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A B S T R A C T   

Introduction: Zinc is an essential trace element involved in different physiological functions. 
During pregnancy, it plays a crucial role in healthy embryogenesis. Abortion is the most severe 
problem associated with early pregnancy complications. This study aims to compare the levels of 
Zn in mothers with and without abortion. 
Methods: This study is a systematic review and meta-analysis of studies published between 1980 
and 2022 in PubMed, Science Direct, Pro Quest, Wiley, Web of Science, and Scopus databases. 
The search was conducted using both main and Mesh keywords, specifically targeting terms 
related to abortion, pregnancy loss, and zinc. Heterogeneity in the studies included in the meta- 
analysis was evaluated using statistical tests such as the chi-square test, I2, and forest plots. 
Publication bias was assessed using Begg’s and Egger’s tests. All analyses were conducted using 
Stata 15, and statistical significance was considered at p < 0.05. 
Results: In general, nine studies were included in this analysis. Based on the results of the meta- 
analysis, the mean difference in the Zn level between mothers with and without abortion is equal 
to 193.18 (95 % CI; 107.11 to 279.25, P ≤ 0.001). In other words, the level of Zn in the group of 
mothers without abortion is 193 units higher than the group of mothers with abortion. The 
investigation into the comparison of Zn levels in mothers with and without abortion did not 
reveal any indication of publication bias according to both Begg’s test (P-value = 0.858) and 
Egger’s test (P-value = 0.270). 
Conclusion: the study findings indicate a significant association between lower levels of Zn in 
mothers with abortion compared to mothers without abortion. This suggests that a higher level of 
Zn may have a preventive effect on the occurrence of abortion in pregnant women. The data also 
highlights the positive role of trace metals, particularly Zn, in influencing pregnancy outcomes 
and suggests that maintaining adequate levels of Zn may reduce the likelihood of abortion 
occurrence, along with other contributing factors. It is important to note that further research, 
including prospective cohort and experimental studies, is needed to provide more substantial 
evidence and strengthen these findings.   
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1. Introduction 

Trace elements are involved in numerous biochemical pathways and play an important role in fetal growth and development 
during pregnancy [1,2]. Due to the needs of the developing baby and changes in the mother’s physiology, the concentration of certain 
trace elements changes throughout pregnancy. Changes in the concentrations and homeostasis of these micronutrients during preg
nancy may be closely related to several disorders, such as abortion, preterm labor, stillbirth, intrauterine growth restriction, fetal 
malformations, premature membrane rupture, and other unfavorable pregnancy outcomes [3–5]. Zinc (Zn) is a crucial trace element in 
almost all physiological fluids and tissues. It is a vital physiological component of the oxidant defense system and is important for 
cellular signaling [6,7]. Zn plays a crucial role during pregnancy, especially during the embryonic stage. This is because of its 
involvement in continuous cellular multiplication, differentiation, organogenesis, apoptosis, and gene expression, all essential for the 
healthy development of embryos, fetuses, and infant neurological function. Zn is required by over 300 enzymes involved in carbo
hydrate and protein metabolism, nucleic acid synthesis, and antioxidant functions [7–9]. The transfer of Zn to the fetus is primarily 
determined by the maternal Zn status [7,10]. Limited Zn transfer from mother to fetus puts premature infants at a high risk of defi
ciency [11,12]. The World Health Organization (WHO) recommended a Zn requirement of 1.1–2.0 mg/day during pregnancy [13], but 
the requirements increase to 3 mg/day in the later stages of pregnancy [13,14]. To meet fetal demands and protect the fetus from Zn 
deficiency during the immediate postnatal period, Zn is stored in the liver as a Zn-binding protein (metallothionein [15,16]. Its 
absence, particularly in later pregnancy, hurts normal neuronal replication, migration, synaptogenesis, and gene expression [17,18]. 
Zn deficiency during pregnancy impairs cell cycle progression, cell migration, intracellular signaling, and normal Zn enzyme function, 
leading to chromosomal and oxidative damage [19,20]. Despite its crucial role in normal reproduction and fetal development, zinc 
(Zn) deficiency is a prevalent issue worldwide. Approximately 17.3 % of the global population is estimated to lack adequate levels of 
Zn, with Africa and Asia being the regions at highest risk [19,21]. According to a recent study, pregnant and reproductive-age women 
are severely Zn deficient [22,23]. Moreover, global Zn deficiency is ranked as the 11th highest risk factor for disease mortality and 
morbidity, contributing to nearly 20 % of perinatal mortalities worldwide [21,24]. Furthermore, the lack of Zn in late pregnancy can 
result in fetal growth retardation, congenital malformations, abortion, and fetal death [25,26]. Abortion, preterm delivery, stillbirth, 

