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Abstract

Conformational sampling is one of the bottlenecks in fragment-based protein structure prediction approaches. They
generally start with a coarse-grained optimization where mainchain atoms and centroids of side chains are considered,
followed by a fine-grained optimization with an all-atom representation of proteins. It is during this coarse-grained phase
that fragment-based methods sample intensely the conformational space. If the native-like region is sampled more, the
accuracy of the final all-atom predictions may be improved accordingly. In this work we present EdaFold, a new method for
fragment-based protein structure prediction based on an Estimation of Distribution Algorithm. Fragment-based approaches
build protein models by assembling short fragments from known protein structures. Whereas the probability mass
functions over the fragment libraries are uniform in the usual case, we propose an algorithm that learns from previously
generated decoys and steers the search toward native-like regions. A comparison with Rosetta AbInitio protocol shows that
EdaFold is able to generate models with lower energies and to enhance the percentage of near-native coarse-grained
decoys on a benchmark of 20 proteins. The best coarse-grained models produced by both methods were refined into all-
atom models and used in molecular replacement. All atom decoys produced out of EdaFold’s decoy set reach high enough
accuracy to solve the crystallographic phase problem by molecular replacement for some test proteins. EdaFold showed a
higher success rate in molecular replacement when compared to Rosetta. Our study suggests that improving low resolution
coarse-grained decoys allows computational methods to avoid subsequent sampling issues during all-atom refinement and
to produce better all-atom models. EdaFold can be downloaded from http://www.riken.jp/zhangiru/software/.
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Introduction

Fragment based Protein Structure Prediction (PSP) algorithms

have become very successful during the last decade. This could

be due to the increasing number of solved structures available in

the Protein Data Bank [1], and the proven efficiency of this

approach. Amongst all the methods developed, Rosetta is one of

the most well-known [2], along with the recently published

Quark method [3]. The Rosetta protocol consists of a coarse-

grained optimization phase where backbone atoms and centroids

of side chains are considered, followed by a fine-grained

optimization phase with a high resolution all-atom representation

of proteins. The fragment assembly takes place during the first

phase. Short fragments of known proteins are assembled by a

Monte Carlo strategy to generate decoys. The data inside

fragments are W, Y and V torsion angles. The torsion angles

determine the backbone of proteins and replacing one fragment

inside a decoy can yield important modifications of the global

conformation. At this point, a protein model is only represented

by a sequence of W, Y and V torsion angles triplets, each of

them being associated with one residue of the target sequence.

After fragment insertion, small random variations of W and Y
angles are introduced [4]. During the fine-grained second phase,

side chain conformations are optimized. Although small pertur-

bations of main chain are also performed, they hardly affect the

overall fold of the decoy.

Rosetta has been successfully used for the prediction of high

resolution protein structures from sequences [4]. It has been

shown that the coarse-grained conformation sampling plays an

important role in predicting highly accurate structure of proteins

[5]. In addition, when coarse-grained models are predicted near

native structure, switching the models to all-atom representation

subsequently gives solutions in Molecular Replacement trials

without extensive optimization [6].

The two main challenges in PSP are on the one hand the

accuracy of energy functions and on the other hand the quality of

the conformational search. The conformational search space is

determined by the energy function and the representation of the

solutions. Despite of its imperfections, Rosetta’s all-atom energy

function can distinguish native from non-native structures [7]. The

challenge we are interested in is, given an accurate energy

function, to increase the proportion of near native decoys during

the conformational search. To achieve this goal, an optimization

method must have features that can bring some knowledge on the

search space. Resampling techniques and methods inspired by
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evolution such as genetic algorithms possess this kind of features

and thus are good candidates for this task.

Resampling techniques aim at gathering information on the

energy landscape from an initial round of search, and then using

this information to guide the sampling of the conformational

search space in subsequent rounds. A previous study suggest to

project conformations onto a discrete space and to compute

numerous statistics in order to identify native-like features [8]. A

model-based approach using fragment assembly and Rosetta

energy function has also been proposed. It has the ability to

concentrate the search in regions of the search space containing

extrema of the energy function [9]. Another study propose to use

an iterative algorithm combining hidden Markov models and

fragment assembly. The algorithm uses protein fragments to build

cosine models describing residue torsion angles and a position

specific hidden Markov model to capture dependencies between

adjacent residues. The protein models generated during an

iteration are then used to train the cosine models for the

subsequent iteration [10]. Previously, the Fisher Bingham

distribution has been used to parameterize the local structural

preferences of residues [11]. In genetic algorithms, information is

shared by recombination of good solutions. The potential of this

class of algorithm in the PSP field has been discussed [12].

