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    Introduction 
 Cdc42 regulates the generation of cell polarity from yeast to 

man and in a wide range of biological contexts, and an impor-

tant breakthrough in understanding the biochemical mecha-

nisms involved came with the identifi cation of the downstream 

target Par6 ( Etienne-Manneville, 2004 ;  Welchman et al., 2007 ). 

Par6 was originally identifi ed in  Caenorhabditis elegans  as be-

ing involved in asymmetric positioning of the mitotic spindle 

during zygotic cell division, and subsequent work showed that 

Cdc42 is also required ( Hung and Kemphues, 1999 ;  Gotta et al., 

2001 ). Other work in  C. elegans ,  Drosophila melanogaster , and 

mammals has revealed a critical role for Cdc42 and Par6 in gen-

erating polarity during directed cell migration and morphogen-

esis ( Etienne-Manneville and Hall, 2001 ;  Hutterer et al., 2004 ; 

 Na and Zernicka-Goetz, 2006 ;  Welchman et al., 2007 ;  Wu et al., 

2007 ). The exact contribution of Cdc42 in these contexts is less 

clear. Work on directed cell migration has shown that Cdc42 

acts through Par6 to control the orientation of microtubules, but 

Cdc42 also controls nuclear positioning and polarized actin 

polymerization through two other targets, MRCK (myotonic dys-

trophy kinase-related Cdc42-binding kinase) and p65PAK, re-

spectively ( Etienne-Manneville and Hall, 2001 ;  Cau and Hall, 

2005 ;  Gomes et al., 2005 ). Cdc42 is not required for random 

migration, leading to the suggestion that it is not required for 

the establishment of polarity as such but rather to orient polarity 

with respect to an external cue (directional sensing;  Allen et al., 

1998 ;  Srinivasan et al., 2003 ). A similar conclusion has emerged 

from experiments on Cdc42 during pheromone mating in yeast 

( Irazoqui et al., 2004 ). 

 Epithelial morphogenesis involves the establishment of an 

apical surface in an individual cell and the formation of cadherin-

based adherens junctions and claudin-based tight junctions be-

tween adjacent cells. Accompanying reorganization of the actin 

and microtubule cytoskeletons and polarized vesicle traffi ck-

ing reinforces these interactions, leading to a stable tissue of 

polarized cells. Expression of dominant-negative or constitu-

tively active versions of Cdc42 in the dog kidney epithelial 

cell line MDCK grown on a two-dimensional surface leads to 

defective tight junction formation (typically a delay) as well 

as mislocalized delivery of basolateral proteins ( Kroschewski 

et al., 1999 ;  Rojas et al., 2001 ;  Wells et al., 2006 ). Similar 

experiments performed with MDCK grown in three dimen-

sions to provide a more physiological growth context have 

concluded that Cdc42 is required to form an apical surface 

through regulated traffi cking of a vacuolar apical compartment 

T
he establishment of apical – basal polarity within a 

single cell and throughout a growing tissue is a key 

feature of epithelial morphogenesis. To examine the 

underlying mechanisms, the human intestinal epithelial cell 

line Caco-2 was grown in a three-dimensional matrix to 

generate a cystlike structure, where the apical surface 

of each epithelial cell faces a fl uid-fi lled central lumen. 

