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Type I interferons (IFNs) as part of the innate immune system have an outstanding
importance as antiviral defense cytokines that stimulate innate and adaptive immune
responses. Upon sensing of pattern recognition particles (PRPs) such as nucleic acids,
IFN secretion is activated and induces the expression of interferon stimulated genes
(ISGs). Uncontrolled constitutive activation of the type I IFN system can lead to
autoinflammation and autoimmunity, which is observed in autoimmune disorders such
as systemic lupus erythematodes and in monogenic interferonopathies. They are caused
by mutations in genes which are involved in sensing or metabolism of intracellular nucleic
acids and DNA repair. Many authors described mechanisms of type I IFN secretion upon
increased DNA damage, including the formation of micronuclei, cytosolic chromatin
fragments and destabilization of DNA binding proteins. Hereditary cutaneous DNA
damage syndromes, which are caused by mutations in proteins of the DNA repair,
share laboratory and clinical features also seen in autoimmune disorders and
interferonopathies; hence a potential role of DNA-damage-induced type I IFN secretion
seems likely. Here, we aim to summarize possible mechanisms of IFN induction in
cutaneous DNA damage syndromes with defects in the DNA double-strand repair and
nucleotide excision repair. We review recent publications referring to Ataxia
teleangiectasia, Bloom syndrome, Rothmund–Thomson syndrome, Werner syndrome,
Huriez syndrome, and Xeroderma pigmentosum. Furthermore, we aim to discuss the role
of type I IFN in cancer and these syndromes.

Keywords: Interferon, DNA damage, DNA repair, Werner syndrome (WS), Bloom Syndrome, Huriez syndrome,
chilblain lupus, Ataxia teleangiectasia
INTRODUCTION

Type I interferons (IFNs), IFN a and IFN b, constitute a group of cytokines whose primary function
is viral defense and protection against other intracellular pathogens (1). IFN secretion is activated
after sensing of foreign- or self-nucleic acids (1). After binding on the interferon receptor (IFNAR),
IFN is able to induce transcription of interferon stimulated genes (ISGs), resulting in activation of
the innate immune system (1).
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It has long been recognized that viral infections can induce
flares of autoimmune diseases. This is mainly attributed to the
upregulation of type I IFN which stimulates adaptive immunity
and attenuates tolerance to self (2). Constitutive upregulation of
type I IFN and ISG-transcription is seen in monogenic type I
interferonopathies and autoinflammatory diseases such as
systemic lupus erythematodes (2, 3). The importance of this
group of cytokines is underlined by the prominent type I IFN
signature found in blood of many complex autoimmune
disorders such as dermatomyosit is , systemic lupus
erythematodes, Sjogren’s syndrome, and rheumatoid arthritis
(4–8). Recent studies revealed type I IFN secretion after DNA
damage through different mechanisms leading to distribution of
nucleic components into the cytosol that will hereby be discussed
(9–15).

DNA damage syndromes of the skin are caused by mutations
in proteins taking part in the DNA repair (16–18). Due to UV-
light driven carcinogenesis, these diseases often share the strong
predisposition for the development of cutaneous malignancies,
such as cutaneous squamous cell carcinoma (CSCC) and basal
cell carcinoma (BCC) (16, 18). Important syndromes with
defects in the DNA double-strand repair (DSBR) are Louis-
Bar, Werner, Bloom, Rothmund–Thomson and Huriez
syndromes (16, 18, 19). They can feature autoimmune
phenotypes, such as positive antinuclear antibodies (ANA),
rheumatoid arthritis, vitiligo, and scleratrophy. Here we
summarize different mechanisms of IFN secretion, its role in
Frontiers in Immunology | www.frontiersin.org 2
DNA damage syndromes of the skin and discuss the role of the
signaling pathway of type I IFN in cancer.
TYPE I IFN—ACTIVATION AND
SECRETION

Primary functions of type I IFN consist in the defense of bacterial
and viral infections. Under steady state conditions, type I IFN is
secreted upon sensing of pathogen associated molecular patterns
(PAMPS) such as foreign nucleic acids (1). Nucleic acids can be
detected by endosomal localized receptors such as TLRs (toll like
receptors), which are mostly expressed by immune cells. TLR3
senses double-stranded RNA, TLR7, and TLR8 single-stranded
RNA. TLR9 recognizes CpG (unmethylated cytosine-guanosine)
DNAmotifs which are typical for bacteria (20–22). TLRs activate
adapter proteins, further inducing a signal cascade: TLR3
activates TRIF (TIR-domain-containing adapter inducing
interferon ß), while TLR7, TLR8, and TLR9 stimulate MyD88
(myeloid differentiation primary response 88). TRIF induces
activation of IRF3 (interferon regulatory factor 3), MyD88 acts
via IRF7 (interferon regulatory factor 7) and both adapter
proteins activate the NF-kB-signaling pathway (20). Thereby,
production of proinflammatory cytokines such as pro-IL1ß, pro-
IL18, and secretion of type I IFN is enabled (Figure 1) (21).

