mature IL-1β appear 
extracellularly [143], indicating that processing can take 
place after secretion. ProIL-1β is cleaved by caspase-1 (or 
IL-1 converting enzyme) [143], which gets activated by 
the assembly of the inflammasome, a process triggered in 
turn by damage-associated molecular pattern signals [72]. 
ProIL-1β can also be cleaved by neutrophil serine proteases 
such as proteinase 3 and elastase [123].

The natural regulator of IL-1 is IL-1Ra, which is found in 
two structural variants, secreted (s)IL-1Ra and intracellular 
IL-1Ra (icIL-1Ra), that both target the IL-1R1 [6]. The icIL-
1Ra isoform is less explored but believed to exert multiple 
functions inside the cell [6], such as modulating the effect of 
IL-1α and/or acting as regulator of proIL-1β [102]. IL-1Ra 
is expressed by monocytes/macrophages, neutrophils [105], 
microglia [33], and other cells [42].

IL-1α/β induce their biological effects through IL-1R1, 
which is expressed in low numbers (< 100) on nearly all 
cells in the brain [42]. Binding of IL-1 to IL-1R1 allows 
the binding of the interleukin-1 receptor accessory pro-
tein (IL-1RAcP, IL-1R3), which is a key component of the 
receptor/agonist signaling complex [6, 143]. Recruitment 
and binding of IL-1RAcP converts the low-affinity binding 
between IL-1R1 and IL-1 to a high-affinity binding allowing 
further signal transduction [65]. IL-1 signaling is complex 
but potent with < 10 receptors/cell required to be occupied 
before a full response is triggered [166]. This means that 
IL-1Ra needs to be present in 100–1,000-fold molar excess 
to control its biological properties [42].

IL-1R2 shares structural characteristics with IL-1R1, 
but it lacks the cytoplasmic domain that allows signal trans-
duction. IL-1R2 binds IL-1 as a decoy receptor [42, 143]. 
IL-1R2 is expressed by the same cells as IL-1R1 but is par-
ticularly abundant on monocytes, and neutrophils [42, 45]. 
IL-1R2 binds IL-1α in the cytosol, preventing its interaction 
with IL-1R1 when released from necrotic cells [196]. All the 
IL-1Rs are also found in a soluble form [90].

Interleukin‑1 in experimental stroke

IL-1 is a major player in stroke pathology (Fig. 1g, h). As 
for the TNF gene, a polymorphism in the IL-1A gene has 
been associated with an increased susceptibility for ischemic 
stroke [199] whereas a polymorphism in the IL-1B gene has 
been associated with lower stroke risk [13], although this is 
still controversial [193, 199]. Polymorphisms in the IL1RN 
gene do not affect the risk for stroke [199], but increased 
plasma IL-1α combined with a polymorphism in the IL1RN 
gene increases the risk of post-stroke infection [10].

So far, focus has been on understanding the role of IL-1β 
in experimental stroke models, however data suggests that 
also IL-1α, which is significantly upregulated in mice 6–24 h 
after pMCAO (Fig. 2b) [33] and 7 days after tMCAO [149], 
plays an important role in stroke-induced neuroinflamma-
tion [33, 171]. Following experimental stroke in rodents, 
IL-1α was shown to be expressed by platelets and microglia 
[33, 40]. The presence of platelet-derived IL-1α acutely 
(6 h) after experimental stroke [33] supports findings that 
IL-1α drives neurovascular inflammation and facilitates 
neutrophil infiltration into the ischemic brain [171]. At 24 h 
after pMCAO, microglia are the key producers of IL-1, 
with approximately 50% of the IL-1α producing microglia 
co-expressing IL-1Ra and 17% co-expressing IL-1β, dem-
onstrating that IL-1β and IL-1α are largely produced by 
segregated populations of microglia in the ischemic brain 
[33]. It is, therefore, likely that IL-1α in platelets in addi-
tion to few IL-1α/β producing microglia impacts the balance 
between IL-1/IL-1Ra early after stroke onset [33]. Findings 
that IL-1α and IL-1Ra are co-expressed in microglia support 
the view that icIL-1Ra can regulate the action of intracel-
lular IL-1α [113].

IL-1β is constitutively expressed in the CNS [42] where 
it exerts neurotrophic factor-like activity [161] or regulates 
both the expression and activity of ion channels [181]. IL-1β 
is upregulated acutely after ischemic stroke (Fig. 1)[32, 33, 
37] and peaks at 12-24 h (Fig. 2b) primarily in microglia and 
macrophages [32, 37], and later in astroglial-like cells [183].