Probabilistic fragment selection approaches have been investigat-

ed. A previous work suggests to measure energetic fluctuations

induced by local changes of the protein structure, and manage to

find low energy conformations with a genetic algorithm. However,

no improvement in prediction quality is reported [13]. Probabi-

listic models have also been used in fragment-free approaches

[14,15]. A conformational search method combining simulated

annealing, genetic algorithms and molecular dynamics was

reported [16]. The use of genetic algorithm was shown to reach

lower energy levels than classic simulated annealing molecular

dynamics algorithm. The application of Estimation of Distribution

Algorithms (EDAs) to the solution of the PSP problem in simplified

models has been introduced and their use as a simulation tool for

the analysis of the protein folding process has been proposed [17].

The EDAs has been used in this case to model proteins in a

simplified lattice HP model that separates amino acids into two

classes: Hydrophobic and Polar [17]. To the best of our

knowledge, there is no successful report of the use of Estimation

of Distribution Algorithms on the PSP problem with atomic level

representation.

In this paper we present EdaFold, a fragment based approach

for protein folding using an Estimation of Distribution Algorithm

[18] in order to share information between parallel simulations

and enhance the search process. The proposed method tackles the

coarse-grained PSP problem and could improve the quality of

predicted structures for most of the tested targets compared to

Rosetta. It was observed on a benchmark of 20 target proteins that

EdaFold could generate coarse-grained decoys with significantly

lower energy than Rosetta. Whereas this result showed the

efficiency of the minimization process, some targets present

abnormal energy/Ca root mean square deviation (CARMSD )

to native correlation which, to a certain extent, misleads the search

process. This discrepancy is caused by the quality of the low

resolution energy function. On the majority of the targets,

EdaFold is able to sample more efficiently near the native

structure compared to Rosetta AbInitio protocol.

It has been shown recently that coarse-grained conformational

sampling (where only backbone atoms are present) is the key step

in ab initio protein folding in order to obtain models that pass the

stringent test of molecular replacement [6]. Indeed, optimizing an

all-atom model is a waste of computing power when the backbone

conformation is far from the native structure. This study thus

focuses on coarse-grained conformational sampling improvement,

in order to enrich the population of generated decoys with more

models near the native fold.

Rosetta’s low resolution energy function, used in coarse-grained

sampling, is not as accurate as its all-atom counterpart. Often,

some low energy conformations will be far from the target’s native

structure. Nevertheless, it has been observed in many cases that

the region containing the highest concentration of low energy

conformations is located near the target’s native structure [19].

Since the majority of low energy conformations belong to the same

region of the search space they share some common, native-like,

structural properties. However, the size of the conformational

search space leads to the design of methods that are able to sample

broadly and thus are unlikely to focus on the native-like region.

The goal of our approach is to enhance the search in the native-

like region by defining some probability mass functions (PMFs)

over the fragment library used to generate the conformations. We

borrow some principles from a kind of evolutionary algorithms,

the so called Estimation of Distribution Algorithms, and apply

them to the PSP problem. Some features of proteins are easy to

predict and will be frequently present in low energy decoys. The

probability of selecting the corresponding fragments will be high.

This can be exploited to design a sampling algorithm that spares

useless effort on easy regions of the protein and spends more time

on trying to minimize difficult ones.

Estimation of Distribution Algorithms belong to the class of

Evolutionary Algorithms. In these population-based meta heuris-

tics, solutions share some information about promising regions of

the search space in order to converge toward the global optimum.

While in classical evolutionary approaches newly sampled

solutions are generated by explicit recombination of the popula-

tion’s best solutions, EDAs strategy is to regenerate a pool of

solutions with an estimated biased distribution. The distribution is

biased by observation of the search sub-space described by good

solutions in the population. Our strategy for the PSP problem is to

alternate sampling/minimization and estimation of distribution

stages. Each sampling stage will be performed with a distribution

biased by the current status of the population of solutions.

Premature convergence of the solutions towards a local minimum

is easier to avoid than with other evolutionary approaches since

one can control the influence of the population of solutions on the

distribution.