Fig. 1. Methodological flow diagram of the systematic review and meta-analysis.  
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intrauterine growth restriction, fetal malformations, premature rupture of membranes, and other adverse pregnancy outcomes may be 
linked to an imbalance of trace elements such as Zn. Spontaneous abortion, the most serious early pregnancy problem, occurs in 17 %– 
32 % of all known pregnancies [27–30]. Numerous factors, including genetic, immunological, environmental (embryo chromosome 
abnormalities), maternal endocrine disorders (PCOS, luteal dysfunction, hyper prolactinoma), uterine anomalies, advanced maternal 
age, inadequate maternal diet, and infections, can result in spontaneous abortions [31,32]. The impact of maternal Zn supplements is 
well-known to reduce the magnitude of maternal Zn deficiency and to prevent adverse perinatal outcomes [33,34]. Also, different 
studies have evaluated maternal Zn supplements’ effects on fetal and maternal complications [35]. Nonetheless, contradictory 
research reflects uncertainty in the evidence linking maternal Zn status and pregnancy complications [21]. However, changes in these 
trace elements during pregnancy in women are poorly understood due to demographics and lifestyles [36]. Several studies have 
indicated that insufficiencies in trace metals, including copper (Cu), Zinc (Zn), and magnesium (Mg), may increase the likelihood of 
unfavorable pregnancy outcomes. However, the administration of various micronutrient supplements without proper justification for 
their inadequacy and potential harm to the fetus has been observed [37]. The results of previous studies were conflicting, but this study 
shows a definite and noticeable result. So far, it should be noted that no such study has been conducted with these goals. Therefore, by 
using the results of the present study, we can use it in human societies. While significant studies have been conducted on trace elements 
and heavy metals in normal pregnancies, few studies have looked at how trace elements and heavy metal concentrations affect 
problematic pregnancies, such as abortion threats [38]. Even though various investigations have revealed correlations between 
deficiency of trace elements and adverse outcomes, including abortion, this meta-analysis aims to provide more substantial evidence 
on the role of Zn in preventing abortion as well as its concentration and future actions regarding the usage of metal ions. 

2. Material and methods 

2.1. Data sources and search strategy 

A systematic review was performed utilizing various databases, including PubMed, Web of Science (ISI), Scopus, Google Scholar, 
Pro Quest, and Wiley. The search was conducted using both main and Mesh keywords, specifically targeting terms related to abortion, 
pregnancy loss, and zinc. The search was conducted using the main and Mesh keywords:((abortion*) OR (abortion*) OR (pregnancy* 
AND loss*)) AND ((Zn*) OR (“Zn”)). Two investigators independently evaluated article titles and abstracts using PRISMA principles to 
select relevant research. The identified articles were collected, and duplicates were removed. The methodological flow diagram for the 
systematic review and meta-analysis is presented in Fig. 1. 

2.2. Eligibility criteria and study selection 

The chi-squared test and I2 are statistical tests utilized to assess heterogeneity. The I2 index quantifies the extent of heterogeneity 
through a ratio. Typically, the I2 index ranges from 0 to 100 %, with negative values considered zero. A zero value for this index 
signifies homogeneity in the results, while a higher value indicates more significant heterogeneity. The majority of research studies 
yield these results. The chi-score test determines whether the observed differences among various studies are due to chance or are 
statistically significant. Additionally, the chi-score test aids in selecting the appropriate models for analysis, namely the fixed or 
random models. If the P-value is significant, the random meta-analysis model should be employed; conversely, the fixed meta-analysis 
model is preferred if the P-value is not significant. The forest diagram is the most commonly used in meta-analysis, visually repre
senting individual study information and their final findings. The square size in the diagram corresponds to the weight assigned to each 
study in the meta-analysis [39]. 

