
MetaLab-MAG: A Metaproteomic Data Analysis Platform for
Genome-Level Characterization of Microbiomes from the
Metagenome-Assembled Genomes Database
Kai Cheng, Zhibin Ning, Leyuan Li, Xu Zhang, Joeselle M. Serrana, Janice Mayne, and Daniel Figeys*

Cite This: J. Proteome Res. 2023, 22, 387−398 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The studies of microbial communities have drawn increased
attention in various research fields such as agriculture, environment, and human
health. Recently, metaproteomics has become a powerful tool to interpret the
roles of the community members by investigating the expressed proteins of the
microbes. However, analyzing the metaproteomic data sets at genome resolution
is still challenging because of the lack of efficient bioinformatics tools. Here we
develop MetaLab-MAG, a specially designed tool for the characterization of
microbiomes from metagenome-assembled genomes databases. MetaLab-MAG
was evaluated by analyzing various human gut microbiota data sets and performed
comparably or better than searching the gene catalog protein database directly.
MetaLab-MAG can quantify the genome-level microbiota compositions and
supports both label-free and isobaric labeling-based quantification strategies.
MetaLab-MAG removes the obstacles of metaproteomic data analysis and
provides the researchers with in-depth and comprehensive information from the
microbiomes.

KEYWORDS: metaproteomics, human gut microbiome, isobaric labeling, label free, metagenome-assembled genomes, data analysis,
software

■ INTRODUCTION
The microbiome is the community of microorganisms
inhabiting various environments. Research on the microbiome
developed rapidly in recent years and in particular, the role of the
microbiome in human health, e.g., the human gutmicrobiota has
been associated with type 2 diabetes,1 inflammatory bowel
diseases,2,3 cardiovascular disease,4 and other diseases. Cur-
rently, multiomics approaches including metagenomics, meta-
transcriptomics, metaproteomics, and metabolomics provide
comprehensive information on microbiomes.5 Constructing
metagenome-assembled genomes (MAGs) from metagenome
data reveals the composition and predicted functional potential
of the complex community.6,7 In contrast, mass spectrometry
(MS)-based metaproteomic strategies focus on the character-
ization of the expressed proteins from the microbiome.
Metaproteomics provides dynamic insights into the functional,
enzymatic, and pathway changes occurring at the individual
microbes and at the systems microbiome level.3,8,9

The experimental workflows of metaproteomics have
similarities to the conventional approaches in proteomics
studies. Briefly, proteins are extracted from the samples and
digested into peptides, then subjected to high-performance
liquid chromatography-electrospray ionization tandem mass

spectrometry (MS/MS) analysis. The generated MS data sets
are searched against a theoretical protein sequence database to
determine the peptides and proteins. Taxonomic analysis and
functional annotations are performed based on the identified
peptides and proteins using specialized metaproteomics
postanalysis tools.10 In general, proteomics studies focus on
single species. In contrast, metaproteomic studies have to deal
with complex microbiota often with hundreds of different
species, each having up to a few different strains. Moreover, this
is further complicated by significant differences in microbiome
compositions between individuals. This complexity brings
significant obstacles to the data analysis of metaproteomics
studies. In particular, the microbiota protein database is derived
from a gene catalog consisting of nonredundant genes, which
could come in two forms: (1) metagenomics/metatranscrip-
tomic sequencing of the sample of interest, which provides a
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sample-specific database, and (2) integrated public gene
catalogs. The quality of individualized protein sequence
databases derived from sample-specific metagenomics/meta-
transcriptomic sequencing affects the identification of peptides.
If a gene is missed in the gene catalog database the
corresponding protein cannot be detected. It can be challenging
to obtain a high-quality gene catalog database for researchers
who lack the resources and/or experience for deep sequencing.
An alternative approach is the use of a public microbiome gene
catalog database. These databases are always comprehensive but
are very large. For example, a commonly used human gut
microbiome database, the Integrated Gene Catalog (IGC)
contains 9,879,896 sequences;11 by contrast, the Homo sapiens
database in Uniprot contains 20,361 sequences. A large database
produces enormous search space, which will cause an extremely
long data processing time and a low identification rate. We have
developed the MetaLab12,13 software to solve the problem of
identifying peptides from huge gene catalog databases such as
the IGC. An iterative searching strategy14 is implemented in
MetaLab, in which a first search is performed against the gene
catalog database to generate a refined database. Then a second
search against the refined database is performed for peptide
identification. Before the first search, a spectra cluster step is
performed to select the delegate spectra which will be used for
the search, which can greatly decrease the processing time. We
also perform an open search strategy in the second search to
improve peptide identifications. Although specially designed
metaproteomics data analysis software is available,12−16 many
studies still use conventional proteomic tools. A recent
metaproteomic benchmark study utilized four bioinformatic
workflows for data analysis and three of them were proteomic
tools.17 Their result showed that the proteomic toolset
SearchGUI18/PeptideShaker19 performed best, but the highest
spectra identification rate was only 34.79% for fecal samples.
Another challenge of metaproteomics data analysis is the

taxonomic assignment, which is usually performed based on the
identified peptides/proteins using specialized metaproteomics
postanalysis tools. The taxonomic information is retrieved from
a peptide-to-taxon or protein-to-taxon database, which is
constructed from a repository of annotated proteins such as