Even in the cytosol, nucleic acids can be sensed by intracellular
receptors which are expressed in almost every human cell. Short,
FIGURE 1 | Sensing of intracellular nucleic acids and activation of type 1 IFN and Nf-kB pathway. Cytosolic DNA (marked in blue), specifically dsDNA and ssDNA with
stem loop, is mainly detected by the cGAS–STING–TBK1–IRF3 pathway, leading to type 1 interferon secretion. Bacterial DNA with CpG motifs can furthermore be
detected by endosomal TLR9 which acts via MyD88, IRF7, and Nf-kB. Cytosolic RNA is recognized by MDA5 (dsRNA) and RIG1 (short ds RNA with 3′phosphate),
acting via MAVS to activate both TBK1-IRF3 and the Nf-kB pathway. Endosomal RNA is sensed by TLR3, 7, and 8 depending on the structure, activating either TRIF
or MyD88. Activation of IRF3 and IRF7 leads to type 1 IFN transcription and secretion, which binds to IFNAR in an autocrine and paracrine manner.
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double-stranded cytosolic RNA with a 5′triphosphate end is
detected by RIG1 (retinoic acid inducible gene-I) while long,
double-stranded RNA is recognized by MDA5 (melanoma
differentiation associated gene 5) (1, 23, 24). They both activate
MAVS (mitochondrial antiviral-signaling-protein) which acts
through TBK1 (Tank-binding kinase 1), activating IRF3 (25).
Cytosolic DNA can be detected by different mechanisms: On the
one hand, the transformation of short, double-stranded RNA of
AT-rich DNA via RNA Polymerase III acts through activation of
RIG1/MAVS (26). On the other hand, single-stranded DNA with
stem loop and double-stranded DNA are ligands of cGAS (cyclic
GMP-AMP synthase), which generate cGAMP. This second
messenger binds to the dimer STING (stimulator of interferon
genes), which upon conformational change activates TBK1 and
IRF3 (27). In addition, STING binds directly to bacterial cyclic
dinucleotides (c-di-GMP and c-di-AMP), resulting in IRF3
activation (Figure 1) (28, 29). These different mechanisms only
show an extract on how cytosolic nucleic acids can induce a type I
IFN response.

Almost every human cell is capable of IFN b secretion, while IFN
a is predominantly secreted by plasmacytoid dendritic cells (30, 31).
Secreted type I IFN binds to IFNAR (interferon alpha-receptor)
which consists of two heterodimers, IFNAR-1 and -2, which then
activate the JAK/STAT pathway (januskinase/signal tranducers and
activators of transcription) (32). A complex of STAT and IRF9 bind
ISRE (interferon stimulated response element), resulting in
transcription of ISGs (31). Subsequently, significant upregulated
presentation of MHC-I, NK-cells and cytotoxic T-cells as well as
proliferation of T-helper cells are activated (2). Moreover,
autoreactive B-cell development and class switch from IgM to IgG
are promoted which leads to autoantibody production (33). Type 1
IFN signaling thus promotes the development of a pro-
inflammatory environment, which leads to autoimmunity due to
a loss of tolerance in innate and adaptive immune responses.

The capacity of differentiation between self and foreign nucleic
acids is limited. If the amount of self nucleic acids reaches a certain
level in the cytosol, nucleic acid sensors can be activated, resulting in
type 1 IFN secretion (34). To deteriorate the amount of nucleic
acids, human cells exhibit cytosolic exonucleases such as TREX1
(three prime repair exonuclease 1), lysosomal DNase2, and
extracellular DNase1 (35, 36). Deficiency of these proteins as well
as gain of function mutations in nucleic acid sensors may lead to
continuous stimulation of IFN secretion, which is observed in
hereditary monogenic “interferonopathies”. These diseases are
consistently featuring high levels of native ISG-expression, called
“intrinsic interferone signature” (3). Loss of function mutations of
TREX1, which were originally described in AGS (Aicardi Goutieres
syndrome), result in accumulation of cytosolic DNA inducing a
cGAS-dependent type I IFN secretion (37, 38). AGS patients show a
broad phenotypic spectrum which is characterized by
encephalopathy with dystonia, epilepsy, and microcephaly.
Patients exhibit autoimmune symptoms such as Chilblain-Lupus,
positive antinuclear antibodies and oral ulcerations (39, 40). Also,
TREX1-associated familial Chilblain-Lupus is caused by a loss of
function mutation in TREX1 which leads to activation of the type I
IFN system. Patients show acral bluish red infiltrates and frequently
Frontiers in Immunology | www.frontiersin.org 3
develop systemic signs of lupus associated with a type I IFN
signature in the blood (41–45).

Cutaneous DNA damage syndromes, characterized by defects
in DNA repair proteins, can feature clinical phenotypes seen in
autoimmune diseases such as autoantibody production, vitiligo,
rheumatoid arthritis, and scleratrophy. In the following, the
cutaneous DNA damage syndromes are presented in more
detail, and the possible pathophysiological role of type 1 IFN
in these diseases will be discussed.
CUTANEOUS DNA DAMAGE SYNDROMES
WITH DEFECTS IN DNA DOUBLE-STRAND
BREAK REPAIR

Daily exposure to sunlight is the main inductor of skin aging,
skin atrophy, and several malignancies such as cutaneous
squamous cell carcinoma (CSCC) and basal cell carcinoma
(BCC) (46). UVA and UVB exposition leads to several kinds
of DNA damage e.g. UV light dose-dependent cyclopyrimidine-
dimers (CPD) and oxidized bases (47, 48). Upon repair of this
direct DNA damage, the formation of DNA DSB can be induced
(48, 49). To repair these lesions, the DNA double-strand repair
(DSBR) machinery is recruited which is divided into
homologous recombination (HR) and non-homologous end
joining (NHEJ), depending on the cell cycle.