Results

In this section, we describe and analyze the results related to the

sampling efficiency, both in terms of energy and CARMSD to

native structure. We compare EdaFold to Rosetta AbInitio

protocol, a state-of-the-art method in fragment-based protein

structure prediction. EdaFold is computationally more expensive

than Rosetta. It is 2:5 times slower than the latter on average on

our protein benchmark. Even though we compare the two

methods in terms of percentage of near-native decoys, we use

equal computational time since the decoys generated by EdaFold

are sharing information through the EDA algorithm. If EdaFold

generates more models, more information will be shared and it

may have an effect on the distribution of decoys. Therefore, in our

experiments, we generated 5|105 decoys for each target with

Rosetta AbInitio protocol and 2|105 decoys with EdaFold. The

two algorithms are evaluated on a set of 20 proteins from various

fold families. We selected proteins from two datasets presented in

previous studies [7,8]. We removed from this benchmark proteins

that seemed either too easy or too difficult to predict for Rosetta or

Fragment Distribution Estimation Improves Sampling
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longer than 150 residues. We obtained a set of 19 proteins, and

added 1 which satisfied our length and difficulty requirements to

obtain a 20 proteins benchmark.

Energy Study
Histograms of decoys distribution (in percentage of total

number of decoys) as a function of energy are presented in

Figure 1. EdaFold is able to find decoys with lower energy

compared to Rosetta, and in higher proportions. For target 1bm8,

25% of decoys generated by the former at iteration 4 reach around

{60 in Rosetta energy against less than 1% for the latter. For

target 4ubpA, 20% of EdaFold conformations reach around {15
in Rosetta energy at iteration 4 against less than 1% for Rosetta.

Even though we only present histograms for 2 targets, the whole

benchmark shows the same trend. The figure also shows the ability

of the EDA to improve the energy of decoys. We note a significant

improvement between iterations 1 and 4. This improvement is an

expected effect of the EDA implemented in EdaFold.

Near Native Sampling Ability
One important motivation of this work is to propose an

algorithm able to sample more efficiently the native-like region of

the conformational space. Being able to predict near-native decoys

and being able to identify them are two different issues. If a

strategy cannot predict high quality decoys, then trying to find the

best one is pointless. Here, we focus on improving the quantity of

near-native decoys and for this reason the main results that we

present are in terms of CARMSD to the native structure.

The performance of EdaFold and Rosetta is summarized in

Table 1. For each target, the averages over the lowest 1 and 1%
CARMSD to native are reported. We also report the average

CARMSD of the lowest 1 and 1% Rosetta energies. We

performed a Mann-Whitney U statistical test [20] on each sample.

Samples that are statistically different with a confidence higher

than 95% are in bold. EdaFold outperforms Rosetta AbInitio

protocol on a majority of the targets in terms of near-native region

sampling efficiency. Even if Rosetta’s coarse-grained energy is

noisy, EdaFold still takes advantage of it and achieves a better

average 1 and 1% CARMSD when decoys are sorted by Rosetta

energy as shown in columns avg e- CARMSD. EdaFold finds lower

energies on all proteins in the benchmark and this results shows

that this improvement is followed by a lower average CARMSD to

native on a majority of targets.

A histogram of the distribution of predicted decoys with

EdaFold and Rosetta as a function of CARMSD to native for

the targets 1a19 and 3chy is shown in Figure 2. Iterations 1 and 4
of EdaFold are displayed. Histograms of EdaFold ‘s iteration 1
have the same shape as the ones from Rosetta. At iteration 4, the

distributions drift toward the native structure. Looking at Rosetta

histograms, the highest peak in the distribution is away from the

native structure in both cases. The search dynamic is different

from one target to the other. The distribution becomes clearly

bimodal at iteration 4 for target 3chy. The benefit of sharing

information between parallel processes during the search is put in

evidence in these figures. CARMSD to native for all decoys were

computed using the ‘ranker’ tool provided with Durandal [21].

‘ranker’ executes in constant space and thus can handle any

number of decoys.

The percentage of decoys generated with EdaFold and Rosetta

that are less than a certain threshold distance from the native

structure is plotted in Figure 3. The abcisse axis, representing the

threshold values, ranges from 2 to 4 Å. The threshold values

increase by a step of 0:2 Å. If we consider that conformations less

than 4 Å CARMSD away from the native structure are exploitable

for subsequent all-atom refinement, then this figure gives a good

picture of the ability of both methods to generate useful

conformations. It appears that EdaFold is superior from this point

of view on a majority of targets.

A summary of the performance comparison of EdaFold and

Rosetta from 3 performance criteria is given in Figure 4. EdaFold

outperforms Rosetta on a majority of targets either in terms of best

1 and 1% average CARMSD to native. The third criterion is

extracted from Figure 3. It compares the percentage of models at

less than 4 Å away from native generated by each method and the

higher the better. Looking at this criterion, EdaFold is superior on

80% of the benchmark targets. Finally, the best models generated

with EdaFold and Rosetta for target 1scjB are shown in Figure 5.

