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Abstract

Novel technologies that include recombinant pathogens and rapid detection methods are contributing to the development
of drugs for neglected diseases. Recently, the results from the first high throughput screening (HTS) to test compounds for
activity against Trypanosoma cruzi trypomastigote infection of host cells were reported. We have selected 23 compounds
from the hits of this HTS, which were reported to have high anti-trypanosomal activity and low toxicity to host cells. These
compounds were highly purified and their structures confirmed by HPLC/mass spectrometry. The compounds were tested
in vitro, where about half of them confirmed the anti-T. cruzi activity reported in the HTS, with IC50 values lower than 5 mM.
We have also adapted a rapid assay to test anti-T. cruzi compounds in vivo using mice infected with transgenic T. cruzi
expressing luciferase as a model for acute infection. The compounds that were active in vitro were also tested in vivo using
this assay, where we found two related compounds with a similar structure and low in vitro IC50 values (0.11 and 0.07 mM)
that reduce T. cruzi infection in the mouse model more than 90% after five days of treatment. Our findings evidence the
benefits of novel technologies, such as HTS, for the drug discovery pathway of neglected diseases, but also caution about
the need to confirm the results in vitro. We also show how rapid methods of in vivo screening based in luciferase-expressing
parasites can be very useful to prioritize compounds early in the chain of development.
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Introduction

It is estimated that around 100 million people live with the risk

of infection with T. cruzi in endemic areas in Latin America, with

approximately 8 million already infected. The considerable influx

of immigrants from Latin American countries to USA, Canada

and Europe has also made Chagas disease an important health

issue in these countries [1].

Although Chagas disease was discovered more than one

hundred of years ago, the medicines available for treatment have

serious drawbacks. The two drugs current in use, Benznidazole

and Nifurtimox that were released in the 70’s, present toxic side

effects and low efficacy in some strains [2]. It was believed that

both of them were only efficient for the treatment of the acute

phase but recent studies suggest that chagasic patients in the

chronic phase of the disease treated with Benznidazole show

reduced disease progression and increased negative seroconversion

than the untreated patients [3].

In an advanced position in the pipeline for future anti-T. cruzi

treatments there is only Posaconazole, an oral antifungal that is

currently in the market and has been tested successfully in mice [4] and

humans [5] infected with T. cruzi. Given the limitations of the current

available treatments and the low number of candidates undergoing

clinical tests, the development of new anti-T. cruzi compounds

combining broad and high efficacy with low toxicity is an urgent need.

About ten years ago, the advent of high-throughput screening

(HTS) technology revolutionized the process of early drug

development, enabling researchers to rapidly collect enormous

amounts of data and explore compound libraries with unprece-

dented thoroughness. Even if this technology has not yielded the

expected increase in the number of licencesed medicines in the

market, it still is considered a fundamental tool in early drug

development in the pharmaceutical industry [6].

Additional developments in the field of drug discovery include

luminescent reporter gene assays, which appear as the most

prominent type of reporter gene assay used in biomolecular and

pharmaceutical development laboratories. The success of these

techniques is due to the high signal associated with luciferases,

which makes them ideal for high throughput screening (HTS) in

vitro applications, but also for the possibility of adapting these

assays for in vivo screening [7].

Major changes are being introduced in the field of Chagas

disease drug discovery since the development of recombinant T.

cruzi parasites to be used as tools for drug screening. The first

example is a transgenic T. cruzi strain expressing the reporter

enzyme b-galactosidase [8] that has allowed performing a HTS for

compounds active against T. cruzi infection of host cells (Pubchem

AID:1885). Screening of drugs in T. cruzi mouse models has

also been made much more rapid and simple with the use of

fluorescent [9] or luminescent [10] recombinant parasites.
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Recombinant parasites expressing luciferase are already available

for several species and have been used effectively for drug

discovery in Leishmania [11,12].