Initiation of HR is the “DNA end resection”: Endonuclease
activity of the MRE11-RAD50-NBS1-complex (Nijmegen
breakage syndrome protein 1), DNA helicases (RECQ-helicase
family), unwinding the helix structure, and exonucleases, cut out
an ssDNA nucleotide to get a free 3′ end, where other repair
enzymes of the DSBR can bind (50, 51). Afterwards, stabilizing
proteins such as RAD51, RPA (replication protein A) and BRCA
(BReast CAncer protein) are recruited to the free ssDNA (50).
The homologous DNA strand of sister chromatid is used as
template for “strand invasion”. Finally, the strands are
reconnected (“strand annealing”) (50).

In NHEJ, DSBR is initiated by binding of Ku70/80 to the DSB,
recruiting additional factors such as DNA-PKs (protein kinases)
and XRCC4/DNA-ligase (50, 51). Further, nucleotide sequences
in upstream and downstream of the DSB are excised by Artemis,
DNA polymerase l and µ (51). Then, DNA is ligated through
DNA-ligase IV (50).

Defects in DNA DSBR are mostly located in defective DNA
helicases (RECQ-helicase family). They usually affect the skin and
several other tissues (Table 1) and often show autosomal recessive
inheritance. Autosomal recessive Bloom syndrome is caused by
heterozygous mutations in Bloom-helicase which is involved in
DNA DSBR, HR (52, 61). The skin of patients shows telangiectasia
and photosensitivity; furthermore patients have an elevated risk of
developing leukemia, lymphoma, and gastrointestinal cancer and
harbor defects in immune defense (17).

Rothmund–Thomson syndrome represents an autosomal
recessive disorder caused by homozygous and compound-
heterozygous mutations of RECQL4-protein (62). Skin
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symptoms include poikiloderma (telangiectasia, change of
pigmentation), hair loss, palmoplantar keratoderma, and
patients may have a higher risk of developing BCC, CSCC, and
melanoma. Patients often show abnormalities of the bones
and can develop osteosarcomas (53, 54).

The progeroid Werner syndrome is characterized by
premature aging upon defects in WRN helicase, which
contains endonuclease activity (63). Clinical symptoms include
skin atrophy, growth retardation, atherosclerosis, and high
predisposition to different types of cancer (thyroid, melanoma,
sarcoma) (17).

Recently discovered autosomal dominant Huriez syndrome
(also known as sclerotylosis) is caused by mutations in the skin
specific isoform of SMARCAD1 (SWI/SNF-related matrix-
associated actin-dependent regulator of chromatin, subfamily
A containing DEAD/H box 1), which is involved in DNA DSBR
and chromatin remodeling (19, 64, 65). Patients exhibit
palmoplantar keratoderma, palmoplantar scleroatrophy,
onychodystrophy, adermatoglyphia, eczema, telangiectasia, and
a high risk for developing CSCC at a young age (3rd to 4th
decades) (55–57). Due to exclusive mutations in the skin specific
isoform of SMARCAD1, which is mostly expressed in the skin
and tongue, other malignancies of other cell types have not been
described (19, 57, 58, 66).
Frontiers in Immunology | www.frontiersin.org 4
CUTANEOUS DNA DAMAGE SYNDROMES
WITH DEFECTS IN NUCLEOTIDE
EXCISION REPAIR

Direct UV light-induced DNA damage such as CPDs and
pyrimidine-pyrimidone (6–4) photoproducts is repaired by the
nucleotide excision repair (NER) (67, 68). NER is divided in two
mechanisms: transcription-coupled repair (TCR) and global
genome repair (GCR). These pathways are different in recognition
of “bulky lesions”: In TCR, RNA polymerase II, CSA, and CSB
(Cockayne syndrome proteins A and B) recognize the damage,
while in GGR XPC (xeroderma pigmentosum group C)/UV
excision repair protein Rad23B or DDB1 and DDB2 (DNA
damage binding proteins 1 and 2) are recruited (50, 68). Both
pathways share the following steps: unwinding DNA (XPB, XPD)
and dual excision of a 25–30 bp oligonucleotide by endonucleases at
the 3′ side (XPG and TFIIH, transcription factor II H) and 5′ side
(XPF and ERCC1 complex, excision repair cross complementation
group 1) (50, 67, 68). The removed DNA is bound by RPA, while
the gap is stabilized by RFC (replication factor C) and PCNA
(proliferating cell nuclear antigen) and resynthesized by DNA
polymerases (50, 67, 68). The two strands are annealed by DNA-
ligase1/ligase III–XRCC1 complex (X-ray repair cross
complementing protein 1) (50, 67, 68).
TABLE 1 | Cutaneous double-strand break repair defects and symptoms (18, 52–60).