The models are superimposed with the native structure. The

model generated by EdaFold accurately predicts b2 (on the right)

whereas Rosetta’s one misses it. It also slightly better predicts a1

(in the back on the right) and b3. Both methods can predict b1, a2

and b4.

Figure 1. Histograms of decoys’ energy distribution: comparison between iterations 1, 4 of EdaFold and Rosetta for 1bm8 (left) and
4ubpA (right). The minimization process of EdaFold is more efficient than Rosetta at iteration 1. The Estimation of Distribution Algorithm allows
EdaFold to increase the performances from iteration 1 to iteration 4.
doi:10.1371/journal.pone.0038799.g001
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All Atom Models
We showed that, on a benchmark of 20 proteins, EdaFold is

able to reach lower coarse-grained energies than Rosetta and to

enhance the percentage of near-native decoys on a majority of

targets. Here, we show that these improved low resolution coarse-

grained decoys can lead to more accurate high resolution models

after all-atom refinement. For 10 protein targets, we selected the 5

lowest CARMSD decoys from EdaFold and Rosetta Abinitio. For

each decoy, we ran 100 Rosetta fast Relax protocol to produce

Table 1. Performance of EdaFold and Rosetta.

EdaFold Rosetta

avg CARMSD (Å ) avg e- CARMSD (Å ) avg CARMSD (Å ) avg e- CARMSD (Å )

Target Length top 1 top 1% top 1 top 1% top 1 top 1% top 1 top 1%

1bq9 54 1.98 2.97 9.13 8.87 3.53 4.63 9.00 7.83

1di2 69 1.35 1.57 4.23 4.75 1.51 1.91 4.17 4.07

1scjB 71 2.66 3.05 3.08 3.06 3.62 4.22 4.60 4.42

1hz5 72 2.28 2.6 3.95 4.06 2.23 2.49 3.88 3.80

1cc8 73 2.69 3.3 6.80 6.42 2.71 3.22 5.05 3.60

1ctf 74 3.19 3.94 7.09 7.05 3.1 3.73 8.37 7.92

1ig5 75 2.34 2.75 4.55 4.16 2.34 2.72 5.03 4.30

1dtj 76 2.73 3.66 6.82 5.85 2.73 3.7 6.29 3.58

1ogw 76 2.64 3.07 4.66 4.66 2.89 3.29 4.70 4.61

1dcj 81 2.76 3.41 5.18 5.00 2.91 3.52 5.99 5.06

2ci2 83 3.23 4.72 8.10 8.12 3.16 4.17 9.15 9.95

3nzl 83 3.74 4.14 5.26 5.27 3.94 4.49 7.33 7.75

1a19 90 3.18 3.76 5.55 4.44 3.46 4.37 8.62 8.52

1tig 94 3.4 3.83 4.96 4.52 3.33 3.95 4.75 4.13

1bm8 99 3.67 4.36 8.89 6.71 3.65 4.57 8.82 8.73

4ubpA 101 4.13 4.87 11.24 12.50 3.85 4.63 9.87 8.51

1iib 106 3.29 4.42 9.41 9.72 3.28 4.7 10.44 11.28

1m6t 106 1.67 2.01 3.56 4.82 1.94 2.34 3.98 3.51

1acf 125 3.96 4.68 10.40 8.54 4.75 5.92 10.34 12.17

3chy 128 3.52 4.51 6.99 4.87 3.88 4.93 7.81 5.90

Avg. 2.92 3.58 6.49 6.17 3.14 3.88 6.90 6.48

avg CARMSD is the average CARMSD of the nearest to native decoys. avg e- CARMSD is the average CARMSD of the lowest Rosetta energy decoys. Results differences
which are statistically significant with more than 95% confidence according to Mann-Whitney U test are in bold.
doi:10.1371/journal.pone.0038799.t001

Figure 2. Histogram of CARMSD to native decoy distribution: comparison between iterations 1, 4 of EdaFold and Rosetta for 1a19

(left) and 3chy (right). EdaFold is able to guide the sampling towards native structure: the percentage of near-native models is higher at
iteration 4.
doi:10.1371/journal.pone.0038799.g002
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500 high resolution models for each target with both methods. We

used Phaser [22] to run molecular replacement on this dataset.

Molecular replacement is a stringent test to assess the accuracy of

computationally generated models [23]. The goal of this

experiment was to test whether improved coarse-grained models

can lead to improved all-atom models after refinement. Therefore,

we selected the best models of both methods by CARMSD. This

won’t be possible in blind test where the native structure is not

available. First, we want to separate the model generation from

model selection. If a method cannot produce good enough models,

then blind selection will always fail. Secondly, the blind selection of

best coarse-grained decoys is moot if all the coarse-grained decoys

were used for all-atom refinement. This is a matter of computa-

tional resources.