IL-1 has been shown to aggravate stroke pathology 
(Table 1) as demonstrated by findings in transgenic mice 
overexpressing a dominant-negative form of caspase-1 in 
neurons [54], caspase-1 KO mice [73], and IL-1α/β KO 
mice [17], which all show reduced infarct volumes after 
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experimental stroke. Additional support comes from early 
studies demonstrating that administration of recombinant 
IL-1β exacerbated damage [99] as does intracerebroven-
tricular (i.c.v.) delivery of an IL-1Ra antiserum [101]. 
Systemic administration of IL-1β just before tMCAO 
worsened outcome in rodents through neutrophil- and 
platelet-dependent mechanisms reducing reperfusion 
[109].

In addition, IL-1Ra is an acute phase protein [55] 
that blocks the action of IL-1. Administration of IL-1Ra 
reduced ischemic brain damage after both tMCAO and 
pMCAO in rats [59, 137] and mice [175] (Table 1) and 
IL-1Ra-overexpressing mice show reduced infarct vol-
umes, whereas IL-1Ra KO mice display increased infarct 
volumes compared to littermate mice after pMCAO [33].

Anti‑interleukin‑1 treatment in experimental 
and human ischemic stroke

IL-1Ra is the only therapeutic agent directed against IL-
1-induced inflammation (Fig. 3b) that has been tested in 
randomized clinical trials in ischemic stroke (Table 1). 
In pre-clinical stroke models, recombinant (r)IL-1Ra is 
protective after central [137] and peripheral [59] admin-
istration and, similar to i.c.v. injection of anti-IL-1β anti-
body (Ab) [191] or IL-1Ra, was shown to reduce infarct 
volumes after MCAO in rats [99, 137] and pMCAO in 
mice [121].

Although IL-1Ra can reach the brain after systemic 
administration in the rat [66] and modulates long-term 
functional recovery after experimental stroke [62], its use 
in stroke patients has proven challenging. Pharmacoki-
netic studies have shown that rIL-1Ra crosses the BBB 
slowly [71] and has a very short half-life in the circulation 
[64], and thus it is difficult to achieve therapeutic IL-1Ra 
concentrations in the brain [57].

The first randomized, double-blind, placebo-controlled 
trial using i.v. injected recombinant human (rh)IL-1Ra in 
acute stroke patients (given within the first 6 h of stroke 
onset) showed a reduction in neutrophil count, plasma 
CRP, and IL-6 compared to placebo, and exploratory effi-
cacy analysis indicated that patients receiving rhIL-1Ra 
had minimal to no disability three months after stroke 
[51]. Recently, the SCIL-STROKE (subcutaneous inter-
leukin-1 receptor antagonist in ischemic stroke) phase 
II trial, using subcutaneous (s.c.) injections of IL-1Ra 
in combination with i.v. thrombolysis, showed reduced 
plasma IL-6 levels, whereas neurological recovery three 
months after stroke was unaffected [159]. Exploratory 
efficacy analysis suggested that the expected benefi-
cial effect of IL-1Ra on clinical outcome by reducing 

inflammation might have been counteracted by a negative 
effect, which could represent an interaction with alteplase 
[159].

Interleukin‑6

Another potent proinflammatory cytokine with pleiotropic 
functions is IL-6, which is expressed on many cell types, 
including monocytes, neurons and glial cells (Fig. 1j, k)[52, 
70]. The pleiotropism of IL-6 may be explained by IL-6 
eliciting fundamentally different cellular responses depend-
ing on whether the classic or the trans-signaling pathway is 
activated [152]. This depends on the IL-6 receptor system 
that consists of the IL-6 receptor (IL-6R) as well as solu-
ble IL-6R (sIL-6R) and glycoprotein 130 (gp130), which 
due to its cytoplasmic domain is responsible for the signal 
transduction. Soluble IL-6R is formed by cleavage from the 
IL-6R by TACE/ADAM17 [141] or by translation of differ-
ent IL-6R mRNA splice variants [103].