Disease Skin symptoms Extracutaneous symptoms and malignancy
Affected protein

Werner syndrome - progeroid phenotype (scleroatrophy) with ulcers

- premature aging

- alopecia

- subcutaneous atrophy of the skin

- growth retardation

- atherosclerosis with associated cardiovascular complications

- cataract

- diabetes mellitus type 2

- hypogonadism

- malignancy (e.g. thyroid, melanoma, sarcoma)

WRN helicase

Rothmund–Thomson syndrome - photosensitivity

- poikiloderma

- alopecia

- palmoplantar keratoderma

- CSCC, BCC, melanoma

- juvenile cataract

- saddle nose

- osteosarcoma

- hyposmia

RECQL4 helicase

Bloom syndrome - photosensitivity

- telangiectasia

- erythema (“butterfly” distribution

- poikiloderma

- leukemia, lymphoma

- gastrointestinal cancer

- immunodeficiency

BLM1 helicase

Huriez syndrome - palmoplantar keratoderma

- scleroatrophy of hands and feet

- eczema

- CSCC on lesional skin

- telangiectasia

- hypohidrosis

- not known
SMARCAD1 (skin specific isoform)

Ataxia teleangiectatica (Louis-Bar syndrome) - telangiectasia

- vitiligo

- premature hair graying

- rheumatoid arthritis

- antinuclear antibodies

- ataxia

- immunodeficiency

- malignancy (lymphoma, leukemia)

ATM protein
July 2021 | Volume 12 | Article 715723
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Diseases with defective proteins of NER include Xeroderma
pigmentosum, Trichothiodystrophy (TTD), Cockayne syndrome
(CS), and UV-sensitivity syndrome (UVSS) (Table 2) (16, 18).
Exclusively, hereditary syndromes caused by mutations in proteins
of GGR are associated with malignant transformation, while
mutations in TCR are not (18). TTD, CS, and UVSS represent
diseases with defects in TCR and will not be discussed in this
review. Xeroderma pigmentosum is autosomal recessive caused by
mutations in different genes (XPA-XPG) involved in NER (GGR),
further enhancingmalignant transformation (18, 69). Patients exhibit
an extreme sensitivity to sunlight, showpigment changes and ahighly
elevated risk of developing skin cancer at a young age (69). The
estimated increased risk is 10,000-fold higher for developing non-
melanoma skin cancer and 2,000-fold higher for developing
melanoma under the age of 20 (70). Ocular abnormalities are seen
in UV-exposed structures of the eye. Of patients, 20–30% show
neurological symptoms and intellectual deficiency (Table 2) (18, 69).
TYPE I IFN ACTIVATION IN DNA
DAMAGE SYNDROMES

Diseases associated with defects in DNA repair may also show
autoimmune phenotypes: In Ataxia teleangiectatica, some patients
Frontiers in Immunology | www.frontiersin.org 5
show production of antinuclear antibodies (ANAs), symptomatic
rheumatoid arthritis, and vitiligo besides the classic symptoms of
ataxia, telangiectasia, and a high predisposition for the
development of malignancies (10, 59, 60, 71, 72). It is caused by
defects of the ATM protein, which is essential for a proper DNA
double-strand repair (50). It has been proposed that autoimmune
features are driven by a type I IFN response that is induced by
byproducts of the DNA damage response. Härtlova et al. showed
that cell stress is able to induce type I IFN system: Irradiated
ATM-deficient cells show liberation of ssDNA-fragments which
can penetrate into the cytosol and activate STING (10). To clarify
if this mechanism is DNA damage-dependent, etoposide as
specific inductor of DNA double-strand breaks showed
significant activation of type I interferon. Moreover, lower
concentrations of viral nucleic acids or c-di-GMP were
necessary to induce a STING-dependent ISG expression in
ATM-deficient cells. Authors claimed this phenomenon as
“priming” of the type I IFN system (10).

Further, different studies of ATM deficiency led to the idea of
mitochondrial DNA (mtDNA)-induced activation of cGAS and
type I IFN (73–75): ATM, besides being detectable in the
nucleus, is also detectable in mitochondrial fractions of human
fibroblasts (74). ATM deficiency shows mitochondrial
dysfunction which is associated with an innate immune
response including type I IFN production (73). The
July 2021 | Volume 12 | Article 715723
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TABLE 2 | Cutaneous nucleotide excision repair defects and symptoms (16, 18, 69, 70).

Disease Skin symptoms Extracutaneous symptoms and malignancy
Affected protein

Xeroderma pigmentosum group - extreme photosensitivity (acute photosensitivity in groups A, B, D,
F, and G)

- poikiloderma

- freckling

- premature photoaging

- CSCC, BCC at a young age

- melanoma at a young age

- ocular manifestations (e.g. keratitis) and ocula
neoplasms

- intraoral malignancies

- neurological impairment (groups A, B, D and G, >50%
of XPD)