The peer-reviewed publications were imported into EndNote X9 to identify and remove duplicate publications. Two researchers 
independently evaluated the titles and abstracts of the studies based on predetermined inclusion and exclusion criteria. The search was 
not limited by time, encompassing publications from January 1975 to July 2022. The inclusion criteria for the selected articles were as 
follows: (a) Studies that provided sufficient and quantitative data on Zn concentration for statistical analysis, (b) Studies that reported 
one, two, or more cases of spontaneous abortions, and (c) Studies published in the English language. Review papers, systematic re
views, theses, letters to the editor, and books were excluded from consideration. Additionally, papers lacking full text or containing 
insufficient abstract or full-text data, studies focusing on cases other than spontaneous abortions, and publications not available in 
English were also excluded. The full texts of all eligible publications were independently reviewed. In the event of any discrepancies 
during the review process, a consensus was reached by engaging in discussions with a third member of the research team. 

2.3. Evaluating the quality of the studies 

The quality of the articles was reviewed and evaluated based on the Newcastle-Ottawa Scale (NOS) (Supplementary Table 1). 

2.4. Data extraction 

Data were extracted independently by two individuals. The corresponding author made the final choice when there was a 
disagreement between the two researchers over whether to include or exclude a particular article. The following information was 
extracted from the included studies: the year of publication, the name of the first author, the country of study, the number of control 
samples, the number of case samples, the mean concentration of control samples, and the mean concentration of case samples. 
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2.5. Statistical analysis 

The analysis calculated and considered the overall mean difference and their 95 % confidence intervals (CI) in study groups. The SD 
of the mean difference was estimated using the formula: SD2 = [(SD cases2 + SD controls2) − (2 × R × SD cases × SD controls)] where 
correlation coefficient (R) [40]. Heterogeneity in the studies included in the meta-analysis was evaluated using statistical tests such as 
the chi-square test and I2, as well as graphical methods like forest plots. The chi-square test was used to investigate differences in results 
among studies and determine the type of model (fixed or random). Publication bias was assessed using funnel diagrams and Begg’s and 
Egger’s tests. All analyses were conducted using Stata statistical software (version 15.0, Stata Corp, College Station, TX), and statistical 
significance was considered at p < 0.05. 

3. Result 

3.1. Included studies 

The included studies (1556 articles) were found on the Web of Science, PubMed, Scopus, Science Direct, and Google Scholar during 
the systematic and preliminary literature search. Meta-analyses were performed for comparison of Zn levels in mothers with and 
without abortion with systematic review and meta-analysis design based on nine studies. Study investigation, data collection, and 
results analysis were done independently [4,38,41–47]. Fig. 2 shows the PRISMA flowchart of the search strategy. 

A total of 1556 titles and abstracts were identified during the initial electronic search. However, after removing duplicate titles, a 
total of 453 articles were excluded from the retrieved pool. Consequently, the meta-analysis incorporated nine studies [4,38,41–49]. 

Fig. 2. Flow diagram of included and excluded studies.  
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3.2. Characteristics of the selected studies 

The analysis encompassed studies published from 1975 to 2021. Table 1 presents a comprehensive overview of pertinent details 
such as sample size, participants in both intervention and control groups, year of publication, study location, and quality assessment 
based on the Newcastle-Ottawa Scale (NOS). 

3.3. Comparison of Zn levels in mothers with and without abortion 

In general, nine studies were included in this analysis. Based on the results of the meta-analysis, the mean difference in the Zn level 
between mothers with and without abortion is equal to 193.18 (95 % CI; 107.11 to 279.25, P ≤ 0.001). In other words, the level of Zn 
in the group of mothers without abortion is 193 units higher than the group of mothers with abortion (Fig. 3). 