In classic signaling, IL-6 binds to and forms a complex 
with membrane-bound IL-6R, which then recruits gp130. 
Trans-signaling occurs when IL-6 binds sIL-6R, which then 
binds to membrane-anchored gp130 [141]. Unlike IL-6R, 
which is expressed by neurons, microglia, neutrophils, 
monocytes, hepatocytes and  CD4+ T cells and thus limits 
classic signaling to only a few tissues [58], gp130 is ubiqui-
tously expressed in the body (reviewed by [145]), increasing 
the spectrum of IL-6 target cells. Trans-signaling is normally 
tightly regulated [185] and can be counteracted by a solu-
ble form of gp130 (sgp130), which is generated by alterna-
tive splicing of gp130 mRNA and is present in serum [85]. 
Once IL-6 is released into the blood it can bind sIL-6R but 
also sgp130 [150], which immediately interferes with IL-6 
trans-signaling [58]. As sgp130 levels are much higher than 
sIL-6R, trans-signaling does not occur under physiological 
conditions.

Classic IL-6 signaling is believed to be anti-inflammatory 
and protective [185], while trans-signaling is responsible for 
the pro-inflammatory effects mediated by IL-6 [147, 152].

Interleukin‑6 in experimental stroke

IL-6 is expressed in the normal CNS, where it influences 
neuronal homeostasis by acting as a neurotrophic factor 
via the classical signaling pathway (reviewed by [147]). 
Ischemic stroke in mice and rats leads to a significant 
increase in the levels of IL-6 from 6 to 12 h (Fig. 1 and 
2c), and in both IL-6R and gp130 from 3 days [3, 70]. 
IL-6 has been shown to be neuroprotective in experimental 
stroke [192] although this is still debated [29]. In human 
stroke, IL-6 serum levels increase within the first 24 h and 
have been shown to correlate significantly with infarct size 
and survival [11, 157]. A similar correlation has not been 
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observed for sIL-6R [46, 70]. While studies of IL-6 expres-
sion in the ischemic brain post-mortem are sparse, one study 
showed that IL-6 levels were elevated in the infarct already 
in the acute phase after stroke and remained elevated at later 
time points [126]. Supporting the neuroprotective effect of 
brain-derived IL-6 are findings showing a positive effect of 
IL-6 on post-stroke neurogenesis, leading to long-term func-
tional recovery [111].

Anti‑interleukin‑6 treatment in ischemic stroke

Similar to patients treated with nonspecific TNF antagonists, 
non-neurological patients treated with IL-6 inhibitors are 
at increased risk of infections (reviewed in [169]). Clinical 
stroke studies show that sIL-6R correlates with the degree 
of leukocyte infiltration [85] and that sIL-6R neutralizing 
antibodies are beneficial [146]. In comparison, anti-IL-6R 
antibodies target both the membrane-bound form of IL-6R 
and sIL-6R, and therefore, affect classical and trans-signal-
ing equally (Fig. 3c and Table 2).

If classical IL-6 signaling is protective and trans-signal-
ing detrimental, selective neutralization of the potential, det-
rimental trans-signaling is possible by administration of the 
chimeric protein sgp130Fc (Fig. 3c and Table 2). Sgp130Fc 
is a fusion protein that contains the extracellular domain of 
human gp130 and the Fc-fragment of human IgG1. This 
allows sgp130Fc to bind to the IL-6/solIL-6R complex, but 
not to sIL-6R alone [86], whereby spg130Fc blocks trans-
signaling [52] (Fig. 2c). Such specific inhibition of the trans-
signaling pathway using, i.e. sgp130, which does not com-
promise classic signaling, could be a promising therapeutic 
tool in future stroke research.

Interleukin‑10 in clinical and experimental stroke

IL-10 is a pleiotropic anti-inflammatory cytokine mainly 
produced by type-2 helper T cells, which in turn regulate 
inflammatory reactions. IL-10 binds to IL-10 receptors (IL-
10R) to reduce inflammation and limiting apoptosis [148]. 
In the CNS, astrocytes, neurons, and microglia have been 
reported to produce IL-10 [114, 188].

A meta-analysis investigating the association of IL10 
gene polymorphism with the risk of ischemic stroke showed 
no overall significant association between IL-10 and the risk 
of ischemic stroke, but an association was found with large 
vessel disease and small vessel disease [89], suggesting that 
some subtypes of ischemic stroke are associated with IL10 
gene polymorphisms.