NCBI and Uniprot. A drawback of this method is that it is a
generic solution but not specific to the target microbiome. For
example, a Uniprot-based peptide-to-taxon database will contain
information from all the species. A peptide will likely bematched
to multiple proteins from various species. For one peptide
multiple taxonomic lineages will be found in the database. In this
case, a commonly used algorithm named the lowest common
ancestor algorithm (LCA) will be used, which results in a
situation where the taxonomic information is usually obtained at
a higher phylogenic level.
To address these challenges, we developed a complete

metaproteomics data processing platform, MetaLab-MAG
(metagenome-assembled genomes), which uses the publicly
available MAGs as the resource for peptide/protein identi-
fication and genome-level taxonomic/functional annotation.
Currently, four MAGs databases in MGnify20 including Cow
Rumen v1.0,21 Unified Human Gastrointestinal Genome
(UHGG) v2.0,22 Human Oral v1.0, and Marine v1.0 were
supported (https://www.ebi.ac.uk/metagenomics/browse/
genomes). In this paper, we evaluated the performance of
MetaLab-MAG by analyzing human gut microbiota data sets
with the UHGG 2.0 database consisting of 4,744 species-level
genomes. In these cases, the taxonomic identification was
restricted to the MAGs of the human gut microbiome, which is
more precise than acquired from NCBI or Uniprot whole
databases. To accelerate and improve the data processing, a two-
step database search strategy was utilized. The first search of the
high-abundant protein (HAP) database is used to generate the
sample-specificMAGs database,23 and the second search against
the refined MAGs databases is used to identify peptides and
proteins. The results from multiple data sets demonstrated that
the MS/MS identification rates were close to or even exceeded
the values obtained by searching the customized or public gene
catalog database from the same samples. Analyzing the same
fecal data set of the above benchmark study, the average
identification rate reached 52%. The reliability of the results had
been confirmed by comparing the data from searching the
reference or gene catalog database. MetaLab-MAG was used for
qualitative and quantitative analysis and supported both label-
free and isobaric labeling-based quantification. MetaLab-MAG

Figure 1.Workflow ofMetaLab-MAG. (1) raw files were searched against the HAP database consisting of 331,054 proteins; (2) from the search result
the possible components of the samples were determined, and proteins from the corresponding genomes were added to compiled to create a refined
database; (3) the raws files were searched against the refined database; (4) data tables in peptide, protein, taxa, genome, and function levels were
obtained.
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is free for academic use and can be downloaded from https://
imetalab.ca/.

■ METHODS

The Workflow of MetaLab-MAG
The workflow ofMetaLab-MAG is shown in Figure 1. In the first
step, each raw file from microbiota analysis was searched against
a HAP database, which was composed of all the ribosomal and
elongation factor proteins from the MAGs. MetaLab-MAG
utilized pFind24 as the database search engine for the two-step
search. A target-decoy strategy was adopted in both the two
search steps for the assessment of the false discovery rate (FDR).
Then, a peptide-spectrum-match (PSM) list with FDR < 1%was
generated for each raw file. A PSM may have multiple
possibilities for which genome it came from, so the Occam’s
razor principle was utilized here to keep aminimized genome list
that can explain the sources of all the PSMs. The generated
genome list was used to compose the sample-specific MAGs
database by adding all the proteins from the selected genomes to
the refined database. The next step was searching each raw file
against the sample-specific database. The open search strategy
has been demonstrated to be a valuable method not only for
identifying modified peptides but also for improving the overall
identification rate.24−26 We have utilized the open search
method inmetaproteomics data analysis and the identification at
both the peptide and taxa levels was significantly improved.13