3.4. Publication bias 

The investigation into the comparison of Zn levels in mothers with and without abortion did not reveal any indication of publi
cation bias according to both Begg’s test (P-value = 0.858) and Egger’s test (P-value = 0.270). The corresponding funnel plot is 
presented in Fig. 4. 

3.5. Sensitivity analysis 

Sensitivity analysis was performed to evaluate the effect of omitting each study on the final result. A sensitivity analysis was 
conducted, but the final mean difference estimate remained unchanged, indicating the robustness of the meta-analysis results (Table 2 
and Fig. 5). 

4. Discussion 

There is an increasing concern regarding the negative impact of heavy metals on normal pregnancies due to the extensive human 
exposure and bioaccumulation of these substances. The potential association between exposure to toxic metals or insufficient essential 
metals and the occurrence of abortion has been a subject of suspicion for a considerable period. There is limited research on the 
relationship between Zn and abortion. However, some studies suggest that Zn deficiency may be associated with an increased risk of 
spontaneous abortion. The consistency of previous research findings regarding the association between blood concentrations of zinc 
(Zn) and other trace elements and abortion has been inconclusive [50–52]. In order to provide more robust evidence on this important 
clinical matter, we conducted a meta-analysis that specifically focused on Zn [53]. The purpose of this meta-analysis was to investigate 
the effect of Zn levels on the abortion risk. In summary, we discussed the findings of nine studies that met our criteria for determining 

Table 1 
Characteristics of included studies investigating the relationship between the level of Zn and the risk of abortion.  

No. Author and year Country Number of 
subjects 

Metal concentration (μg/L)d Analytical 
method 

Reference 

Cases Controls Cases Controls 

1 Ikeh-Tawari EP et al. 
(2013) 

Nigeria 125 35 738.794 ± 176.526 764.946 ±
281.134 

AAS [41] 

2 Turan K et al. (2019) Turkey 45 40 879 ± 95.9 1528.4 ± 33.4 AAS [42] 
3 Thaker R et al. (2019) India 159 118 1430 ± 30 1463 ± 50 AAS [43] 
4 Lu Y et al. (2022) China 92 103 5082.32 ± 1030.13 5243.88 ± 960.87 ICP [44] 
5 Shen P et al. (2015) China 58 1389 4751.1646 ±

783.2524 
5442.885 ±
836.2102 

AAS [4] 

6 Borella P et al. (1990) Italy 12 41 891.7832 ±
153.643 

858.4394 ±
154.9506 

AAS [46] 

7 Ajayi O et al. (2012) Nigeria 35 34 692.6 ± 6.9 992.5 ± 21.4 AAS [45] 
8 Sami AS et al. (2021) Turkey 39 39 411.894 ± 46.4198 569.4598 ±

56.2268 
ICP [38] 

9a Ghneim HK et al. 
(2016) 

Kingdom of Saudi 
Arabia 

25 25 239.9446 ±
25.4982 

268.7118 ±
32.0362 

ICP [47] 

10b Ghneim HK et al. 
(2016) 

Kingdom of Saudi 
Arabia 

25 25 228.83 ± 30.0748 352.3982 ±
45.766 

ICP [47],c 

AAS: atomic absorption spectrometry. 
ICP: inductively coupled plasma mass spectrometry. 

a whole blood. 
b plasma. 
c Since this paper (ref.34) investigated plasma and whole blood, it has been presented twice separately. 
d The unit conversion from ’μmol/L′ to ’μg/L′ was performed by multiplying the values by the molar mass of zinc, which is 65.38 g/mol, to ensure 