- intellectual impairment

- lung cancer, leukemia, brain malignancies

XPA
XPB
XPC
XPD
XPE
XPF
XPG

Xeroderma pigmentosum variant - freckling

- poikiloderma

- premature photoaging

- CSCC, BCC at a young age

- melanoma at a young age

- ocular manifestations (e.g. keratitis) and ocula
neoplasms

- intraoral malignancies

- intellectual impairment

- lung cancer, leukemia, brain malignancies

DNA Polymerase h

UV sensitivity syndrome - photosensitivity

- pigment anomalies

- telangiectasia

- freckling

- no organ involvement
ERCC8 (=CSA), ERCC6 (=CSB),
UVSSA

Trichothiodystrophy - photosensitivity

- ichthyosis

- brittle hair and nails

- intellectual impairment

- decreased fertility

- microcephaly

- osteoporosis

- cataract

- hearing loss

XPB
XPD
TTDA

Cockayne syndrome - photosensitivity

- anhidrosis

- nail dystrophy

- microcephaly, stunted growth

- progressive neurologic dysfunction

- hearing loss

ERCC8 (=CSA), ERCC6 (=CSB)
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mechanism was identified recently: ATM inhibition was shown
to cause cytoplasmic leakage of mtDNA by downregulation of
TFAM (mitochondrial transcription factor A), which is a
mtDNA binding protein. Cytoplasmic mtDNA then activates
cGAS-STING-dependent type I IFN secretion (75). Together,
downregulation of TFAM caused by ATM deficiency promotes
leakage of mtDNA into the cytosol and thus activates the type 1
IFN system. These results also show that ATM, in addition to its
function in DNA double strand repair, is indirectly involved in
the stabilization of mtDNA and mitochondrial homeostasis (75).
Hence, different subcellular localizations and functions of ATM
are responsible for type I IFN induction and may lead to the
autoimmune phenotype observed in this disease.

The possible producer of DNA fragments during DNA repair,
which further penetrate from the nucleus into the cytosol
inducing a type I IFN response, was identified by Erdal et al.:
Liberated ssDNA fragments are excised by Bloom-helicase
(BLM) and Exonuclease 1 (Exo1) in the “DNA end resection”
of HR as mentioned above: BLM1/Exo1-deficient cells exhibited
significant lower expression of ISGs after irradiation compared
Frontiers in Immunology | www.frontiersin.org 6
to wild type, indicating less liberation of ssDNA into the
cytosol (14).

The transmission from nuclear DNA into the cytosol is
protected by DNA binding proteins such as RPA and RAD51,
which are upregulated upon DNA damage (13). Deficiency of
RAD51 or associated proteins leads to liberation of ssDNA and
dsDNA into the cytosol, further enhancing a type I IFN response
in a STING-dependent manner (Figure 2) (13, 76).

Accumulated cytosolic ssDNA is normally cleaved by TREX1
(35). TREX1 mutations have been described to cause Aicardi
Goutières syndrome and autosomal dominant familial chilblain
lupus. Both diseases are characterized by spontaneous activation
of the type I IFN system (37, 38, 41, 42). This is induced by
ssDNA accumulating in the cytosol due to an activated DNA
damage repair response (13, 77). TREX1 deficient cells are very
competent in NER and DSB repair. They harbor replication
stress and exhaustion of the RAD51 ssDNA-binding capacity
facilitating DNA accumulation in the cytosol (13). The DNA
sensor cGAS recognizes unrestricted DNA and stimulates
STING (Figure 2) (27, 78). In TREX1-associated familial
FIGURE 2 | Mechanisms of type 1 IFN induction upon DNA damage. Genotoxic agents such as chemotherapeutics, UV-light, or reactive oxygen species (ROS) may
lead to formation of ssDNA, which is normally cleared by TREX1. If TREX1 is deficient, the threshold for ssDNA is limited. Changes in DNA-bases such as 8-oxo-dG
are resistant to enzymatic degradation via TREX1. Upon massive DNA damage or RAD51 deficiency, the generation of multiple cytosolic ssDNA fragments may lead
to activation of cGAS. Cutaneous DNA damage syndromes, such as Bloom syndrome, characterized by chromosomal instability, show increased formation of
micronuclei with fragile nuclear envelope. Normally, micronuclei are processed by autophagy. Upon rupture of the nuclear envelope, micronuclei are sensed by
cGAS, resulting in production of cGAMP, further activating STING, TBK1, and IRF3. Secreted type 1 IFN binds to IFNAR, acting through the JAK–STAT pathway,
leading to a senescent phenotype. Senescent cells, which are more frequent in cutaneous DNA damage syndromes, show nuclear blebs, also called chromatin
herniations, which are able to activate the type 1 IFN system through cGAS. MN, micronucleus; NE, nuclear envelope; cGAS, cyclic GMP-AMP synthase; cGAMP,
cyclic GMP-AMP; STING, stimulator of interferon genes; TBK1, Tank binding kinase 1; IRF, interferon regulatory factor; TREX1, three prime exonuclease 1; IFNAR,
interferon alpha receptor; JAK, januskinase; STAT, signal transducers and activators of transcription; SASP, senescence-associated secretory phenotype; UV,
ultraviolet; ROS, reactive oxygen species.
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chilblain lupus, a deregulated IFN response was shown, which
was enhanced by stimulators such as polyI:C (43). Recently, it
has been shown that early type I IFN reactions upon UV-light in
murine skin are cGAS dependent, suggesting a UV induced type
I IFN dependent inflammation in cutaneous lupus
erythematodes (79). Other mutations identified in Aicardi
Goutières syndrome are defects in RNAseH2, which takes part
in ribonucleotide excision repair and acts on RNA/DNA-
hybrids, occurring during DNA replication (80, 81). Patients
with defects in RNAseH2 accumulate ribonucleotides in DNA
and show activation of the type I IFN system due to an activated
DNA damage response. Lupus patients with defects in RNaseH2
are susceptible to UV-light due to enhanced CPD-formation in
ribonucleotide-containing DNA (82). These results indicate that
specific structural alterations of DNA are capable of type I IFN
induction, further enhancing autoimmunity (Figure 2) (82).