Therefore, the open search strategy was used in this step. The
target-decoy strategy was used to evaluate the FDR, similarly.
After the peptide and proteins were identified, the results from
each raw file were combined. Aminimized protein group list that
can explain the attribution of all peptides was kept. In the
peptide list, for each peptide multiple source proteins were
listed. Furthermore, the protein with the highest pFind score was
selected as the razor protein for this peptide. In the
quantification part, the intensity of the peptide only contributed
to the razor protein and the corresponding genome. Both label-
free and isobaric labeling strategies were supported in this step.
Taxonomic annotations based on each genome and functional
annotations based on each protein were available for all of the
four MGnify MAGs databases. This information could be
retrieved after the quantification of peptides, proteins, and
genomes was finished. Then according to the quantitative
information, data tables about the peptides, proteins, genomes,
taxa, and functions were exported. Visualized reports of the
result were also available in the form of web pages. If the
metadata was provided, multivariate statistical analyses such as a
principal component analysis score plot and a hierarchical
clustering heatmap were generated as well in the report.
The Construction of the MAGs Database
Currently, four MAGs databases were available in MGnify,
including Cow Rumen v1.0, Unified Human Gastrointestinal
Genome (UHGG) v2.0, Human Oral v1.0, and Marine v1.0.
Users can select and download what they need in MetaLab-
MAG. These public MAGs databases are constructed based on
large-scale metagenomic sequencing data from the target
microbiomes. The enormous amount of sequencing data is
clustered into genomes representing the composition of the
microbiomes. In other words, all the genes/proteins in the
MAGs database belong to specific genomes. Proteins identified
from the MAGs could be readily linked to the corresponding
genomes. Let us take the UHGG for example. This database
included 4,744 genomes derived from the human gut micro-

biome. For each genome, the protein sequence database, and
taxonomic and functional information were available. Based on
the UHGG database, we constructed an integrated built-in
database in MetaLab-MAG for peptide/protein identification,
taxonomy analysis, and functional annotation. This database
contained four components: (1) the original protein sequence
databases of the 4,744 genomes; (2) the functional annotation
information generated by eggNOG and taxonomy information
based on Genome Taxonomy Database r202 (GTDB, https://
gtdb.ecogenomic.org/); (3) a HAP database including 331,054
sequences, which was created by extracting all the ribosomal and
elongation factor proteins from the original database; (4) a host
protein database, which was a Homo sapiens protein database
downloaded from Uniprot (https://www.uniprot.org/). The
taxonomy information provided by the UHGG project was
based on GTDB. We added the corresponding NCBI taxon
information for the genomes to the taxonomic database. The
taxonomy and function database was packed within the
MetaLab-MAG software and the other databases can be
downloaded from the MetaLab-MAG software interface, no
manual configuration step was required.
Sample Description and LC-MS/MS Acquisition

The data set of the bacterial strain samples was obtained from a
recent work of our lab, in which we analyzed proteomic profiles
of these strains cultured with or without added sugars (glucose,
sucrose, and kestose) in a glucose-free Yeast Casitone Fatty
Acids (YCFA) broth. Samples were analyzed on an Orbitrap
Exploris 480 mass spectrometer. A 60 min gradient of 5 to 35%
(v/v) buffer B at a 300 μL/min flow rate was used to separate the
peptides on a tip column (75 μm inner diameter ×10 cm)
packed with reverse phase beads (3 μm/120 Å ReproSil-Pur
C18 resin, Dr. Maisch GmbH, Ammerbuch, Germany). Buffer A
was 0.1% formic acid (v/v), and buffer B was 0.1% formic acid
with 80% acetonitrile (v/v). The MS full scan ranging from 350
to 1200m/z was recorded in profile mode with the resolution of
60,000. Data-dependent MS/MS scan was performed with the
15 most intense ions with the resolution of 15,000. Dynamic
exclusion was enabled for duration of 30 s with a repeat count of
one. The data set of the four intestinal aspirate samples obtained
by high-pH reversed-phase fractionation and Orbitrap Exploris
480 mass spectrometer (Thermo Fisher Scientific, USA) was
obtained from our previous work, with a detailed experimental
procedure described before.27 The data set of the TMT labeling
samples was obtained from our previous work with a detailed
experimental precedure described before.28

Metagenomics Gene Catalog from Real Human Gut
Microbiota Samples

Illumina paired-end reads from the microbiomes of four human
gut aspirate samples, i.e., HM454, HM455, HM466, and
HM503, obtained from another study14 were used to construct
a gene catalog. The raw sequence data are accessible in NCBI
under the Sequence Read Archive (SRA) with the accession
number SRP068619. Raw reads were filtered to remove the
adapter and low-quality sequences with the trimming and
quality filtering step of the MOCAT pipeline.29 Reads with
human origin were also filtered out using the SOAP230 package
by mapping the sequences against the human genome database
(hg19). The high-quality reads were assembled into contigs
using MEGAHIT v1.2.931 with default options. The sequence
data of each sample were assembled individually. The assembled
contigs from the four samples were then used for gene prediction
with the prodigal v2.6.332 software. The contigs were translated

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00554
J. Proteome Res. 2023, 22, 387−398