that all values are expressed in a consistent unit, micrograms per liter (μg/L). 
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the relationship between maternal Zn status and abortion. This study represents the first investigation into the overall relationship 
between blood Zn concentrations and abortion. Our findings indicate that deficiencies in Zn are associated with an increased prev
alence of abortion in women. It is worth noting that only one relevant meta-analysis, conducted in 2021, has been published thus far, 
which demonstrated that exposure to Cd and Pb is linked to a higher incidence of abortion, including undistinguished threatened 
abortion and recurrent pregnancy loss [32]. In the present study, we recruited more studies to reinforce the association between the 
concentration of Zn and the reduced risk of abortion. We performed an analysis based on abortion to investigate the effect of Zn on 
women with and without abortion. In addition, the exploration of Zn in women with abortion provides a basis for clinicians who tend 
to intervene early against recurrent pregnancy loss and abortion in women with Zn deficiencies. The precise pathways responsible for 
the initiation of abortion due to exposure to pb and Cd, as well as deficiency of Zn and Cu, remain elusive. It has been established that 
heavy metals frequently encounter environmental endocrine disruptors. Prior research has indicated that exposure to toxic metals and 

Fig. 3. Comparison of Zn levels in mothers with and without abortion.  

Fig. 4. Evaluation of publication bias in studies included in the meta-analysis.  

S. Tousizadeh et al.                                                                                                                                                                                                    



Heliyon 10 (2024) e30605

7

insufficiency of vital metals such as Zn result in miscarriage primarily due to endocrine malfunction, including but not limited to 
insulin resistance, inadequate vitamin D levels, and abnormal concentrations of thyroid and sex hormones. Zinc (Zn) deficiency has 
been observed to disrupt the synthesis of sex hormones, leading to recurrent pregnancy loss (RPL) and abortion. Zn can influence the 
production and function of sex hormones, including progesterone and prolactin, by modulating the levels of luteinizing hormone (LH) 
and follicle-stimulating hormone (FSH), as well as inducing oxidative stress [54]. Additionally, Zn may facilitate the release of estrogen 
by forming ligand bonds with metal-binding sites on the estrogen receptor (ER) [55]. Inadequate secretion of sex hormones, such as 
progesterone, testosterone, estrogen, and prolactin, can diminish the receptivity of the endometrium and compromise oocyte quality in 
women, both of which are associated with abortion [56–58]. Most of the research focused on the impact of Zn on pregnancy outcomes 
such as abortion. Several common problems, such as hypertensive disorders, bleeding, and intrauterine growth restriction, are 
associated with abortion. Additionally, low levels of micronutrients, like Zn, short cervixes, a history of prior preterm births, and 
smoking have been linked to an increased risk of abortion [7,59,60]. Maternal Zn status appears to be influenced by various physi
ological changes during pregnancy, including modifications in tissue Zn distribution, an increase in Zn absorption, a decrease in 
endogenous Zn losses, and modifications in the exchangeable Zn pool kinetics [61,62]. Additionally, it has been found that Zn’s affinity 
for serum albumin and the percentage of total blood Zn bound to albumin are lower during pregnancy, suggesting a decline in total 
circulating Zn concentrations [62]. This review of studies demonstrated an association between maternal Zn status and abortion. 
Furthermore, consistent with previous research, our findings indicate that low Zn levels in women are associated with a higher risk of 
abortion. Trace elements are critical for fetal growth and development. Certain elements are transferred across the placenta during 
pregnancy to provide adequate nutrient stores for early infancy. Nutrient deficiencies during pregnancy have been linked to pregnancy 
complications, adverse birth outcomes, and compromised newborn nutrient storage [63–65]. Zn is one of the elements found at the 
highest concentrations [66], especially during pregnancy and lactation [61]. Zn deficiency may hurt growth [67], brain development, 
birth weight, and embryonic development and can harm the amniotic sac [68–70]. Moreover, it should be noted that Zn deficiency in 
developing nations is responsible for more than 500,000 infant and young child deaths [71]. The meta-analysis findings indicate that 
the presence of Zn in the body serves as a preventive measure against abortions (SMD = − 2.61, 95 % CI = − 3.51 to − 1.70, P ≤ 0.001). 

Table 2 
Sensitivity analysis of the comparison of Zn levels in mothers with and without abortion.  