A discrete apical domain is established as early as the fi rst 

cell division and between the two daughter cells. During sub-

sequent cell divisions, the apical domain of each daughter 

cell is maintained at the center of the growing structure 

through a combination of mitotic spindle orientation and 

asymmetric abscission. Depletion of Cdc42 does not pre-

vent the establishment of apical – basal polarity in individ-

ual cells but rather disrupts spindle orientation, leading to 

inappropriate positioning of apical surfaces within the 

cyst. We conclude that Cdc42 regulates epithelial tissue 

morphogenesis by controlling spindle orientation during 

cell division.
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 Figure 1.    Caco-2 intestinal epithelial cells form polarized cysts in three dimensions.  Caco-2 cells plated as a single-cell suspension in three dimensions 
were fi xed and stained after 12 d. (A – C) Single confocal sections through the middle of cysts stained for DNA (blue) and actin (red; A); DNA (blue) and 
aPKC (red; B); and DNA (blue), E-cadherin (Ecad; green), and ZO-1 (red; C). Phase-contrast images (differential interference contrast [DIC]) are also shown. 
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(D) Caco-2 plated as a single-cell suspension in three dimensions were cultured for 7 d and treated with 0.1  μ g/ml CTX. Individual images shown from 
Video 2 (available at http://www.jcb.org/cgi/content/full/jcb.200807121/DC1) were taken at the indicated time points. (E) Lumen expansion in Caco-2 
cells cultured as in D were treated with 0.1  μ g/ml CTX, 100  μ M of the PKA agonist 6-Bnz, 100  μ M of the Epac agonist 8-Cpt, or 0.1  μ g/ml CTX + 10  μ M 
ouabain. Shown is the mean  ±  standard deviation for three independent experiments (50 cysts each). (F) Caco-2 was cultured for 10 d in three dimensions, 
fi xed, and stained for DNA (blue), Na + /K + -ATPase (green), or CFTR (red). A single confocal section through the middle of the cyst is shown. Bars: (A – C) 
25  μ m; (D and F) 10  μ m.   

 

( Vega-Salas et al., 1987 ;  Martin-Belmonte et al., 2007 ). In this 

study, we describe the analysis of Caco-2, a human intestinal epi-

thelial cell line, which, when grown in a three-dimensional 

 matrix, generates polarized cysts with a single central lumen. 

We show that Cdc42 is not required for the formation of an apical 

surface, but instead is required to position the apical surface with 

respect to the growing three-dimensional structure. Our results 

indicate that Cdc42 regulates apical surface positioning by con-

trolling spindle orientation during cell division. 

 Results and discussion 
 Caco-2 form fully polarized cysts in three-
dimensional cultures 
 Caco-2 cells have been used extensively as polarized epithelial 

monolayers grown on two-dimensional surfaces, although few 

studies have been performed in three dimensions ( Zhang et al., 

2003 ;  Guruswamy et al., 2008 ;  Ivanov et al., 2008 ). 12 d after 

suspending single cells in Matrigel, Caco-2 form cysts with en-

hanced actin accumulation at internal surfaces facing a central 

lumen ( Fig. 1 A ). Caco-2 cysts have distinct adherens junctions 

(visualized by epithelial cadherin [E-cadherin] staining) and tight 

junctions (visualized by ZO-1 staining;  Fig. 1 C ), and atypical PKC 

(aPKC), an apical membrane marker, localizes close to the tight 

junctions facing the luminal space ( Fig. 1 B ). A three-dimensional 

reconstruction of a mature cyst is shown in Video 1 (available at 

http://www.jcb.org/cgi/content/full/jcb.200807121/DC1). 

 cAMP stimulates lumen formation through 
polarized expansion 
 Although Caco-2 grown in three dimensions form cysts, the de-

velopment of a central lumen is relatively ineffi cient ( < 50%) 

in normal culture conditions after 12 d. However, stimulation of 

cAMP signaling with cholera toxin (CTX) induces dramatic 

and rapid lumen formation ( Fig. 1 D  and Video 2, available at 

http://www.jcb.org/cgi/content/full/jcb.200807121/DC1). 6 d 

after plating, CTX treatment results in a well-defi ned lumen in 

 > 90% of all Caco-2 structures in  < 12 h ( Fig. 1 E ). Time-lapse 

microscopy reveals that lumen formation occurs through a pro-

cess of internal expansion without cell proliferation or death 

(Video 3). cAMP can activate PKA and Epac, an exchange fac-

tor for the small GTPase Rap1 ( de Rooij et al., 1998 ). PKA is 

known to activate apical chloride channels such as the cystic fi -

brosis transmembrane receptor (CFTR), resulting in fl uid secretion 

( Riordan, 2008 ), whereas Rap regulates epithelial morphogene-

sis through unknown mechanisms ( Boettner and Van Aelst, 2007 ). 

To determine which pathway is involved, cAMP analogues that 

specifi cally activate PKA (6-Bnz) or Epac (8-Cpt) were used. 

Activation of PKA but not Epac induces lumen formation 

( Fig. 1 E ). Recent work on intestinal development in zebrafi sh 

concluded that lumen formation is induced through fl uid accu-

mulation driven by polarized ion transport ( Bagnat et al., 2007 ). 