389

https://imetalab.ca/
https://imetalab.ca/
https://gtdb.ecogenomic.org/
https://gtdb.ecogenomic.org/
https://www.uniprot.org/
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00554?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 2. Performance of MetaLab-MAG in the analysis of the single species data sets. (a) The search times of the three methods including searching
against the UniprotDB, MetaLab-MAG workflow, and the conventional iterative searching strategy. (b) The MS/MS identification rates of the three
methods. (c) The proportions of the PSMs can be found in the UniprotDB. (d) The compositions and relative abundances of taxa in the six single
species data sets. (e) TheMS/MS identification rates of the human-E. coli samples. The axis was the different amounts of E. coli spiked into the samples:
A (2%), B (3%), C (4%), D (5%), and E (6%). (f) The proportions of the PSMs from bacteria can be found in the E. coli UniprotDB. (g) the relative
abundance of E. coli determined in the samples.
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into amino acid sequences using the anonymous gene prediction
mode (prodigal -p meta) and default parameters. The protein-
coding gene sequences of the four samples were compiled into
FASTA files and used as the metagenome-inferred protein
database for benchmarking the MetaLab-MAG pipeline. For the
taxonomic annotation, the amino acid sequences of the proteins
in the catalog were searched against the UHGG database with
DIAMOND v2.0.1533 using the blastp command with default
settings. To estimate the abundance of each predicted protein
sequence, the high-quality reads were first aligned to the
assembled contigs with minimap2 v2.24-r1122,34 and the
generated BAM files were used to create the read count matrix
of the protein sequences using featureCounts v2.0.1.35

Metaproteomics Data Analysis
All the MetaLab-MAG workflows in this paper utilized uniform
parameter settings. The protein databases were downloaded
from http://ftp.ebi.ac.uk/pub/databases/metagenomics/
mgnify_genomes/human-gut/v2.0/. The host database was a
reviewed human protein database from UniProtKB containing
20,387 sequences. In the pFind open search workflow,
modifications were also accepted. Therefore, cysteine Carbami-
domethylation was set as the fixed modification, methionine
oxidation, and protein N-term acetylation were set as the
variable modification. The enzyme was set as trypsin. Fully
specific digestion mode was used and up to two miss cleavages
were allowed. The mass tolerances of precursor and fragment
ions were 10 and 20 ppm, respectively. The false discovery rate
was less than 1% at the PSM level. When using the iterative
searching strategy in MetaLab 2.3.0, the IGC human gut
microbiome database was used.10 Other database searches in
this paper were all performed by pFind directly. The databases
used for the searches were described in the corresponding
sections. Other parameters were all consistent with these used in
the MetaLab-MAG workflow.

■ RESULTS

Sensitivity and Accuracy of MetaLab-MAG in Identifying
Single Bacterial Species
We first evaluated the performance of MetaLab-MAG by
analyzing samples with known taxonomic compositions. Here
we used a data set consisting of six sole species samples
(Supplementary Table 1) to assess the sample-specific database
generation, and the qualitative/quantitative identification of
peptides, proteins, and taxa. As a comparison, we also analyzed
this data set by searching against the Uniprot single bacteria
database and the IGC database using the conventional iterative
searching strategy in MetaLab’s previous version (2.3.0).
We found that the processing time was significantly decreased

compared with searching the IGC database in MetaLab 2.3.0
(Figure 2a). The time cost for peptide and protein identification
was only about 15% of the conventional iterative searching
method. The reason was although the total size of the MAGs
database was big, there was no need to search the whole MAGs
database directly. The first search was against a HAP database
and the second search was against the selected genomes. A
target-decoy search could be performed in both of the two steps
which will benefit the FDR control. Then we investigated if the
correct species could be selected from the MAGs database. The
average MS/MS identification rate was 6.7% at FDR < 1% by
searching the HAP database. We matched the identified PSMs
to the corresponding Uniprot single species database and found
that 94% of PSMs matched. According to these identifications,

the identified genomes were selected to generate the sample-
specific database. On average, 45 genomes and 117,375 proteins
were contained in one database. This result showed that the
correct species were identified and their proteins were selected
successfully to form a proper-sized sample-specific database.
The peptide/protein identifications were obtained by

searching the sample-specific MAG database, yielding MS/MS
identification rates that were similar to those by searching
against the Uniprot single species database (Figure 2b) and
higher than those obtained from the conventional iterative
search method against the IGC database. Searching the Uniprot
single-species database was the ideal method for peptide
identification from single-species samples. However, in the
MetaLab-MAG workflow, only a slight decrease in the
identification rates of about 5% was observed. Then we tested
if the PSMs were identified correctly from the expected species.
The Uniprot single species database was in silico digested, and
we matched the PSMs to the theoretical peptide sequences. It
was found that 97.1% of fully tryptic PSMs were matched with
the corresponding Uniprot single species database (Figure 2c).
This result showed that although multiple genomes were
collected to create the sample-specific database, most of the
obtained PSMs and peptides were from the correct species
through the target-decoy search. The relative abundance of taxa
identified from the samples was shown in Figure 2d. It was
observed that the taxonomic identification was accurate at the
genus level. For some of the samples, the relative abundance of
correct species was relatively low. This was because part of the
proteins was attributed to very similar species, as mentioned
above, the peptide identification was correct. Overall, the
quantitative results illustrated the same conclusion that the
MetaLab-MAG workflow successfully identified the target
species from the single species samples.
These results demonstrated that MetaLab-MAG can easily