We selected proteins from our set that were also tested for

molecular replacement by Rosetta [23]. We added 1scjB to this

dataset in order to check whether low resolution models showing

significant improvement in CARMSD to native could tranlate into

high resolution models with the same CARMSD gap. Significant

CARMSD to native improvements were observed for two proteins

of our benchmark: 1bq9 and 1scjB. Results of this experiment are

reported in table 2. Out of the 10 targets tested, EdaFold

succeeded in 5 targets as compared to 3 targets succeeded by

Rosetta. The success in molecular replacement is not only judged

by the TFZ score but also assessed by a verification procedure [6].

For 1m6t, EdaFold and Rosetta manage to find a solution in

molecular replacement. Both methods produced good low

resolution models which led to all-atom models accurate enough

for molecular replacement. For 1bq9, EdaFold produced better

low resolution models. The corresponding all-atom models gave a

solution for molecular replacement with a satisfying TFZ score,

whereas Rosetta models failed the test. In the case of 3chy,

EdaFold produced slightly better low resolution models which

resulted in slightly better all-atom models. Even though both

Figure 3. Decoys distribution as a function of CARMSD to native structure. EdaFold (in blue) is able to generate a higher percentage of
decoys at less than 4 Å from native on 16 targets out of 20.
doi:10.1371/journal.pone.0038799.g003
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methods gave a solution for molecular replacement, the TFZ score

of EdaFold ‘s model (8:8) leaves no doubt about the solution

whereas the TFZ score of Rosetta’s model (6:1) is in the grey zone

and would not give confidence in solution without manual

inspection or additional means of validation. In the case of 1ig5,

even though the best low resolution models were equally distant

from native for both methods, better all-atom model were

produced out of EdaFold’s decoy set which was successful in

molecular replacement. For Rosetta’s decoys, no improvement

was achieved after all-atom refinement and no decoy could pass

the molecular replacement test. For 1ctf , the all-atom refinement

stage not only didn’t improve the CARMSD of the best coarse-

grained decoys on Rosetta decoy set, but also decreased it by 0:4 Å

on EdaFold decoy set. None of the methods were successful in

molecular replacement. This uncertainty in the quality of all-atom

models produced by Rosetta fast Relax protocol put in evidence

the necessity of enhancing the number of coarse-grained near-

native decoys. If more near-native coarse-grained decoys were

available, the chances that Rosetta fast Relax protocol improves

one of them would be increased. Both methods failed on targets

1hz5, 1ctf , 1dtj, 1a19 and 1bm8. In the case of 1scj, the

diffraction data contains chains A and B. Since we only tried to

predict the structure for chain B, we considered that chain A was

already solved when running Phaser. Both methods obtained high

TFZ scores, but during molecular replacement verification it

appeared that Rosetta’s best model had a translation/symmetry

CARMSD (v- CARMSD ) of 4:19 Å. In comparison, EdaFold’s

best model has an v- CARMSD of 2:33 Å. CARMSD results show

that even if Rosetta’s all-atom energy is not adapted for 1scj, and

native structure has a higher energy than incorrect models [7], this

issue can be overcome by a more efficient search during coarse-

grained sampling.

Discussion

We compared the coarse-grained sampling performances of

EdaFold and Rosetta on a benchmark of 20 proteins. In this

section, we analyze the results and discuss the benefits and

shortcomings of this new method. We also suggest some leads for

further improvements of EdaFold and fragment-based approach-

es.

Coarse-grained Energy Function Accuracy
EdaFold relies on the energy function to densify the search in