To examine whether Caco-2 use a similar mechanism, three-

dimensional cultures were treated with CTX either alone or with 

ouabain, an inhibitor of the Na + /K + -ATPase pump. Ouabain com-

pletely inhibits lumen expansion ( Fig. 1 E ). Similar to what has 

previously been reported for Caco-2 cells grown in two dimen-

sions, the CFTR chloride channel and the Na + /K + -ATPase are 

localized apically and laterally, respectively, in three dimensions 

( Fig. 1 F ). These data indicate that lumen expansion occurs by 

ion transport – driven fl uid fl ow. Polarized secretion (fl uid or 

protein) to drive the separation of two opposing apical surfaces 

is emerging as an evolutionarily conserved mechanism for lu-

men formation in a wide range of epithelial tissues such as the 

 Drosophila  retina and trachea ( Husain et al., 2006 ;  Tsarouhas 

et al., 2007 ), the zebrafi sh gut ( Bagnat et al., 2007 ), and the zebra-

fi sh neural tube ( Lowery and Sive, 2005 ). 

 Cdc42 depletion inhibits Caco-2 
morphogenesis 
 To determine the role of Cdc42 in cyst development, Caco-2 

cells were transfected with nonspecifi c or Cdc42-specifi c siRNAs 

1 d before plating in Matrigel ( Fig. 2 B ). Treatment with CTX 

6 d later results in the swelling of a single central lumen in con-

trol structures, whereas 50% of Cdc42 siRNA – transfected struc-

tures appear abnormal ( Fig. 2 A  and Video 4, available at 

http://www.jcb.org/cgi/content/full/jcb.200807121/DC1). Immuno-

fl uorescence reveals that depletion of Cdc42 results in cysts 

containing multiple lumens ( Fig. 2, C – E ). Interestingly, the sur-

face of each lumen within the three-dimensional structure is 

positive for the apical marker aPKC ( Fig. 2 D ) and the tight 

junction protein ZO-1 ( Fig. 2 E ). These data suggest that Cdc42 

is not required for the formation of apical – basal polarity and 

tight junctions during Caco-2 morphogenesis but rather for 

the correct positioning of the apical surface with respect to the 

growing structure. 

 An apical surface is specifi ed at the fi rst 
cell division and is maintained at the 
center of the developing cyst by mitotic 
spindle positioning 
 To understand the mechanism by which Cdc42 depletion results 

in multiple lumens, the development of control Caco-2 cysts 

was examined. Surprisingly, an apical surface is clearly visible 

at the two-cell stage, as revealed by ZO-1 and aPKC localiza-

tion ( Fig. 3, A and B  [second row]). E-cadherin is basolateral 

and does not overlap with ZO-1 ( Fig. 3 A  and Video 5, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200807121/DC1) 

such that the membrane interface between two daughter cells 

is already demarcated into a lateral surface surrounding an 
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dimensions. 3 d later (4 d after transfection), structures were exam-

ined for orientation of mitotic spindles (calculated as described 

in  Fig. 4 A ). Depletion of Cdc42 has a dramatic effect on spindle 

orientation. In control cysts, the majority of spindles are ori-

ented perpendicular to the centroid of the cyst (mean angle = 

72.3  ±  3.9 ° ;  Fig. 4, B and C  [top]). However, after Cdc42 deple-

tion, spindle orientation is randomized (mean angle = 41.2  ±  5.2 °  

and 41.8  ±  5.7 °  for duplex 2 and duplex 4, respectively;  Fig. 4, 

B and C  [bottom]), with some spindles oriented so as to produce 

a daughter cell in the middle of the structure ( Fig. 4 D ). 

 If the apical surface is generated between daughter cells 

( Fig. 3 A ), the consequence of spindle misalignment will be the 

formation of apical patches at aberrant sites. To examine this, 

the localization of the apical marker aPKC was determined 

early in the development of Cdc42-depleted cysts.  Fig. 4 E  

(arrows) shows that some cells have multiple distinct apical 

patches on their surface. These results suggest that loss of Cdc42 

causes misoriented division, giving rise to an inappropriately 

placed apical membrane, which after expansion leads to mul-

tiple lumen. 

apical patch. Because aPKC is delocalized around the cell pe-

riphery in single cells ( Fig. 3 B , top), this suggests the apical 

patch is laid down during cell division, most likely cytokinesis. 