Another way of releasing nucleic acids into the cytosol is the
formation of genome instability-associated formation of
micronuclei: a small nucleus with a lamin coated membrane.
Due to instability of this membrane, DNA damage can lead to
miscompartmentation, resulting in a cGAS-dependent activation
of type I IFN (Figure 2) (11).

Werner syndrome patients exhibit scleroderma-like skin
changes, which might be associated with an autoimmune
phenotype. In Werner syndrome, the frequency of senescent
cells is relatively high compared to normal controls (83). This is
due to replicative senescence, which results from elevated
telomer shortening (83, 84). Senescent cells show cell cycle
arrest, resistance to growth factors and exhibit a higher
amount of chromatin herniations compared to wild type (84,
85). Yu et al. showed significant activation of type I IFN in
fibroblasts of patients with Werner syndrome (9). After
treatment with anti-IFN antibodies they showed less cell cycle
arrest, entrance in S-/G2M-phase of cell cycle, and a reduced rate
of senescent cells. This indicates a potential disease-modifying
role of type I IFN and possible therapeutic strategy: Antibodies
against IFN could possibly stop premature aging and
scleroderma skin changes in Werner syndrome (9).
Interestingly, autoantibodies against WRN (Werner helicase)
and a lower expression rate of WRN were observed in systemic
sclerosis, suggesting a possible pathogenic link of sclerotic skin
changes (15, 86). The WRN protein belongs to the RECQ-
helicase family and contains an N-terminal 3′–5′ exonuclease
activity. It represents a multifunctional nuclease involved in
replication, telomer shortening, and DNA damage response
maintaining genome integrity (87). It interacts with proteins in
both NHEJ and HR (end resection) in DNA DSBR: In DSBR, it
has an exonuclease function and is involved in “DNA end
resection” (50). If type 1 IFN is activated by DNA fragments
produced by end resection factors [according to Erdal et al. (14)],
a deficiency of WRN would result in reduced excision of ssDNA,
which represents a possible dangerous molecule in the cell. This
alone cannot explain the increased type 1 IFN activation which
was shown in patient cells and raises the question as to the source
of type 1 IFN activation in Werner syndrome. The function of
WRN protein is complex, and it has been shown that the non-
Frontiers in Immunology | www.frontiersin.org 7
enzymatic component of WRN protein is recruited by NBS1 to
limit exonuclease activity of MRE11 at replication forks: In the
absence of WRN, MRE11 degrades DNA during replication.
NBS1 limits this process through recruitment of WRN (88).
Further, WRN protein stabilizes RAD51, a DNA-binding protein
(88). Together, WRN deficiency could lead to liberation of DNA
of replication forks due to higher excision by MRE11 and
destabilization of RAD51. RAD51 plays a pivotal role in
maintaining DNA in the nucleus (13, 88). Deficiency of
RAD51 in human fibroblast is sufficient to enhance IFN b-
mRNA levels in the cell (13). Therefore, WRN deficiency and
associated RAD51 destabilization could lead to accumulation of
excised DNA, further activating IFN response. Further studies
are needed to evaluate the impact of WRN deficiency, RAD51
destabilization and type I IFN.

Recent studies showed JAK-independent activation of STAT-
signaling pathway in premature aging cells: The transcription
factor ISGF3 (interferon stimulated gene factor 3), consisting of
STAT1, STAT2, and IRF9 can induce ISG expression
independently of IFN secretion in an unphosphorylated state:
In aged cells and cells of patients with Werner syndrome, ISG
expression was significantly upregulated compared to wild type
(89 , 90) . This was caused by increased leve l s o f
unphosphorylated STAT1 and STAT2 proteins (89). JAK
knockdown in these cells did not show a reduction of ISG
expression (89). This effect may be due to post-translational
modifications (e.g. acetylation, methylation) of STAT proteins in
aging cells, activating ISGF3 (89, 90). Hence, JAK-independent
activation of STAT proteins could explain enhanced ISG
expression in this syndrome (89, 90).

Furthermore, the senescent phenotype in Werner syndrome,
due to telomer shortening, could trigger the type I IFN system:
chromatin herniations observed in senescence can be recognized
by the immune sensor cGAS, inducing a STING-dependent type
I IFN response (Figure 2) (12). Altogether, different mechanisms
in Werner syndrome are able to induce the type I IFN system;
hence more studies are needed to evaluate the precise substrate of
type I IFN induction in Werner syndrome.

In contrast to the previous diseases, Bloom syndrome does
not show a typical autoimmune phenotype; however, patients
even show photosensitivity and symptoms of immunodeficiency
such as more frequent respiratory and gastrointestinal infections
(18, 91). Erdal et al. identified BLM helicase together with Exo1
as a possible source of ssDNA liberation of the nucleus into the
cytosol upon DNA damage, inducing a IFN response (14). A
deficient BLM protein, reducing ssDNA liberation, was
associated with a diminished IFN response in breast cancer
cells (14). However, Bloom syndrome represents a genetic
instability syndrome, and elevated micronuclei formation was
observed in patient cells (92). Gratia et al. showed a higher
micronuclei formation and cGAS dependent induction of type I
IFN in immortalized fibroblasts of Bloom syndrome patients
(93). The frequency of cGAS colocalized micronuclei was not
significantly altered, suggesting no upregulation of cGAS (93).
Taken together, different pathomechanisms are possible in
Bloom syndrome: Dependent on the amount of micronuclei
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and the activity of BLM1 helicase, IFN induction is possibly
promoted or inhibited.