some regions of the landscape. If the energy function is not

adapted for some targets, then the densification may be achieved

in regions far away from the native structure. Such inaccuracies in

Rosetta’s coarse-grained energy function has been pointed out in

previous work [24]. Among all of the targets of our benchmark,

some presented such deceptive fitness landscapes: all of the ones

for which Rosetta found a higher rate of near-native conforma-

tions. In Figure 6 we plot the energy of predicted decoys as a

function of CARMSD to native structure on target 2ci2 for both

EdaFold and Rosetta. This figure shows that for the two methods,

the lowest energies are reached for conformations which stand at

around 8 Å away from native. In the case of EdaFold, the

deceptive nature of the landscape is more pronounced because it

enhanced the search in this wrong region and thus discovered even

lower energy decoys within the same area. If one looks at the

numbers in table 1, we can see that the negative impact of such

landscapes on performance is limited. One reason for this is that

each iteration of EdaFold contribute equally to the total number of

predicted models and the distribution used to generate models

during the first iteration is uniform (see Methods section). Since we

perform 4 iterations for each experiment, 25% of the models

(generated at iteration 1) are independent. This process mitigates

the loss of diversity in the final population and avoid from drifting

too far from native structure in case of deceptive landscape. We

note that 2ci2 is also difficult for Rosetta, which can only generate

0:35% of the decoys at less than 4 Å away from native. This issue

can be solved by using a more sophisticated energy function or at

least by finding a better balance between the energy terms. We

could also change the adaptation policy of the EDA so that it is less

Figure 4. Histograms for 3 performance criteria: best 1 and 1% average CARMSD to native and best percentage of models
generated at less than 4 Å away from the native structure.
doi:10.1371/journal.pone.0038799.g004

Fragment Distribution Estimation Improves Sampling

PLoS ONE | www.plosone.org 6 July 2012 | Volume 7 | Issue 7 | e38799



sensitive to energy variations but in this case we would be less

competitive on the majority of targets for which the energy

function is well adapted. As an example of such target, Figure 7

shows the same energy versus CARMSD to native plot for 1scjB.

With this kind of landscape, EdaFold’s abillity to find low energy

models allows to discover high quality decoys that cannot be found

by Rosetta. A previous study shows that 1scj falls into the category

of proteins for which incorrect non-native models reach lower (all-

Figure 5. 1scj models: EdaFold’s best model (in green), 2:4 Å away from native (in yellow), Rosetta’s best model (in blue), 3:1 Å
away from native.
doi:10.1371/journal.pone.0038799.g005

Fragment Distribution Estimation Improves Sampling
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atom) energy levels than native structure [7]. Our study suggests

that in such cases, improving the quality of low resolution models

allow to overcome this issue.

EDA-based Conformation Search Efficiency
Fragment-based approaches to the PSP problem are attractive

since they allow to discretize the conformational search space and

introduce some knowledge from subsequences of proteins taken

from the Protein Data Bank. Our study focuses on the first part of

the search process, that is the coarse-grained sampling. This part is

critical because it determines the global structure of the protein

models. Rosetta, as well as EdaFold propose some parallel

implementation. This work shows that a negligible amount of

communications between jobs executed simultaneously increases

the percentage of decoys with structures close to the native during

coarse-grained sampling. The benefits are twofold: first, it will

translate into more successful high resolution all-atom refinement

and second, it will increase the probability of near-native decoys’

blind selection. Preliminary results on all-atom refinement of

EdaFold decoys are promising: the lowest CARMSD to native

coarse-grained decoys translated into accurate all-atom models

which could pass the molecular replacement test and solve the

crystallographic phase problem for some proteins for which

Rosetta protocol is unsuccessful. Although we selected the decoys

with apriori knowledge of native structure, the success of

molecular replacement without this information is only a

computational issue which scales linearly. The core of EdaFold,

which is the estimation of PMFs on the protein fragments is not

specific to our minimization algorithm and can be implemented

into any fragment-based approach.

EdaFold is able to consistently find lower energies than Rosetta,

even when the CARMSD to native are of the same order. There

are two reasons for this behaviour. First, our algorithm spends

more time during the minimization phase. We systematically

perform an iterated local search step after the simulated annealing

sampling which is highly efficient for energy minimization.

Second, it is the essence of any evolutionary algorithm to converge

towards low energy regions of the landscape. Figure 1 gives an

insight on the evolution of the energy as a function of iterations in

EdaFold on two targets. At iteration 4, the percentage of low

energy decoys is higher and the algorithm is able to find decoys

with energy levels unreachable at iteration 1. It is also clear from

this figure that the minimization process in EdaFold is more

efficient than Rosetta’s one, even at iteration 1. The same trend is

observed on all targets of the benchmark.

Our method differs from other existing resampling techniques

such as the one presented by Blum et al. [8] in several aspects.

Since it only relies on energy in order to guide the search, it is

easier to implement and any improvement of the energy function

will have some direct impact on the results. Also, whereas

resampling techniques perform one ‘‘control’’ sampling stage and

one ‘‘resampling’’ stage, EdaFold is an evolutionary algorithm: the

PMFs estimation process is iterative and refined at each

evolutionary step. Finally, from an implementation point of view,

the originality of our method resides in the fact that we do not

need to modify the fragment libraries in order to bias the selection

of fragments. We use a selection operator based on the roulette

wheel algorithm which allows to pick fragments according to

predefined PMFs. The Fragment-HMM method [10] is similar to

our approach in the sense that it is also relying on an iterative

process in order to estimate distributions over torsion angles.