 As Caco-2 cells further proliferate, the apical region is 

maintained and localized exclusively at the center of the grow-

ing structure ( Fig. 3 B , bottom three rows). This suggests that as 

cells divide, the mitotic spindle is oriented to give rise to two 

daughter cells that maintain an epithelial monolayer in a spheri-

cal structure. As shown in  Fig. 3 C , this is indeed the case. This 

orientation of the mitotic spindle, to produce an apical – basal 

cleavage plane, has been seen in monolayer cultures ( Reinsch 

and Karsenti, 1994 ) and in vivo in the mouse intestine ( Fleming 

et al., 2007 ). It provides a simple mechanism for maintaining the 

integrity of apical membrane structures during cell division. 

 Cdc42 is required for mitotic 
spindle orientation 
 Based on this analysis, a consequence of Cdc42 depletion could 

be disruption of spindle orientation. To examine this, Caco-2 

cells were transfected with Cdc42 siRNA and grown in three 

 Figure 2.    Cdc42 depletion induces multiple lumens.  (A) Caco-2 was transfected with control or Cdc42 siRNA, plated in three dimensions, and treated 
with CTX at day 6 to induce luminal swelling. Phase images from cysts before (0 h) and after (12 h) treatment are shown. Note that about half of the 
Cdc42-depleted cysts lack a single central lumen. Bars, 50  μ m. (B) Western blot of Caco-2 transfected with control siRNA, Cdc42 siRNA SMARTpool, 
or two different individual duplexes. Cdc42 levels are signifi cantly reduced by 3 d and remain reduced for 7 d. (C) Caco-2 cultured as in A was fi xed 
and stained with rhodamine phalloidin. Cysts were examined for single lumen (blue) or multiple lumens (red). The mean  ±  standard deviation for three in-
dependent experiments (at least 50 cysts each) is shown. (D and E) Caco-2 cultured as in A was fi xed and stained for DNA (blue) and aPKC (green; D) or 
DNA (blue), E-cadherin (Ecad; green), and ZO-1 (red; E). Single confocal sections through the middle of the cysts are shown. DIC, differential interference 
contrast. Bars, 25  μ m.   
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 Asymmetric abscission ensures correct 
positioning of apical surfaces at the center 
of the cyst 
 The analysis of MDCK in two-dimensional and mouse intesti-

nal epithelial cells in vivo has revealed that invagination of the 

cleavage furrow is asymmetric, proceeding basal to apical such 

that abscission occurs at the most apical point between two 

daughter cells ( Reinsch and Karsenti, 1994 ;  Fleming et al., 

2007 ). This, in combination with mitotic spindle orientation, 

would explain the persistence of apical surfaces at the center of 

growing Caco-2 structures ( Fig. 3 B ). To examine the abscis-

sion site in Caco-2 cells, the cytokinesis midbody was visual-

ized with a tubulin antibody. As seen in  Fig. 5 A  (top), at the end 

of the fi rst cell division, the apical marker aPKC is associated 

with the midbody at the center of the interface between the two 

emerging daughter cells. This strongly supports the idea that the 

apical surface is laid down during cytokinesis, although in the 

case of the fi rst cell division, abscission appears to be symmet-

ric. In multicellular structures ( Fig. 5, A  [middle] and  B ), 91% 

of midbodies are located in the center of the developing cyst, 

suggesting that after the fi rst cell division, all subsequent 

 abscissions occur asymmetrically and close to the existing 

apical membrane (i.e., in the center of the growing structure). 

In Cdc42-depleted Caco-2,  < 40% of midbodies are located cen-

trally, refl ecting the numerous noncentrally located apical sur-

faces ( Fig. 5, A  [bottom] and  B ). We conclude that the loss of 

Cdc42 results in spindle misorientation, leading to inappropri-

ately placed abscission sites. Because the abscission site estab-

lishes the apical surface ( Fig. 5 A , midbody position), loss of 

Cdc42 results in the formation of multiple lumens. 

 Three-dimensional culture models recapitulate many of 

the features of in vivo epithelial architecture. Two cell types have 

been used extensively in this context: the dog kidney cell line 

MDCK and the human mammary epithelial cell line MCF10A. 

Both generate cystlike structures, but MCF10A achieve this 

through clearing internal cells by apoptosis and autophagy, whereas 

MDCK use a combination of exocytosis of intracellular vacu-

oles (the vacuolar apical compartment) and apoptosis of interior 

cells ( Martin-Belmonte et al., 2007 ). In this study, we show that 

Caco-2 cysts form by polarized fl uid fi lling in a manner similar 

to gut and neural tube development in zebrafi sh ( Bagnat et al., 

2007 ). We believe that the similarities between Caco-2 cyst for-

mation in vitro and intestinal epithelia in vivo make this a rele-

vant system for studying morphogenesis. 