As to Rothmund Thomson syndrome, no recent studies have
been published concerning DNA-damage-induced type I IFN,
but significant higher rates of senescent cells have been described
(54, 62). Patients exhibit photosensitivity but do not show
autoimmune phenotypes such as the formation of antinuclear
antibodies or scleroderma-like skin changes. As premature
senescence is linked to chromatin herniation, chromatin
mediated cGAS activation represents a possible mechanism of
type I IFN induction. Furthermore, Rothmund Thomson
syndrome as well as Werner syndrome was shown to be
associated with mitochondrial dysfunction (94). As RECQL4
helicase plays a role in mtDNA replication and RECQL4
deficient cells exhibit higher mtDNA mutations (75, 95, 96), an
mtDNA-driven type 1 IFN response similar to ATM deficiency
seems possible (73, 75). However, it is not known, if Rothmund–
Thomson syndrome is associated with an enhanced type I
IFN activation.

In Huriez syndrome, caused by skin-specific SMARCAD1
deficiency, patients feature a scleroatrophic phenotype, also seen
in systemic sclerosis, which marks a strongly associated type I
IFN activation disease (97, 98). Recently, a link between the
activation of type I IFN and higher DNA damage response in
systemic sclerosis was shown, supporting the possible pathogenic
role of DNA-damage-induced type I IFN in Huriez syndrome
(15, 99). In systemic sclerosis, a higher rate of DNA damage was
observed compared to wild type (15). Interestingly, higher IFN
levels were associated with higher DNA damage burden, and
accumulated DNA damage was proportional to the extent of
fibrosis (15). The authors did not observe defects in the capacity
of NER, but in DSBR (15). Mesenchymal stem cells of patients
with systemic sclerosis reveal lower expression of SMARCAD1,
suggesting Huriez syndrome and systemic sclerosis may share
common pathways (100). Since SMARCAD1 represents a
protein of the DSBR (HR), a similar mechanism seems
possible. As part of DNA “end resection”, SMARCAD1,
together with Exo1, excises ssDNA from DNA DSBs (64). This
would be diminished in SMARCAD1 deficiency regarding
similar functions of SMARCAD1 and BLM/Exo1 (14, 64).
Hence, a lower IFN response compared to SMARCAD1
sufficiency would result. However, cells of patients with Huriez
syndrome exhibit a high rate of senescent cells and show deficits
in proliferation, yet it is unclear if chromatin herniation and an
upregulated cGAS-induced IFN response are present in this
syndrome (19). CSCC only occurs in lesional skin in these
patients, potentially induced by chronic inflammation and
reduced immunosurveillance which may be due to depletion of
epidermal Langerhans cells (101, 102).

Xeroderma pigmentosum (XP) represents the most common
hereditary cutaneous DNA damage syndrome and is caused by
mutations in proteins of the nucleotide excision repair (XPA-
XPG), as mentioned above (18, 46, 67). XP patients show
cutaneous malignancies such as CSCC and BCC as well as
melanoma in early childhood/puberty (18). Autoimmune
phenotypes are not highly associated with the disease (18).
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Evidence of IFN induction in XP is very limited. Interestingly,
a reduced native IFN response upon stimulation with polyI:C
was observed in XP blood cells (103). However, a higher rate of
micronuclei has been observed in XP group A fibroblasts
representing a possible substrate of cGAS activation (104). It is
not known if the amount of micronuclei formation is high
enough to induce a relevant type I IFN response. IFN plays a
pivotal role in immunosurveillance, leading to an antigen specific
T-cell response against malignant cells (105, 106). Hence, a
possible explanation for early malignancies in XP patients
could be impaired immunosurveillance due to missing DNA-
damage-induced type I IFN.

Interestingly, some of the cutaneous DNA damage syndromes
with defects in DNA DSB show activation of the type I IFN
system upon DNA damage induced by different mechanisms,
reflecting clinical autoimmune phenotypes. In cutaneous DNA
damage syndromes with defect NER, evidence for type I IFN
induction is very limited or even not present. A possible
explanation for type I IFN activation could be the damage
itself: DSBs are highly mutagenic resulting in genome
instability, enhancing the formation of micronuclei (11, 107,
108). Another reason could be the stronger DNA damage
response in DSBR, leading to possible substrates for type I IFN
induction (9, 109). Possible sources of DNA-damage-induced
type I IFN in cutaneous DNA damage syndromes include
genome instability-associated formation of micronuclei, leakage
of mtDNA, activation of exonucleases upon high DNA damage,
reduced capacity of nuclear DNA binding or cytosolic DNA
degrading proteins as well as chromatin herniation in senescent
cells which are highly associated with DNA damage syndromes
(11–13, 35, 76, 82, 93).
THE TYPE I IFN SYSTEM, SENESCENCE,
AND CANCER