In this work we describe the continuation of a chemical HTS

against T. cruzi trypomastigote infection of host cells. Re-testing of

some of the HTS hits for in vitro anti-T. cruzi activity revealed that

approximately half of them did not confirm the activity. Screening

of the active compounds in a mouse model of acute Chagas

resulted in the finding of one molecular structure with high anti-

trypanosomal activity in mice.

Materials and Methods

Ethical statement
Animal studies were approved by the Institutional Animal Care

and Use Committee of New York University School of Medicine

(protocol #81213). This protocol adheres to the guidelines of the

Association For Assessment and Accreditation Of Laboratory

Animal Care International (AAALAC).

Compound selection identification and purification
The compounds were selected from a HTS campaign per-

formed by the Broad Institute, as part of the MLPCN (Molecular

Libraries Probe Centers Network) T. cruzi inhibition project. The

results from a HTS for T.cruzi trypomastigote infection of host cells

were made available at Pubchem (AID: 1885). This HTS was

performed by screening of 303,286 molecules (the NIH collection)

form where 4,065 hits were selected by their activity against T.

cruzi trypomastigote infection. These compounds were further

assayed to determine their IC50 (Pubchem AID: 2044) and their

toxicity to host NIH-3T3 cells (Pubchem AID: 2010).

Compounds were selected from the hits of this HTS among the

ones with reported IC50,1.2 mM and at least 100 fold activity

versus toxicity All the compounds selected for this analysis had

toxicity activity .60 mM. Chromatographic analyses were per-

formed to determine the degree of purification (all compounds

were .90% pure except for CID-563075 and CID-2234099 that

were 87 and 88% pure, respectively). Electrospray ionization mass

spectrometry was performed to confirm compound identification.

Finally, compounds were dissolved in DMSO at 10 mM

concentration.

T. cruzi and mammalian cells cultures
LLC-MK2 and NIH/3T3 cells were cultivated in DMEM

supplemented with 10% FBS, 100 U/ml penicillin, 0.1 mg/ml

streptomycin, and 0.292 mg/ml glutamine (Pen-Strep-Glut) at

37uC and 5% CO2 atmosphere.

T. cruzi parasites from the Tulahuen strain stably expressing the

b-gal gene (clone C4) [8] and T. cruzi Y strain expressing the firefly

Luciferase gene were kept in culture by infection of LLC-MK2

every 5 or 6 days in DMEM with 2% FBS and 1% Pen-Strep-Glut

at 37uC and 5% CO2 atmosphere.

Trypomastigotes forms were released in the supernatant of

infected LLC-Mk2 and harvested between days 5 and 7. The

harvested medium was centrifuged for 7 min at 1,237 g and, in

order to eliminate the amastigotes, the trypomastigotes forms were

allowed to swim out of the pellet for at least 3 h. The parasites

were counted in a Neubauer Chamber and 10 million trypomas-

tigotes were used to infect 1 million LLC-MK2 cells plated in a

75 cm2 culture flask.

T. cruzi in vitro inhibition assay
Between 5 to 7 days after the infection, NIH/3T3 cells and T.

cruzi Tulahuen expressing b-galactosidase [8] were harvested,

centrifuged and washed with DMEM without phenol red

supplemented with 2% FBS and Pen-Strep-Glut. The phenol

red needed to be eliminated in order to avoid interference with the

assay absorbance readings at 590 nM. NIH/3T3 cells (50,000 per

well) were seeded in 96-well plates 2 h before addition of purified

T.cruzi trypomastigotes (50,000 per well) and the compounds for

testing at the maximum concentration of 50 mM, therefore the

DMSO percentage was never higher than 0.5%. This concentra-

tion of DMSO was tested repeatedly and it does not affect the

viability of the parasites. Each determination was performed in

duplicate. Amphotericin B (Sigma-Aldrich) was used as positive

control at a final concentration of 4 mM. Negative and positive

controls were carried in every plate. After 4 days, 50 ml of PBS

containing 0.5% of the detergent NP40 and 100 mM Chlorophe-

nol Red-b-D-galactoside (CPRG) (Sigma) were added per well.

Plates were incubated at 37uC for 4 h and absorbance was read at

590 nm using a Tecan Spectra Mini plate reader.