 A striking observation is that Caco-2 cells display a dis-

tinct apical membrane patch as early as the two-cell stage. This 

appears to be linked to cytokinesis because the apical marker 

aPKC associates with the midbody before abscission occurs. 

 Figure 3.    The apical surface is established at the fi rst cell division and 
maintained at the center of the growing structure.  Cells were plated as a 
single-cell suspension in three dimensions, fi xed, stained, and analyzed 
by confocal microscopy. (A) A two-cell structure stained for DNA (blue), 
E-cadherin (Ecad; green), and ZO-1 (red). A three-dimensional reconstruc-
tion of the structure is shown in Video 5 (available at http://www.jcb.org/
cgi/content/full/jcb.200807121/DC1). Note that apical and basolateral 
membrane domains (defi ned by ZO-1 and E-cadherin, respectively) are 
segregated and readily visible. (B) Caco-2 structures at different stages of 

development were stained for DNA (blue), aPKC (green), and fi lamentous 
actin (F-actin; red). Note that single cells (top) are unpolarized in three di-
mensions, whereas apical polarity is readily observed in the two-cell struc-
ture (second row). (C) Caco-2 structures at different stages of development 
stained for DNA (blue), tubulin (green), and fi lamentous actin (red). Note 
that the mitotic spindle is oriented to produce daughter cells that preserve 
the spherical monolayered structure of the cyst. (A – C) Single confocal sec-
tions through the middle of each structure are shown. Bars, 10  μ m.   
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 Figure 4.    Cdc42 depletion disrupts mitotic spindle orientation.  (A) Diagram depicting spindle angle measurement. The centroid of the cyst (dark blue 
circle) and the center of the spindle axis (pink circles) of a metaphase cell were drawn using ImageJ. The angle (red) between the spindle axis (black lines) 
and the line connecting the centroid of the cyst to the center of the spindle (dashed lines) was determined. To analyze spindle poles in different z sections, 
three z sections were taken so as to include both spindle poles and were merged as shown. Three schematic spindles are shown. The right and middle 
spindle examples represent correctly oriented spindles whose poles are positioned in one section (z2; middle spindle) or in different sections (z1 and z3; 
right spindle). The left spindle represents a misoriented spindle whose poles are in different z sections. Spindle microtubules, green; centrosomes, yellow; 
DNA, light blue. (B) Scatter diagram of metaphase spindle angles in cysts that were transfected with control or two Cdc42 siRNA duplexes from three 
independent experiments. Pink circles indicate mean values, green circles indicate individual data points, and error bars represent the SEM of the total 
number of spindles analyzed (N). (C) Caco-2 was transfected with control or Cdc42 siRNA and was fi xed and stained for DNA (blue), tubulin (green), 
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and fi lamentous actin (F-actin; red). Single confocal sections through the center of the cysts are shown. Three z sections are shown for the Cdc42 siRNA 
cyst to reveal both poles of the misoriented spindle. (D and E) Caco-2 transfected with control or Cdc42 siRNA was fi xed and stained for DNA (blue) 
and aPKC (green). (D) Cdc42 siRNA structures contain cells in the middle, with apical domains present between inner and outer cells. (E) Cdc42 siRNA 
structures possess apical domains that are not in the center and single cells with more than one apical domain. Arrows indicate cells with multiple distinct 
apical patches on their surface. Bars, 10  μ m.   

 

Apical surfaces are maintained at the center of the growing 

Caco-2 structure during subsequent cell divisions through a 

combination of (a) orientation of the mitotic spindle to generate 

radial cleavage and (b) asymmetric positioning of the midbody 

to generate apical abscission (Fig. S1 A, available at http://www

.jcb.org/cgi/content/full/jcb.200807121/DC1). Oriented cell di-

vision coupled to apical abscission provides a mechanism for 

maintaining the structural integrity of an epithelial barrier in 

tissues undergoing continuous proliferation such as the intestine 

( Reinsch and Karsenti, 1994 ;  Fleming et al., 2007 ). 