identify high-abundant bacteria. However, the human gut
contains a highly diverse microbial community with a significant
number of microorganisms having very low abundance. Hence,
we tested whether the low abundant bacteria could be identified
from a spike-in sample, i.e., a data set of human cell samples
mixed with Escherichia coli at different concentrations (2, 3, 4, 5,
or 6%).36 MetaLab-MAG provided a workflow enabling the
identification of host proteins simultaneously by concatenating a
human protein database. By this strategy, we found that theMS/
MS identification rate reached 72% and was higher than
searching a Homo sapiens-E. coli combined database (Figure 2e,
Supplementary Table 2). The proportion of non-Homo sapiens
PSMs from E. coli was about 97% (Figure 2f). The relative
quantitative results also fitted well with the expected values 1-,
1.5-, 2-, 2.5-, or 3-fold (Figure 2g). This result shows that
relatively low abundant components could also be identified and
quantified correctly using MetaLab-MAG.
From these results, we demonstrated that MetaLab-MAG is

an efficient and reliable tool for metaproteomic data analysis.
First, MetaLab-MAG outperformed the conventional iterative
search strategy in sensitivity, accuracy, and searching speed.
Second, compared with the ideal matched Uniprot database
search, the loss of the MS/MS identification rate was less than
5%. Considering the database used in MetaLab-MAG was a
genericMAGs database consisting of 4,744 genomes, identifying
single species samples with high sensitivity and accuracy was
encouraging.
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Evaluation of MetaLab-MAG Using Synthetic Microbial
Community

We then used MetaLab-MAG to analyze a data set derived from
a synthetic microbial community named SIHUMIx. The
SIHUMIx sample was composed of eight types of bacteria
found in the human gut microbiome.37 We determined that all
eight species had corresponding genomes in the UHGG
database. There were 139 genomes in UHGG that were found
from the same genera of the eight microbes (Supplementary
Table 3). In the following analysis, we defined the PSMs/
peptides from the genomes of the correct species as “correct

species identifications” and PSMs/peptides from the 139
genomes of the correct genus as “correct genus identifications”.
We analyzed 15 raw files by searching against the HAP database,
and 67,748 PSMs were obtained at FDR < 1% with the MS/MS
identification rate at 4.4%. The correct genus identifications
accounted for 93.5% of the PSMs and 90.8% of the peptide. Two
microbes (Clostridium butyricumDSMZ 10702 and Lactobacillus
plantarum DSMZ 20174) were not found in all the 15 raw files
and Lactobacillus plantarum DSMZ 20174 was only found in 7
raw files. Actually, these three microbes cannot be found from
the metagenomics database (termed DB2MG below) based on

Figure 3. Use of MetaLab-MAG for the analysis of SIHUMIx samples. (a) The MS/MS identification rates and numbers of identified PSMs of the
three methods including searching against the DB1UNIPROT, DB2MG, and MetaLab-MAG workflow. (b) The identified peptides shared a great
common part among the three methods. (c) The proportions of the PSMs with correct species identifications and correct genus identifications. (d)
The compositions and relative abundances of taxa calculated from the DB1UNIPROT, DB2MG, and MetaLab-MAG workflows.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00554
J. Proteome Res. 2023, 22, 387−398

392

https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00554/suppl_file/pr2c00554_si_003.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00554/suppl_file/pr2c00554_si_003.xlsx
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00554?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00554?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00554?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00554?fig=fig3&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00554?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the assembled contigs, either, suggesting their relative
abundances were very low in the samples (Supplementary
Table 3).17 Sample-specific databases were generated based on
these identifications. On average, 82 genomes and 212,644
proteins were contained in one sample-specific database. These
results show that by searching the HAP database, the high-
abundance components of the samples were effectively
identified and could be retrieved to form the sample-specific
database.
The overall identification rate using the above generated

sample-specific MAG database reached 58%, which was slightly
higher than searching against the DB2MG (57.1%) and the
selected eight species database from Uniprot (53.4%) (Figure
3a). As well, most of the peptides identified by these three

methods were the same (Figure 3b, Data S1, S2, S3). This
suggested valid peptide identifications from searching against
the three different types of databases. Theoretically, the most
suitable database for metaproteomics data analysis was a
reference database with proper size or a sequencing read-
based database. This result proved that optimal performance was
achieved using the MetaLab-MAG strategy.
Next, we investigated the results at the taxon level. It was

found that 1,041,817 PSMs were identified from bacteria, at the
same time 1,018,307 (97.7%) were from correct species and
1,029,947 (98.9%) were from correct genus (Figure 3c,
Supplementary Table 4). By contrast, only 393,345 (38.1%)
and 869,219 (84.1%) PSMs were identified from the correct
species and correct genus, respectively, by searching the