Author Mean difference (95 % confidence interval) 

Ikeh-Tawari, Anetor et al. [41] 205.784(116.352–295.215) 
Turan, Arslan et al. [42] 142.137(58.164–226.110) 
Thaker, Oza et al. [43] 215.781(120.643–310.920) 
Lu, Zhang et al. [44] 195.110(106.390–283.831) 
Shen, Gong et al. [4] 156.0299(69.223–242.836) 
Borella, Szilagyi et al. [46] 223.608(131.336–315.880) 
Ajayi, Charles-Davies et al. [45] 168.786(92.854–244.718) 
Sami, Suat et al. [38] 202.274(99.637–304.912) 
Ghneim, Al-Sheikh et al. [47] 218.077(119.215–316.938) 
Ghneim, Al-Sheikh et al. [47] 205.214(106.803–303.626)  

Fig. 5. Sensitivity analysis of the comparison of Zn levels in mothers with and without abortion.  
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Multiple factors can lead to developmental abnormalities; however, there is a growing body of evidence suggesting that inadequate 
maternal nutrition plays a significant role in the occurrence of preventable birth defects and has a profound impact on the outcome of 
human pregnancies [72]. Hua Wang et al. (2015) proposed that maternal zinc (Zn) deficiency during pregnancy increases the like
lihood of low birth weight (LBW) and small for gestational age (SGA) infants. Moreover, maternal serum or plasma Zn concentrations 
decreased as the pregnancy progressed [73–75]. According to the study conducted by Ghneim et al. (2016), plasma and whole blood 
levels of Zn, copper (Cu), and manganese (Mn) in healthy pregnant (HP) women and recurrent abortion (RM) patients are lower 
compared to non-pregnant (NP) women [47]. A study performed by Sami et al. (2019) found that the serum concentrations of Se, Zn, 
Cu, Mg, K, and Na were considerably lower in the habitual abortion (HA) group than those in the healthy controls [38]. The research of 
Thaker et al. (2019) showed that trace metals like Zn and Cu can have a beneficial influence on pregnancy outcomes, and at the right 
amounts, they may even be able to reduce the risk of spontaneous abortion. The Cu/Zn ratio positively affects the success of repro
duction outcomes [43]. Also, another study conducted by Shen et al. (2015) demonstrated that trace element (Zn, Cu, Ca, and Fe) 
deficiency is a real problem in pregnant Chinese women. They concluded that the women should be given trace elements, depending 
on their individual circumstances, especially in late pregnancy. When pregnant women receive enough trace elements, their fetuses 
stay healthy and develop normally. As a result, pregnant women should maintain nutritional balance. Serum trace elements should 
also be investigated to reduce adverse pregnancy outcomes [4]. Additionally, it is well-documented that Zn exerts positive effects on 
the immune system, cellular processes, and signal transduction, and possesses anti-inflammatory properties during pregnancy [62,76]. 
Turan et al. (2019) reported that the significant diagnostic and prognostic indicators for abortion may include changes in the balance 
of some vital trace elements (Fe and Zn) and elevated levels of some toxic heavy metals in the blood [42]. Furthermore, maternal Zn 
insufficiency caused by a drug-mineral interaction may lead to tissue injury, cytokine release, increased metallothionein synthesis, Zn 
sequestration in the maternal liver, and decreased feto-maternal Zn concentration [77]. Other variables, such as smoking, alcohol 
misuse, and the acute stress reaction to infection or trauma, may affect maternal Zn concentrations and fetal Zn transport [10]. Another 
study performed by Iqbal et al. (2021) showed that maternal Zn supplements can decrease the risk of preterm birth. Moreover, there is 
a significant relationship between the risk of pregnancy complications and low maternal Zn status [21]. This study had some limi
tations, including limited data access and unpublished reports. Despite the fact that trace elements and heavy metals have been 
extensively studied in normal pregnancies, very few studies have investigated the relationship between trace element quantities, such 
as Zn, and abortion. To the best of our knowledge, this research is the first global systematic review and meta-analysis of the asso
ciation between level Zn and the risk of abortion. Considering that SMD >0.5 was obtained, we conclude that the size of the stan
dardized mean difference was huge and significant. The systematic review and meta-analysis findings suggest that women who have 
undergone abortion have lower levels of Zn in their blood, serum, or plasma compared to women without a history of abortion. 
Consequently, maternal Zn supplements can potentially mitigate pregnancy complications, including preterm birth, low maternal Zn 
status, and the risk of abortion. It is crucial to acknowledge that excessive consumption of Zn can have adverse effects and potentially 
increase the likelihood of abortion. Generally, supplemental zinc doses of up to 40 mg per day are considered safe for individuals. 
However, prolonged exposure beyond the recommended upper intake limit may compromise immune function and pose risks to 
human health [78]. Under typical circumstances, the gastrointestinal tract absorbs approximately 20–30 % of the ingested dose. In 
instances of deficiency, the uptake of Zn may decline to less than 10 %, while in cases of excessive exposure, Zn uptake may also 
decrease [79,80]. Throughout pregnancy, Zn accumulates in the liver through its binding to proteins known as metallothionein, which 
safeguards the fetus against Zn deficiency during the immediate postpartum period [14]. Consequently, the Zn requirement for 
pregnant women of normal health has been elevated from 1.1 to 2.0 mg/day [13]. This study is subject to certain limitations. First, a 
subgroup analysis based on abortion type was not performed, and several outdated documents that seemingly satisfied our inclusion 
criteria were excluded due to our inability to establish contact with the respective authors. Second, the potential sources of hetero
geneity in the study were taken into account, including the age of the study population and the specific time at which the samples 
(whole blood, plasma, or serum) were collected. This consideration was important due to the possibility of heavy metals and trace 
elements accumulating in the human body over time, potentially resulting in higher blood metal concentrations in older adults. 
Moreover, it was recognized that metal concentrations can vary during different trimesters, and the timing of blood collection may 
introduce heterogeneity in the data. Third, the inclusion of only English literature posed significant challenges in terms of language 
and multiple publication biases. Our study is notable for its comprehensive examination of the associations between Zn concentrations 
in whole blood, plasma, or serum and rates of abortion. Furthermore, we conducted a systematic review of previous publications on Zn 
concentrations and abortion, ensuring a thorough analysis of the existing literature. The included studies demonstrated satisfactory 
definitions of cases and controls, as well as consistent selection of controls and assessment of exposure. The current investigation 
expands our comprehension of the impact of crucial metallic elements, such as zinc (Zn), on the occurrence of abortion. To enhance our 
knowledge, it would be advantageous to screen the levels of Zn and other elements including copper (Cu), lead (Pb), and cadmium (Cd) 
in the bloodstream of women. Nevertheless, it is imperative to conduct meticulously planned prospective cohort studies to elucidate 
the causal association between abortions induced by trace metals. 