 Cdc42 depletion in MDCK cells leads to an accumulation 

of intracellular vesicles containing apical proteins, resulting in 

intracellular lumens, as well as cells in the middle of the cyst 

that are eventually cleared by apoptosis, resulting in intercellu-

lar lumens ( Martin-Belmonte et al., 2007 ). We fi nd no evidence 

for cell death after depleting Cdc42 in Caco-2; instead, multiple 

intercellular lumens are formed, each of which appears to be 

correctly polarized as judged by aPKC and tight junction local-

ization. Because these ectopic lumens expand through polarized 

fl uid secretion, this provides further evidence for appropriate 

apical – basal polarity. Further analysis reveals that Cdc42 deple-

tion causes spindle misorientation, leading to disruption of cleav-

age furrow orientation and mislocalization of the midbody during 

cytokinesis. Because the apical surface is established at the site 

of abscission, Cdc42 depletion results in noncentrally located 

apical surfaces to generate ectopic lumens (Fig. S1 B). Cdc42 

has been reported to control spindle orientation in the early 

 C. elegans  embryo and in mouse oocytes, and this is linked to 

its association with Par6 ( Gotta et al., 2001 ;  Na and Zernicka-

Goetz, 2006 ), but other potential Cdc42 targets have also been 

linked to spindle orientation, including LIM kinase and phos-

phatidylinositol 3-kinase ( Toyoshima et al., 2007 ;  Kaji et al., 

2008 ). Finally, it is interesting to note that the loss of asymmet-

ric abscission (Fig. S1 C) could in itself lead to an inappropri-

ately positioned apical surface. The mechanisms controlling apical 

midbody positioning are not well understood. Recent work on 

zygotic cell division in  C. elegans  has implicated septins and 

anillin ( Maddox et al., 2007 ), and interestingly, the former has 

been linked to Cdc42 through the Borg family, and the latter is 

a target of Rho ( Piekny and Glotzer, 2008 ). We are currently us-

ing live cell imaging to characterize in more detail the specifi c 

roles of Cd42 in this morphogenetic process. 

 Figure 5.    The midbody positions the apical surface during cyst development.  (A) Caco-2 transfected with control or Cdc42 siRNA was fi xed and stained 
for DNA (blue), tubulin (green), and aPKC (red). (top) A control cyst at the two-cell stage (note that abscission appears to have occurred symmetrically). 
(middle) A larger control cyst, with the midbody in the center of the developing structure (apical region of dividing cell) refl ecting asymmetric abscission. 
(bottom) Cdc42 siRNA structure with one midbody positioned normally at the center and another midbody (located in a different z section) abnormally 
positioned. (B) Quantitation of midbodies at the center of the cyst from three independent experiments. The total number of midbodies is indicated (N). 
A midbody is regarded as being in the center if it is located at a distance from the centroid that is less than one third the radius of the structure.   
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fected using Dharmafect 1 (Thermo Fisher Scientifi c) according to the man-
ufacturer ’ s specifi cations. Under these conditions, 70 – 90% of transfection 
effi ciency was achieved as judged by siGloGreen control (Thermo Fisher 
Scientifi c). To analyze the knockdown effi ciency, cells were replated onto 
6-cm plates 24 h after transfection and harvested for Western blotting on 
the day indicated. For three-dimensional cultures, cells were plated in 
matrix 24 h after transfection and analyzed as indicated. 

 Western blotting 
 Cells were washed with cold PBS and lysed in radio immunoprecipitation 
assay buffer (50 mM Tris-HCl, pH 8, 150 mM NaCl, 1% NP-40, 0.5% so-
dium deoxycholate, and 0.1% SDS). Cell debris was removed by centrifu-
gation at 14,000 rpm for 10 min at 4 ° C. SDS sample buffer was added to 
equal amounts of lysate, resolved by SDS-PAGE, blotted onto nitrocellulose 
membranes, and analyzed with the antibodies indicated in the text. 