Activation of type I IFN raised importance in the context of
cancer as an anti-tumorigenic mechanism of the cell, leading to
immunosurveillance: Detection of tumor-derived DNA by
innate immune sensors and cGAS-dependent activation of
STING leads to type I IFN secretion (105, 106). Consequently,
enhanced tumor antigen presentation and antigen-specific T-cell
response as well as the recruitment of NK-cells are part of the
anti-tumorigenic response (110). Type 1 IFN is required for anti-
tumor response and tumor elimination in dendritic cells, and
reduced IFN signaling was observed in different types of cancer
such as colorectal carcinoma, melanoma, and pancreatic cancer
(111, 112). Furthermore, IFNAR1 downregulation in cancer-
associated stromal cells was observed in colon and pancreatic
cancers (113). It was shown that suppression of STING is
associated with less immune infiltration and subsequently
increased tumor growth in melanoma (114). Downregulation
of cGAS and STING was observed in clinically advanced tumors
(115, 116), indicating a possible tumor-driven escape mechanism
from immunosurveil lance. Interestingly, Xeroderma
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pigmentosum shows the strongest association for the
development of cutaneous malignancies and was associated
with a deficiency in type 1 IFN production, which supports the
idea of anti-tumorigenic effects of type 1 IFN signaling (103). As
the other mentioned cutaneous DNA damage syndromes feature
the formation of cancer despite certain activation of type 1 IFN,
premature senescence and the chronic “senescence associated
secretory phenotype” (SASP) might give an additional
explanation of the clinical phenotype in these syndromes,
which will be further discussed.

Senescence is a cellular phenomenon, characterized by cell
cycle arrest and resistance to growth factors (84). The activation
of the cGAS–STING pathway leads to secretion of inflammatory
cytokines, chemokines, and proteases characterizing SASP
(Figure 2) (117, 118). Chronic stress (such as DNA damage)
and activation of SASP can be associated with induction of an
immunosuppressive microenvironment leading to metastasis
and resistance of DNA damaging agents such as chemotherapy
(119). Thus, the SASP can paradoxically have both pro-
tumorigenic and anti-tumorigenic functions: In one way, the
recruitment of immune cells through IL6, CXCL1, and other
cytokines mediate clearance of tumor cells (120). In another way,
anti-inflammatory cytokines, such as IL10, secreted by senescent
stromal cells, suppress anti-tumor immune responses. Hence, the
cancer-inhibiting or cancer-promoting effect of SASP is tightly
regulated and seems cell type- and cytokine-specific (120). The
exact molecular mechanisms underlying SASP-induced tumor
progression are not fully understood, but type I IFN in this
context was shown to be downregulated by inhibition through
p38, encoding for MAPK (mitogen activated protein kinase)
(106). This downregulation of type I IFN could further explain
the possible failure of immunosurveillance.

Taken together, the senescent phenotype in cutaneous DNA
damage syndromes could be context-dependent: Acute
activation of cGAS–STING enhances immunosurveillance via
SASP, while the chronic secretion of inflammatory cytokines
could have tumorigenic effects (105, 117, 118). It is not known if
the observed premature senescence in cutaneous DNA damage
syndromes is clearly pro- or anti-tumorigenic; this will be subject
of future research. However, type I IFN induction represents an
anti-tumorigenic mechanism (105, 111, 112), which may play a
pivotal role in inhibiting skin cancer development in the
cutaneous DNA damage syndromes.
THERAPEUTIC IMPLICATIONS

Skin changes in favor of scleroatrophy and premature aging as
seen in progeroid syndromes, and Huriez syndrome may
represent the effects of both chronic DNA damage and chronic
inflammation, demonstrating the senescent phenotype (15, 98,
99). Therapeutic approaches against type I IFN (JAK inhibitors,
anti-IFNAR antibodies, etc.) in cutaneous autoinflammatory and
autoimmune diseases show promising effects in patients (44, 121,
122). To use these agents in type I IFN-driven inflammatory
diseases seems plausible. However, it is not known if anti-IFN
Frontiers in Immunology | www.frontiersin.org 9
agents may possibly reduce immunosurveillance of evolving
tumor cells in cutaneous DNA damage syndromes. IFNAR
downregulation was observed in tumor progression of cancer
associated stromal cells. Therefore, IFN reducing interventions
need to be tested with caution to avoid enhanced tumor growth
in cutaneous DNA damage syndromes.
PERSPECTIVES

Molecular exploration of rare interferonopathies has improved
our understanding of innate type I IFN driven immune
responses and nucleic acid metabolism (3, 31, 123). It has
further opened the view to DNA-damage-induced innate
immune response and especially type 1 IFN induction. This
exploration was mainly driven by description of ATM deficiency
(10, 75). Although less is known in this regard for cutaneous
DNA damage syndromes, the understanding of these rare
diseases can help to elucidate molecular mechanism and to
understand more complex diseases featuring similar clinical
phenotypes. In Huriez syndrome, it will be interesting to
explore under which conditions type 1 IFN might be
upregulated (19). In Bloom, Werner, and Rothmund–Thomson
syndromes, we still do not precisely know the molecular
substrates that lead to type 1 IFN induction (9, 89, 93, 96). In
this regard, it will be interesting to know if RAD51
destabilization is a possible mechanism of type 1 IFN
induction in Werner syndrome. Finally, the physiological role
of type 1 IFN for induction of senescence and its potential pro- or
anti-tumorigenic effects warrant investigation.
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