The absorbance obtained was proportional to the viability of the

parasite. The value of IC50 was determined using Graph Prism

Software.

Generation and characterization of luciferase-expressing
T. cruzi trypomastigotes

The firefly luciferase gene (luc) was used to replace the GFP in

the T. cruzi episomal expression vector, pTREX-GFP [13], a

modified version of pRIBOTEX-GFP [14]. T. cruzi (Y strain)

epimastigotes maintained at 28uC in LIT medium were transfect-

ed with 10 mg of pTREX-luc using a nucleofector transfection

system (T-cell protocol; AMAXA) and selected with 200 mg/ml

G418 for 4 weeks. Parallel transfections with pTREX-GFP

demonstrated that under similar selection conditions .95% of

parasites are strongly positive for GFP after 4 weeks (not shown).

Mammalian-infective metacyclic trypomastigotes were harvested

from stationary phase epimastigote cultures and enriched

following passage over DEAE-cellulose/PBS pH.8.0 as routinely

performed [15]. Tissue culture trypomastigotes were harvested

from monkey kidney epithelial cells, LLcMK2, monolayers

infected with Y-luc metacyclic trypomastigotes. Relative luciferase

activity in Y strain epimastigotes grown in the presence of 200 mg/

ml G418 and in mammalian infective trypomastigotes harvested

from infected monolayers after the second passage through

Author Summary

Chagas is a devastating disease affecting about 100 million
people in Latin America. The drugs available for treatment
against the causative agent, the parasite Trypanosoma
cruzi, have associated toxicity and are not completely
effective against the chronic form of the disease, which is
the most common presentation in the clinic. There is a
great need for new drugs against this disease. Novel
technologies in drug development are now being applied
for the search of new compounds against Chagas. Taking
advantage of a high throughput screening performed
recently to identify compounds active against T. cruzi
replication in host cells in vitro, we have selected 23
compounds, which have been re-tested to selected active
ones. We have also adapted a transgenic T. cruzi
expressing luciferase, which allows for direct visualization
when mice are infected. These parasites have been used to
establish a model for acute Chagas disease useful for drug
testing in mice. Using this method, we have tested the
activity of the selected compounds and found two
compounds with strong anti-T. cruzi activity in mice.

Activity In Vivo of Anti-T. cruzi Compounds
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mammalian cells (ie. 2 weeks in the absence of drug selection) was

similar ,2.56106 RLU/106 parasites.

T. cruzi in vivo inhibition assay
Trypomastigotes forms from transgenic T. cruzi Y strain

expressing firefly Luciferase were purified, diluted in PBS and

injected i.p. in Balb/c mice (105 trypomastigotes per mouse).

Three days after infection the mice were anesthesized by either i.p.

injection of 300 mg/kg of Xylazine and 3500 mg/kg of Ketamine

or by inhalation of isofluorane (controlled flow of 1.5% isofluorane

in air was administered through a nose cone via a gas anesthesia

system). Mice were injected with 150 mg/kg of D-Luciferin

Potassium-salt (Goldbio) dissolved in PBS. Mice were imaged 5 to

10 min after injection of luciferin with an IVIS 100 (Xenogen,

Alameda, CA) and the data acquisition and analysis were

performed with the software LivingImage (Xenogen). One day

later (4 days after infection) treatment with compounds at 5 mg/

kg/day or vehicle control (DMSO in PBS) was started by i.p.

injection in groups of 5 mice and continued daily for the indicated

number of days. On the days indicated, mice were imaged again

after anesthesia and injection of luciferin as described above.

Parasite index is calculated as the ratio of parasite levels in treated

mice compared to the control group and is multiplied by 100. The

ratio of parasite levels is calculated for each animal dividing the

luciferase signal one day after the end of the 5 day treatment (day 9

of infection) by the luciferase signal one day before the beginning

of treatment (day 3 of infection).