 Online supplemental material 
 Fig. S1 schematically depicts Caco-2 three-dimensional morphogenesis 
and the effects of Cdc42 depletion. Video 1 shows a three-dimensional re-
construction of a Caco-2 cyst. Video 2 shows a Caco-2 cyst treated with 
CTX. Video 3 is similar to Video 2, except it shows prolonged treatment 
with CTX at a lower magnifi cation. Video 4 shows siRNA Cdc42 – trans-
fected Caco-2 cysts treated with CTX. Video 5 shows a three-dimensional re-
construction of a two-cell stage Caco-2 structure stained for DNA, E-cadherin, 
and ZO-1. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200807121/DC1. 
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 Materials and methods 
 Reagents 
 Cell culture medium was obtained from Invitrogen or an in-house facility. 
Primary antibodies used in this study were Cdc42 (mouse monoclonal clone 
44; BD),  � -actin (clone AC-74; Sigma-Aldrich), Flag (clone M2; Sigma-
Aldrich),  � -tubulin (clone DM1A; Sigma-Aldrich), rat anti – E-cadherin (clone 
ECCD-2; Invitrogen), rabbit polyclonal PKC �  (C-20; Santa Cruz Biotechnol-
ogy, Inc.), ZO-1 (Invitrogen), and CFTR (NBD-R; provided by A.P. Naren, 
University of Tennessee, Knoxville, TN). The  � 5 monoclonal antibody to 
Na + /K + -ATPase developed by D.M. Fambrough was obtained from the De-
velopmental Studies Hybridoma Bank and maintained by the University of 
Iowa. Alexa Fluor 488 and 568 secondary antibodies, rhodamine-conjugated 
phalloidin, and ProLong gold antifade with DAPI were obtained from Invit-
rogen. HRP-conjugated secondary antibodies were obtained from Dako, 
and DRAQ5 and 8-Cpt – 2 � - O -Me-cAMP sodium salt were obtained from 
Axxora LLC.  N (6)-benzoyl-cAMP sodium salt was obtained from EMD, and 
other chemicals were obtained from Sigma-Aldrich. 

 Cell culture 
 Caco-2 cells were cultured in Dulbecco ’ s modifi ed Eagle ’ s medium supple-
mented with 10% fetal calf serum and penicillin – streptomycin (100 IU/ml 
and 100 mg/ml, respectively) at 37 ° C in 5% CO 2 . To produce cysts, 
Caco-2 cells were plated either on top of matrix (for time lapse) or embed-
ded in matrix (for immunofl uorescence). For on-top cultures, cells were tryp-
sinized and resuspended (10 4  cells/ml) in media plus 2% Matrigel (BD). 
400  μ l of suspension was plated in each well of an 8-well chamber slide 
(BD) precoated with 30  μ l of Matrigel. For embedded cultures, cells were 
trypsinized and mixed with Hepes (fi nal concentration of 0.02 M), colla-
gen I (fi nal concentration of 1 mg/ml; Trevigen), and Matrigel (fi nal con-
centration of 40%) to 6  ×  10 4  cells/ml. Approximately 100  μ l was plated 
in each well of an 8-well chamber slide, allowed to solidify for 30 min, and 
overlayed with 400  μ l of media. 

 Microscopy 
 Immunofl uorescence of embedded Caco-2 cysts was performed as de-
scribed previously for MCF10A cysts ( Debnath et al., 2003 ) with the fol-
lowing modifi cations. Before blocking, Caco-2 chambers were rinsed with 
PBS and treated with 100  μ l of 50 U/ml collagenase-1 (Sigma-Aldrich) in 
PBS for 15 min at room temperature. After incubation with fl uorescence-
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of DRAQ5 and mounted in ProLong gold antifade. Confocal microscopy 
was performed at room temperature on a microscope (TCS SP2 AOBS; 
Leica) using a plan Apo 20 ×  0.7 NA dry differential interference contrast 
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 Measurement of spindle angle 
 To measure spindle angles (see  Fig. 4 A  for schematic), confocal images of 
metaphase cells in the middle region of the cysts were collected, and the 
centroid of the cyst ( Fig. 4 A , dark blue circle) and center of the spindle 
axis ( Fig. 4 A , pink circles) were drawn using ImageJ (National Institutes of 
Health). The angle ( Fig. 4 A , red) between the spindle axis ( Fig. 4 A , black 
lines) and the line connecting the centroid of the cyst and the center of the 
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were not in one z section, three z sections including each spindle pole 
were taken and merged to draw a line of spindle axis. 
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 To deplete Cdc42, a SMARTpool (a mixture of four siRNA duplexes) and 
individual siRNA duplexes were purchased from Thermo Fisher Scientifi c. 
For siRNA transfections, 0.5  ×  10 5  Caco-2 cells were plated into a well of 
a 6-well plate, and the next day 100 pmol of siRNA duplex was trans-
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