Figure 4. Analysis of real human gut microbiota samples. (a) The MS/MS identification rates of the data sets. CAMPI-fecal: fecal samples from the
CAMPI projects, 15 raw files were used here; 1D: 1D-LC-MS/MS analysis of the four samples (i.e., HM454, HM455, HM466, and HM503); the 2D
data sets were 2D-LC-MS/MS analysis of the above four samples. “Metagenomics DB” represents that the peptide identifications were obtained by
searching against the metagenomic sequencing database directly. (b) The Venn figures showed the overlaps of the peptide identifications from the
samples betweenMetaLab-MAG andmetagenomic database searching method. (c) the protein and (d) the genome counts identified from 1D and 2D
experiments of HM454, HM455, HM466, and HM503 samples. (e) The correlation of the relative abundance of genomes determined by MetaLab-
MAG and metagenomic database searching method from HM454-2D. (f) The relative abundance of the taxa calculated by metagenomic read counts,
metagenomic database searching method and MetaLab-MAG from HM454-2D.
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DB2MG. The huge difference did not come from the peptide
level, but the taxa level. The taxonomic annotations of the
metagenomics database were against the NCBI database on the
protein level, which was not perfectly matched to the theoretic
compositions. For example, for the DB2MG, it was found that
382 proteins were from the species Erysipelatoclostridium
ramosum (correct species in SHUMIx) but 1,012 proteins
were from the species Coprobacillus sp. 3_3_56FAA (incorrect
species in SHUMIx). As a result, for the DB2MG, 84,981 PSMs
were from Coprobacillus sp. 3_3_56FAA and only 9,425 PSMs
were from the correct species Erysipelatoclostridium ramosum.
The 84,981 PSMs matched to Coprobacillus sp. 3_3_56FAA
corresponded to 6,833 unique peptide sequences, among which
6,217 peptide sequences were also identified from the MetaLab-
MAG workflow and 6,164 (99.1%) of them were from the
genome “MGYG000001400” (Erysipelatoclostridium ramosum).
This result showed a major advantage of using the MAGs
database for the metaproteomics data analysis. In the MAGs
database, the taxonomic annotations were generated at the
genome level; moreover, these genomes were constructed from
the target microbiome. As a comparison, the taxonomic
annotation of the metagenomics database was performed at
the protein level against the NCBI nonredundant database,
which was more general and less sensitive. From the quantitative
result, we also observed that the relative abundance of the taxa
was more similar between the Uniprot database search results
and the MetaLab-MAG results (Figure 3d).
Through the analysis of the SIHUMIx data set, we found that

MetaLab-MAG fulfilled our requirement to successfully identify
and quantify the components of a simplified human gut
microbiome. Similar MS/MS identification rates and better
performance of taxonomy analysis were achieved compared with
the workflows searching against reference and metagenomic
sequencing databases.
Application of Label-Free Metaproteomics of Human Gut
Microbiota

We then explored the application of MetaLab-MAG for the
analysis of individual human gut microbiota samples. The first
data set was from fecal samples analyzed by the Critical
Assessment of MetaProteome Investigation (CAMPI) project
with available metagenomics and metatranscriptomics sequenc-
ing data.17 Another human metaproteomic data set included
four intestinal aspirate samples collected from pediatric
individuals.27 For the deeper measurement of these samples,
in addition to the conventional liquid chromatographic
separation (1D in Figure 4a), a two-dimensional separation
was adopted. High-pH reversed-phase fractionation was used
first and then each fractionation was subjected to LC-MS/MS
analysis. Metagenomic sequencing data were available for this
data set. The taxonomic annotation was performed by
DIAMOND38 against the UHGG 2.0 database. Here we
analyzed the CAMPI and the intestinal aspirate data sets using
MetaLab-MAG (Data S4−S9). Meanwhile, these two data sets
were also searched against the corresponding multiomics
databases (Data S10, S11). Figure 4a shows the MS/MS
identification rates of the samples, which illustrated that for the
analysis of real human gut microbiome samples, the perform-
ance of MetaLab-MAG was still similar to searching the
metagenomics database. At the same time, the identification
rates were 21.3% to 66.3%, which were much higher than that
obtained by the SearchGUI/PeptideShaker workflow in the
CAMPI study (12% to 34.8%)17 (Data S4). It was worth noting

that MetaLab-MAG outperformed the metagenomic database
searching result from the intestinal aspirate samples. We
compared the identified peptides and found that for each data
set, the identified peptide sequences from the two strategies had
significant overlap. (Figure 4b). MetaLab-MAG analysis of the
CAMPI fecal samples identified 110,993 peptides, 17,235
protein groups, and 678 genomes. HigherMS/MS identification
rates and more peptide identifications were obtained by
MetaLab-MAG workflow in the analysis of the intestinal
aspirate samples. The numbers of identified proteins and
genomes from the four samples were shown in Figure 4c,d.
Nearly 10,000 proteins and 200 genomes could be obtained
from a single raw file of the 1D-separation experiments and the
2D-separation yielded about triple the number of proteins and
four times genome identifications.
Since the performances of the multiomics database searching