Immunofluorescence assay
The compound CID-12402750 was selected for this assay due

to its activity against T. cruzi in vivo. NIH-3T3 cells plated on

coverslips were infected with T. cruzi Tulahuen expressing b-

galactosidase and incubated with or without drug at 5, 10, 50 or

100 times the value of the IC50 obtained in the in vitro assay

(IC50 = 0.11 mM). After 3 days, they were fixed with 4% of

paraformaldehyde, rinsed with PBS, permeabilized for 15 min in

PBS with 0.1% Triton X-100 (Sigma-Aldrich) and blocked for

20 min in PBS with 10% goat serum, 1% bovine serum albumin,

Figure 1. Inhibition of T.cruzi growth by 23 compounds selected from the HTS. The IC50 reported from the HTS available at Pubchem and
the IC50 determined in our laboratory are shown.
doi:10.1371/journal.pntd.0001298.g001
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100 mM glycine and 0.05% sodium azide. The cells were

incubated for 1 h at room temperature with a polyclonal rabbit

anti-T. cruzi at 1:2,000 dilution. After rinsing, they were incubated

for 1 h at a 1:800 dilution with an Alexa FluorH 488 goat anti-

rabbit IgG secondary antibody (Molecular Probes, Invitrogen).

DAPI was used to stain the DNA and the coverslips were mounted

on Mowiol. Cells were analyzed using an inverted Olympus IX70

microscope with a 606 oil objective.

Statistical analysis
Data were analyzed using Prism (v. 4.0c, GraphPad). t-test was

performed. Statistics were considered significant if P,0.05 or

P,0.01, as indicated.

Results

The results of the first high throughput screening (HTS) to

identify molecules effective against T.cruzi trypomastigote infection

of host cells were used to select 23 compounds with reported

IC50,1.2 mM and at least 100 fold activity versus toxicity for

further analysis. The quality control of these compounds was made

by HPLC/MASS.

We first tested the activity of the 23 selected compounds against

T. cruzi trypomastigote infection of host cells using a similar assay

and the same parasite and host cells that were used in the HTS

(see methods). Our tests showed a higher value for the IC50 for the

majority of the compounds when compared to the ones reported

in the HTS (Pubchem, AID: 2044), with 11 compounds showing

no detectable activity against T. cruzi (Fig. 1).

We then selected all compounds that showed activity in our in

vitro assay for testing of anti-T. cruzi activity in mice (except for

CID 1473168, which was not available). For this purpose, we

adapted a rapid method for drug testing in mouse models using

recombinant T. cruzi expressing the firefly luciferase gene in an

episomal expression vector.

We generated a recombinant T.cruzi expressing luciferase (Y-

luc),which presented good infectivity and stability. We find that

peak parasitemia was comparable for both WT and Y-luc parasites

(data not shown) and that Y-luc trypomastigotes harvested from

blood on day 7 of infection exhibited comparable levels of

luciferase expression as epimastigotes maintained on drug selection

or trypomastigotes that were used to inoculate the mice (Fig. 2).

Given that T. cruzi amastigotes divide every 12 h and the

intracellular infection cycle is 4–5 days, we estimate that these in

vivo passaged Y-luc parasites were free from drug selection for at

least 30 generations (when including time to generate trypomas-

tigotes in culture) [11]. Stable expression of luciferase from

pTREX-luc for a minimum of 7 days in vivo gives us an adequate

window of time to assess the effects of small molecule inhibitors on

acute T. cruzi infection in vivo. Parasite loads were measured at

different days after infection by injecting luciferin, the substrate of

luciferase, followed by imaging and quantification of the

luminescence signal with an IVIS Lumina imager. Focusing on

the area of highest intensity signal (red and turquoise), it is clear

that luminescent T. cruzi are concentrated in the intraperitoneal

cavity (site of injection) (Fig. 3A). Following the signal for 10 days

post-inoculation demonstrates that there is a clear indication of

parasite migration from the injection site (peritoneal cavity) to

distal sites, perhaps spleen and liver (Fig. 3A).