In experimental stroke, IL-10 mRNA and protein and 
IL-10R mRNA levels are increased, with IL-10 noted in 
microglia and IL-10R on astrocytes in the peri-infarct area 
[126, 132]. In transgenic mice overexpressing IL-10, infarct 
volumes were reduced, and apoptosis decreased 4 days after 

pMCAO [38]. Furthermore, low IL-10 levels were associ-
ated with poor stroke outcome and a delayed, exacerbated 
inflammatory response after pMCAO that was ameliorated 
by IL-10 administration after pMCAO [132] (Table 1). Ther-
apeutic administration of IL-10 has been shown to be neu-
roprotective in experimental stroke and to limit post-stroke 
inflammation [96, 97, 130, 139, 160, 165] (Table 1),

Low plasma IL-10 levels in patients with subcortical or 
lacunar stroke are associated with neurological worsening 
within the first 48 h [180], attributing IL-10 a role in the 
acute neuroinflammatory response after stroke. This is in 
line with findings by Protti et al. showing that patients with 
low IL-10 levels deteriorated neurologically within the first 
3 days post-stroke [136]. Stroke patients are prone to infec-
tion due to stroke-induced immunodepression, however, 
and increased serum IL-10 levels have been identified as 
an independent predictor of post-stroke infection [22, 187]. 
Women have poorer recovery after ischemic stroke than 
men, even after controlling for age and stroke severity [19, 
80]. This may be partly due to the increased IL-10 levels 
24 h post-stroke and an associated higher incidence of post-
stroke urinary tract infection and poorer overall outcomes 
in women have been suggested to be a contributing factor 
[35]. Overall, these studies indicate that an excessive IL-10 
response can lead to post-stroke immunosuppression and 
worsen neurological outcome, suggesting that IL-10 thera-
peutics should be given with caution. Future studies should 
be aimed at differentiating between central and peripheral 
IL-10 effects post-stroke.

Concluding remarks

The dual role of inflammation in both injury and repair 
complicates attempts to target inflammatory signals in 
stroke patients. “Single-target” therapies appear insuffi-
cient because ischemic stroke involves several mechanisms. 
Therapeutic approaches should, therefore, most likely target 
several cell types and different post-ischemic phases to pro-
mote protection and recovery.

A possible new approach is to enhance proinflamma-
tory cytokine inhibition either by simultaneous targeting of 
more than one cytokine or using a more selective targeting 
approach where only part of the signaling cascade initiated 
by a given cytokine is inhibited. More selective targeting 
can be achieved because some of the detrimental and ben-
eficial signals diverge at the level of ligand (e.g. solTNF or 
tmTNF and IL-1 or IL-1Ra) and at the level of the receptor 
(e.g. TNFR1 or TNFR2 and IL-6R or sIL-6R). Accordingly, 
specific inhibition of solTNF, IL-1, or IL-6 trans-signaling 
might be sufficient to inhibit the pathological consequences 
of deregulated cytokine signaling while leaving beneficial 
signaling pathways intact.
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The differential roles of cytokine and cytokine receptors, 
and the function of cytokines derived from specific cell sub-
sets make it clear that the use of anti-cytokine drugs can 
be improved or adjusted to the specific disease context. A 
novel approach to block detrimental inflammation follow-
ing experimental ischemia is the use of cell-type-restricted 
targeting of cytokines, or the creation of Activity-on-Target 
cytokines (AcTakines), which is immunotherapy consisting 
of mutated cytokines with reduced binding affinity coupled 
to a targeting moiety that guides cytokines to the desired cell 
target [60]. Recently, Nedospasov and colleagues designed 
myeloid cell-specific TNF inhibitors (MYSTIs), which are 
recombinant mini-antibodies with dual specificity, that can 
bind to the surface molecule F4/80 or CD11b on myeloid 
cells and to solTNF and were found to be beneficial in 
in vivo models of acute hepatotoxicity and arthritis [47, 
128].

For anti-inflammatory therapies to be successful in 
stroke treatment, a better understanding is needed of both 
the temporal and spatial dynamics of resident microglia 
and recruited inflammatory cells. Despite intense investiga-
tion, there are still numerous controversies concerning the 
time course of leukocyte recruitment in acute stroke. An 
improved understanding of the heterogeneity of the inflam-
matory response in this disease also demands better imag-
ing studies of stroke patients, using tracers to identify both 
infiltrating cells and functional, relevant cytokine receptors. 
The heterogenic roles that microglia play in stroke make it 
challenging to identify strategies that modulate microglial 
function, but promising results of pre-clinical studies sug-
gest that this should be a major focus of attention in future 
stroke research.

As evidenced above, post-stroke neuroinflammation is 
both a tool and a target for therapy. However, care must be 
taken as to when, where, and how to intervene with neuroin-
flammatory responses. Taken altogether, this calls for further 
translational stroke research.
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