strategy and the MetaLab-MAG workflow were similar in
identification, we compared the quantitative results obtained by
the two methods. As a representative, Figure 4e showed a good
correlation between the relative abundances of genomes
quantified by the two methods from HM454-2D samples.
Finally, we compared the taxa composition estimated using
three different methods based on (1) the read counts of the
metagenomic data; (2) the metaproteomics result searching
against the metagenomic database; (3) the metaproteomics
result by MetaLab-MAG (Figure 4f). We found that the relative
abundances of taxa were very similar between the two
metaproteomic workflows. In the previous part, different trends
in the relative abundance of taxa were observed between these
two types of results, mainly because the taxonomic annotation
was performed based on the NCBI but not the UHGG database.
The taxa information obtained byMetaLab-MAG and searching
the metagenomic database were quite consistent, which
demonstrated the credibility of the quantitative information
provided by MetaLab-MAG and the multiomics database
workflow. Obvious differences were observed compared to the
metagenomics results (read counts), which suggested combin-
ing metagenomics and metaproteomics methods will help the
researchers get a better profile of the microbiota samples.
Through the analysis of these data sets from the real human

gut microbiota samples, we found that although the multiomics
database was decent for the metaproteomics analysis, MetaLab-
MAG provided an alternative solution for the interpretation of
human gut microbiota samples, which showed similar or better
performance. This will greatly expand the applicability of
metaproteomics in the analysis of human gut microbiota
samples, in particular for samples without matched multiomics
data.
Application of Isobaric Quantitative Analysis of HumanGut
Microbiota Samples

The most prominent advantage of isobaric labeling strategies is
the multiplexing capability, enabling the relative quantification
of more than 10 samples in a single MS run. This technique will
greatly reduce the MS running time in high-throughput
experiments such as drug screening and clinical sample analysis.
The commonly used isobaric labeling methods including
tandem mass tag39 (TMT) and isobaric tags for relative and
absolute quantification40, (iTRAQ) are all supported in
MetaLab-MAG. Here we tested three TMT11plex labeled
human gut microbiome data sets (Data S12−S14). The MS/
MS identification rates exceeded 50% in all three data sets
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(Figure 5a). Generally, over 4,500 protein groups could be
identified from a single raw file (Figure 5b).
Another advantage of isobaric labeling methods was higher

accuracy because samples in different channels were injected
into MS analysis together, which greatly reduced the variability
from different batch injections. However, if the number of
samples exceeded the channels of the isobaric labeling reagent,
multiple experiments were still required to quantify all the
samples, which can introduce variability. To solve this problem,
we took two measures. First, the MS1 intensity was utilized for

the quantification and the normalization of the MS1 intensity
was adopted. The intensities of the reporter ions were used to
determine the relative abundances of the peptides from different
channels, and the abundance of each peptide was calculated as
the corresponding normalized MS1 intensity multiplied by the
proportion of the reporter ion’s intensity. Second, a reference
channel with the same sample in every experiment was required.
According to the quantitative information on the reference
channel, all the channels in different experiments could be
aligned and normalized. To assess the accuracy of the

Figure 5.Qualitative and quantitative results of isobaric labeled data sets obtained byMetaLab-MAG. (a) TheMS/MS identification rates of the three
data sets. (b) The identified protein counts of the three data sets. (c) The correlations of the abundances of genomes between replicated samples from
different experiments. The values on axis X and Y are log10(intensity) of the genomes. (d, e) UMAPs of the samples using the genome intensities (d)
and protein intensities (e) show a clear trend that samples under the same treatment are clustered together. BL, KES, and PBS: the buffer solutions. (f)
The abundances (represented by the log10(intensity)) and (g) relative abundances of eight high-abundance species (relative abundance >2%) in
different buffer-treated samples.
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quantitative results, we compared the calculated genome
abundances between the replicate experiments from different
raw files. After the normalization and alignment, good
correlations between the replicate experiments were observed
(Figure 5c). In particular, we noticed that the higher the
abundance of the genomes, the smaller the deviation observed.
This illustrated that the quantitative information on the high-
abundance species was credible, even though the comparison
was taken across different MS runs.
An isobaric labeling strategy was suitable for large-scale

quantitative analysis. For example, in Data 3 we tested the
impacts of live microbiota frozen conditions and treatment of
kestose on ex vivo cultured human gut microbiota. More details
can be found in our previous study.28 We built two UMAPs
based on the quantitative information on the genomes and
proteins, respectively (Figure 5d,e). It was observed that all the
samples were clustered based on the culturing conditions, which
was in conformity with our expectations and reflected the
confidence of the quantitative results. It was also observed that
the samples were better distinguished at the protein level than at
the genome level. Based on the quantitative information in all
the peptides, proteins, genomes/taxa, and function levels, we can
interpret the data from various angles. Figure 5f showed the total
intensities of eight high-abundance taxa (relative abundance
above 2%) in different groups. All of them got higher
abundances in PBS-treated samples. However, different trends
were observed in the relative abundances (Figure 5g). The
relative abundances of Phocaeicola dorei and Alistipes putredinis
were lower than in BL and KES.
In this part, we analyzed multiple metaproteomic data sets