Using this recombinant parasite, we infected two groups of five

Balb/c mice and followed the course of infection over 13 days. To

determine whether this method would be useful for testing of

drugs, one of the groups was treated with benznidazole, while

control group was injected with vehicle control. A reduced signal

was obtained in the group treated with benznidazole (Fig. 3A,B).

Even if variation between individual animals is high, as expected

in this type of in vivo experiments, values between groups are

significantly different after only two days of treatment and

maintain different levels of infection for the 6 days of treatment.

We then used a modification of this protocol with quantification

of the parasite loads only at days 3 and 9 after infection, which

corresponds to five days of treatment (Fig. 4A) to test the activity of

the eleven compounds selected from the in vitro assay (Fig. 1). We

found that treatment with some of the compounds had no activity

on parasite levels (index close to 100) and others even resulted in

increased parasite loads (index higher than 100), possibly because

they interfere with the immune response of the mice. However,

two of the compounds tested, CID-24892493 and CID-12402750,

resulted in severe decreases in the levels of T. cruzi in mice that

were significantly different from their control group (Fig. 4B,C).

No toxic effects were apparent on the mice on visual observation.

These two compounds are closely related, they belong to the 1-(4-

Halogeno-benzyl)-2,4,6-triphenyl-pyridinium series and are differ-

ing only in the nature of halogen on the para position of the benzyl

(Fluorine for CID-24892493 and Chlorine for CID-12402750).

To get a better understanding of the anti-T. cruzi effect

observed, we next determined whether compound CID-

12402750 could inhibit T. cruzi replication within mammalian

host cells. We infected cells for 2 h, rinsed away the remaining free

trypomastigotes and, after adding the compound at concentrations

between the IC5 and the IC100, we incubated cells for 3 days to

allow for amastigote proliferation. In control cells, amastigotes

homogenous in size were distributed throughout the cytoplasm of

the host cells (Fig. 5A). Treatment with CID-12402750 resulted in

infected cells containing only a few amastigotes of average size

(Fig. 5B,C), suggesting that this compound interferes with

proliferation of amastigotes.

Discussion

The use of novel pharmaceutical technologies for neglected

diseases is opening new possibilities for drug development in this

Figure 2. Stable expression of luciferase after in vitro or in vivo
passaging of T. cruzi trypomastigotes. Luciferase activity in 16105

epimastigotes (Epi) under continued drug selection (G418 200 mg/ml)
(Epi); 16105 trypomastigotes (Tryp); 16105 trypomastigotes 2 weeks
after differentiation into metacyclics, removal of drug selection and in
vitro passage through LLCMK2 cells and subsequent in vivo passage in
mice where luciferase activity was measured in 105 trypomastigotes
acquired from the blood of an infected 6 week-old Balb/c mouse 1
week post infection (in vivo trypo).
doi:10.1371/journal.pntd.0001298.g002
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area. As an example of this, the first HTS performed for Chagas

disease (Pubchem AID: 1885) represents a major advance in this

field. However, our results illustrate the need for confirmation of

the HTS results, since as much as 11 hits from the HTS out of 23

selected did not show activity against T. cruzi in our hands. Since

the same parasite and host cells and were used for the HTS and for

testing in our laboratory, and the screening assay is also very

similar (see methods), it is likely that the reason for the

discrepancies resides in the chemical compounds used for analysis.

The quality control of the compounds used in our laboratory was

checked by HPLC followed by mass spectrometry and therefore

we can be confident that the chemical identity and the purity of

the compounds was optimal.

Another recent advance in the drug development field is the

development of new methods for screening of compounds in

animal models. Testing of compounds for activity in mice was

always considered a labor intensive and expensive step in the chain

of pre-clinical drug development and therefore was left at the end

of the time line. The availability of sensitive imaging techniques

and transgenic parasites, either fluorescent or luminescent [9,10]

and the Y-luc parasite described here, allow for rapid testing of

relatively high number of compounds. Compared to traditional

methods that require bleeding of infected mice and counting

parasites in a haemocytometer, intraperitoneal injection of the

luciferase substrate and imaging requires considerably less time,

with the additional advantage that there is no manipulation of

infected blood. Detection of parasites expressing luciferase is also

more sensitive than conventional counting of parasites in blood

samples. In our model of infection, Balb/c mice infected with T.