However, the two algorithms differ in several points. The main

difference is in the estimation process. Whereas the Fragment-

HMM builds cosine von Mises models and thus assume that the

torsion angles follow such a distribution, EdaFold directly

estimates each fragment’s probability of belonging to the correct

fold. Moreover, Fragment-HMM does not use fragments as

building blocks. It uses fragments to estimate the cosine models in

a pre-sampling step and then uses the cosine models in an hidden

Markov model during the sampling. Finally, Fragment-HMM

iterates until convergence whereas EdaFold produces numerous

protein models, as we consider final model selection as a post-

processing operation.

Table 2. Molecular replacement with Phaser.

Target EdaFold

Best TFZ model
Best
CARMSD

Best CG-
CARMSD

TFZ v- CARMSD CARMSD

1bq9 8.0 1.15 1.08 1.04 1.30

1scjB 18.1 2.33 2.17 1.9 2.38

1hz5 6.0 23.3 2.63 1.8 2.01

1ctf 5.6 28.07 3.3 2.76 2.35

1ig5 7.0 1.85 1.7 1.52 1.84

1dtj 6.1 23.8 1.8 1.65 1.76

1a19 4.7 18.05 2.1 1.86 2.55

1bm8 5.8 17.0 3.4 2.5 2.81

1m6t 8.9 1.21 1.17 1.06 1.35

3chy 8.8 2.19 2.13 2.12 2.7

Target Rosetta

Best TFZ model Best
CARMSD

Best CG-
CARMSD

TFZ v- CARMSD CARMSD

1bq9 5.3 16.73 3.33 2.55 2.97

1scjB 10.4 4.19 3.5 2.78 3.1

1hz5 6.2 23.6 2.44 1.62 1.9

1ctf 5.6 19.0 3.06 2.3 2.39

1ig5 5.9 20.22 2.58 1.84 1.85

1dtj 5.8 21.8 1.67 1.4 1.82

1a19 5.0 19.9 2.84 1.96 2.58

1bm8 5.8 22.9 4.6 1.98 2.61

1m6t 8.0 1.33 1.23 0.96 1.54

3chy 6.1 2.53 2.38 2.31 2.78

Columns labelled Best TFZ model show measures on the predicted model with
the best Phaser TFZ score. TFZ stands for Translation Function Z score, typically
used to determine the probability of success of a molecular replacement test. v-
CARMSD for molecular replacement verification CARMSD, represents the
CARMSD of the molecular replacement model to the native structure after
optimal unit cell translation and symmetric expansion of atoms in the space
group. If this value is less than 1Å away from the value of the CARMSD to native
after optimal superimposition by rigid body alignment (column CARMSD ) then
the molecular replacement solution is considered successful. Best CARMSD
shows the lowest CARMSD to native of the all-atom refined models used in
molecular replacement. Best CG- CARMSD shows the lowest CARMSD found in
the coarse-grained models.
doi:10.1371/journal.pone.0038799.t002
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Methods

Our strategy is described in details as follows. The corner stone

of the proposed algorithm is the estimated probability mass

functions (PMFs) defined over the protein fragment library.

Formally, fXi
(x[X) is the probability mass function for residue i,

where X is a random variable, X is the set fx1,:::,xng of all the

values that X can take and n is the number of fragments involving

residue i. We define a probability mass function for each residue in

the target sequence. At the beginning, no information on the

fitness of fragments to the sequence is available and thus every

fragment has the same probability of being inserted into a solution.

The PMF estimations are then refined after each sample and

minimization process. An outline of our search strategy is given in

algorithm 1.

Algorithm 1 EdaFold (comments are enclosed between braces):

input : s sequence of the target proteinf g

input : n number of minimization stepsf g

output : p set of potential solutionsf g

pmf / init with uniform distributions()

p / sample and minimize(s, pmf ) ffirst iterationg

for i in ½1::n{1� do

pmf / estimate pmf (p)

p / p | sample and minimize(s, pmf ) remaining iterationsf g

end for

return p

Figure 6. Deceptive landscape: energy as a function of CARMSD to native structure on target 2ci2 for EdaFold and Rosetta.
doi:10.1371/journal.pone.0038799.g006