5. Conclusions and future perspectives 

The present investigation represents a pioneering and all-encompassing endeavor to explore the correlation between the level of Zn 
and the likelihood of abortion. Prior research endeavors were predominantly confined to case-control studies and the examination of 
abortion occurrences. This comprehensive review diligently compiled and conducted a meta-analysis of all available publications that 
documented the impact of Zn on abortion. This study revealed a significant finding that the blood levels of Zn in mothers who had 
abortions were considerably lower than in women who did not experience abortions. Therefore, higher Zn levels are associated with a 
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lower risk of abortion in pregnant women. In other words, this summary of meta-analyses showed that low-level zinc in mothers with 
abortion is associated with an increased risk of abortion. Also, zinc has a preventive role during pregnancy and reduces abortion in 
mothers without abortion. However, the effect of zinc supplements and other environmental risk factors on abortion needs a thorough 
investigation due to the limited available literature. The study findings demonstrate a significant correlation between decreased levels 
of Zn in mothers who experienced abortion compared to those who did not. This implies that a higher concentration of Zn might 
possess a preventive impact on the incidence of abortion in pregnant women. The results of this study and future research with more 
precise evidence and more accurate data and techniques could increase clinicians’ awareness of the advantages and Zn’s involvement 
in preventing adverse pregnancy complications, such as the likelihood of abortion. 
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