cruzi Y strain, we are not able to detect parasitemia by manual

counting in peripheral blood at any time after infection with 105

parasites, but inoculation of the same amount of Y-luc parasites

allows to follow the course of infection (Fig. 4). The stability of the

Y-luc parasite and the sensitivity of detection allows for screening

Figure 3. Method for testing anti-T.cruzi compounds in mice.
Groups of five mice were infected with T. cruzi trypomastigotes
expressing luciferase and imaged on the indicated days after infection.
Treatment with benznidazole (5 mg/kg/day, i.p.) started on day 4. (A)
One representative mouse of each group is shown. (B) Quantification of
luminescence signal from infected control or benznidazole treated
mice. Results are expressed as average 6 standard deviation (*, P,0.05;
**, P,0.01).
doi:10.1371/journal.pntd.0001298.g003

Figure 4. Test for activity in vivo of compounds active in vitro.
Groups of five mice were infected with T. cruzi and treated with
different compounds following the protocol shown in (A). (B)
Quantification of parasite infection levels in the groups of mice treated
with the different compounds is expressed as T. cruzi index.
Compounds are identified by their CID. Results are expressed as
average 6 standard deviation (*, P,0.05). (C) One representative mouse
of each group treated with compounds CID-12402750 and CID-
24892493.
doi:10.1371/journal.pntd.0001298.g004

Figure 5. Compound CID-12402750 shows trypanostatic activ-
ity in vitro. NIH-3T3 fibroblasts were incubated with T. cruzi
trypomastigotes for 2 h before washing of extracellular T. cruzi and
addition of drugs. Cells were incubated for 3 days, stained with an anti-
T. cruzi antibody and DAPI to visualize DNA. Control infection (A) or
infection in the presence of compound CID-12402750 at IC5 (B) and
IC100 (C) concentration. These are representative images from a total of
50 fields observed in each condition. Scale bar: 10 mm.
doi:10.1371/journal.pntd.0001298.g005
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of compounds early after in vitro results, accelerating the speed of

pre-clinical drug discovery.

Probably, this method will also be useful in detection of

parasitological cure after drug treatments. This is normally

achieved by administering an immunosuppressive treatment to

mice after drug treatment, when parasites are no longer

detectable. If parasites that were not eliminated during the drug

treatment emerge after immunosuppression, it is expected that the

luminescence signal will still be detectable.

In our project, all the compounds with in vitro activity were

tested in mice, where we found only one chemical structure with

significant in vivo activity. It is well known that there is a significant

attrition rate when compounds are tested in animal models, even if

optimization based on pharmacokinetics parameters has been

performed. In our case, direct testing without optimization

probably reduces the chances of success, but at the same time,

this strategy provides a rapid method to find compounds with

activity in vivo, which places them in an advanced position in the

development chain. Pharmacokinetic analysis can then be

performed to optimize compounds accordingly, which combined

with testing of anti-parasitic activity in vivo in every round, could

lead to an accelerated drug discovery path.

We have found a chemical series, 1-benzyl-2,4,6-triphenylpyr-

idin-1-ium, with strong in vitro and in vivo activity against T. cruzi.

The two related compounds, with either a Cl or a F in para

position of the benzyl, had same level of anti-trypanosomal

activity, confirming the efficacy of this structure. We also found

that the anti-T. cruzi effect is mediated by the inhibition of

proliferation of amastigotes within host cells. Despite this

promising results, the development of this structure as an anti-

trypanosomal drug, may be impaired by the quaternary

ammonium, that is generally known as having low intestinal

permeability by passive diffusion. Additionally, symmetry, planar-

ity and the presence of 4 phenyl rings could contribute to lower

solubility, which would also have a negative impact on oral

absorption. Further drug development should include optimiza-

tion of solubility and permeability in vitro before additional tests in

vivo could be performed.
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