Figure 7. Suitable landscape: energy as a function of CARMSD to native structure on target 1scjB for EdaFold and Rosetta.
doi:10.1371/journal.pone.0038799.g007
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Algorithm 2 Sample and minimize comments are enclosed between bracesð Þ:

input : s sequence of the target proteinf g

input : pmf vector of probability mass functionsf g

output : p set of potential solutionsf g

set fragment size(9)

p / init from sequence(s)

p / simulated annealing(p, pmf , score0)

p / simulated annealing(p, pmf , score1)

p / simulated annealing(p, pmf , score2)

p / iterated hill climbing(p, pmf , score2)

p / extensive simulated annealing(p, pmf , score3)

p / iterated hill climbing(p, pmf , score3)

p / extensive simulated annealing(p, pmf , score3)

p / iterated hill climbing(p, pmf , score3)

set fragment size(3)

p / extensive simulated annealing(p, score3)

p / iterated hill climbing(p, score3)

return p

The initialization stage consists of random insertion of

fragments into solutions for each residue selected in random

order. The sample and minimize function is a combination of

simulated annealing and iterated hill climbing. It uses Rosetta’s

energy function with Rosetta scores 0, 1, 2 and 3. Simulated

annealing alone is used with scores 0 and 1. Iterated hill climbing

is performed after simulated annealing with scores 2 and 3. With

score 3, two steps of sample and minimization are performed,

during which there are two calls to the simulated annealing

function followed by one call to the iterated hill climbing function.

The iterated hill climbing is an iterated local search algorithm

[25]. It consists of an alternance of local search minimization and

random perturbation of the solution. The rationale is that doing a

small perturbation from a local minimum and starting again a

local search is more efficient than doing random restarts of local

searches. We combine this strategy with simulated annealing in

order to increase the chances of escaping from local minima. The

hill climbing is not exhaustive. It uses the estimated PMFs to insert

fragments into the solutions, as in the simulated annealing. One

iteration of hill climbing works as follows: first randomly select

with no redraw an insertion window in the solution; then try to

insert a fragment that decreases the energy and repeat until all

insertion windows have been selected. We iterate the main loop

until the desired number of iterations is reached. At each iteration,

the PMFs are estimated with the following formula :

Pi
t~k � Pi

t{1z(1{k) �Di
t

where t is the current iteration, Pi the probability of fragment i, Di

the observed frequency of fragment i and k[½0,1� a conservation

rate. In order to obtain the set of D, we sort the decoys by energy

and compute the observed frequency of fragments on the top 15%.

Even though 200 fragments are available for each fragment

window of the sequence, we initially pick fragments from the top

25 positions in the library for computational cost reasons. The

algorithm is then allowed to insert any fragment in the iterated hill

climbing random perturbation function. At each iteration, the

population of solutions is re-initialized from the sequence. Note

that the solutions used to estimate the distribution are not lost and

are also stored in the final pool of solutions. An equal fraction of

the final pool is generated at each iteration of the algorithm.

Details of the sample and minimize procedure are shown in algorithm

2. The number of simulated annealing moves doubles in the

extensive version. We allow more moves to increase chances of

escaping local minima once the Rosetta energy function reaches its

final coarse-grained form.

The estimation of PMFs requires to be able to trace back the

angles describing the position of each residue and to know from

which fragment it was taken. To do so, we assign an identifier to

each fragment. Each identifier is unique relative to a residue

number: for a given residue, every possible fragment has a unique

identifier. We define a fragment key as :

key~i �Nbfragmentszrankfragment

where i is the position of the residue in the insertion window,

Nbfragments the number of fragments per window in the library and

rankfragment[½0::Nbfragments{1� the rank of the fragment in the

library. The reverse operation is:

rankfragment~key mod Nbfragments

i~
key{rankfragment

Nbfragments

The size of the insertion windows must be constant in order for

these keys to be unique. In our implementation, we estimate the

probabilities on the fragments of size 9. The main reason for this

choice is that using uniform distributions with fragments of size 3
provides another way to maintain diversity in the solution set.

The parameters used in our experiments are reported in table 3.

Fragments used during the experiments were generated through

the Robetta Server [26]. We generated the fragments with the web

interface option for excluding homologs turned on. We then

Table 3. EdaFold parameter settings during experiments.

General settings

Size of Population (per iteration) 5.104

Number of Iterations 4

Probability mass function settings

% of Population 15

Conservation Rate 0.6

Simulated annealing settings

Number of Steps (extensive) 4.103

Initial Temperature 3.5

Final Temperature 0.5

Iterated hill climbing settings

Number of Iterations 3

doi:10.1371/journal.pone.0038799.t003
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checked with a local software that no proteins with more than 30%
sequence identity with the target were used to generate the

fragment libraries. 200 fragments of length 9 and 200 fragments of

size 3 were generated for each insertion window. The same set of

fragments was used for EdaFold and Rosetta predictions.
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