with isobaric labeling quantitative methods. The performance of
MetaLab-MAGwas quite stable and reliable. Generally, 4,500 to
5,000 protein groups could be identified with a∼90 minMS run
at the MS/MS identification rate higher than 50%. The accuracy
of the quantitative results was verified by comparing the
replicated samples from different labeling experiments. The
information on the abundance was readily available on various
levels including proteins, genomes/taxa, and functions. Inves-
tigating the responses to different conditions was straightfor-
ward based on the information provided by MetaLab-MAG. We
believed that MetaLab-MAG could be a helpful tool for
researchers aiming to study the changes of the human gut
microbiota samples, not only on the composition level but also
the active functions.

■ DISCUSSION
In metaproteomics data analysis, customized gene catalog
databases from the metagenomics/metatranscriptomics se-
quencing of individual samples are generally perceived as the
most reliable databases for peptide identification from the same
microbiota samples. However, in the majority of projects, the
sequencing information is not available, and instead searches
against a generic gene catalog database would be performed. The
drawback is that the generic gene catalogs contain numerous
bacterial genomes, the vast majority of which are not present in a
specific sample. Usually, the size of the generic database is huge,
and identifying peptides against the database suffers from a long
processing time and low identification rate.
MetaLab integrates the iterative search strategy and enables

the characterization of the microbiome from the public gene
catalog. However, the taxonomic and functional information on
the gene catalog is annotated based on the gene. The
relationship between different genes/proteins is nonexistent.

By contrast, in this work, we develop MetaLab-MAG, a
specialized metaproteomic data analysis tool, using publically
available MAGs databases for peptide/protein identification. A
significant advantage for metaproteomics in using the MAGs
database is that the genomes are constructed with additional
information such as which genes are likely from the same
species. The sequencing read-based protein database from
metagenomics and/or metatranscriptomics is not required. An
efficient refined database generation strategy, namely high-
abundance protein database search,23 is adopted in MetaLab-
MAG. Compared to the conventional iterative searching
method, searching the HAP database is more efficient and
accurate, yielding more identifications in less time. Moreover,
the performance is comparable to or even better than searching
the corresponding multiomics database. The MS/MS identi-
fication rates are similar, and the identified peptides shared
significant common parts. The taxonomic information is
obtained at the genome level. One current drawback of the
MAGs database is themore limited taxa identification. However,
with the continuous improvement of the MAGs database in the
public data repository (such as MGnify), the taxonomic
identification results will be more reliable.
Sample-specific metagenomics/metatranscriptomics can be

used for metaproteomic data analysis; however, the reality is that
they are not routinely performed on all samples and the lack of
corresponding information should not hinder the application of
metaproteomics. That is the motivation for the development of
MetaLab-MAG. MetaLab-MAG is readily accessible to
researchers with limited bioinformatics backgrounds. The
researchers only need to provide their MS raw files. The
MAGs databases for peptide/protein identification, taxonomy
analysis, and functional annotation can be downloaded in
MetaLab-MAG with a click. We anticipate that with the
improvement of MGnify resources, other types of microbiomes
would be supported for analysis. Rich information is generated
automatically, including all data tables at the peptide, protein,
genome, taxonomy, and function levels. The web-based report
contains many useful charts and is usable for research
manuscripts. The continuous development of MetaLab-MAG
will include in the future more statistical functions to help the
research community better understand their data sets. We
believe that MetaLab-MAG can help researchers from various
fields interested in using metaproteomics to investigate
microbiomes.

■ ASSOCIATED CONTENT
Data Availability Statement

The mass spectrometry proteomics data from our lab and the
result tables including the peptide, protein, genome, and
function annotation lists (Data S1−14) have been deposited
to the ProteomeXchange Consortium via the PRIDE41 partner
repository with the dataset identifier PXD037839. The other
dataset identifiers are PXD005590 (E. coli spiked in human
samples) and PXD023217 (SIHUMIx and fecal samples).
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identification rates, and the proportion of PSMs that are
correctly identified in species levels of the data sets from
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Supplementary Table 2: The MS/MS identification rates
and the relative abundance determined by the MetaLab-
MAG of the E. coli spike-in samples (XLSX)
Supplementary Table 3: The corresponding genomes in
the UHGG MAG database from the same genera of the
eight microbes in SIHUMIx samples (XLSX)
Supplementary Table 4: The MS/MS identification rates
and the number of PSMs obtained by the three strategies:
MetaLab-MAG, searching against the Uniprot database
(DB1UNIPROT) and searching against the sequencing
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