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Abstract: The highly conserved molecular chaperone heat shock protein 90 (Hsp90) is well-known
for maintaining metastable proteins and mediating various aspects of intracellular protein dynamics.
Intriguingly, high-throughput interactome studies suggest that Hsp90 is associated with a variety of
other pathways. Here, we will highlight the potential impact of Hsp90 in protein transport. Currently,
a limited number of studies have defined a few mechanistic contributions of Hsp90 to protein
transport, yet the relevance of hundreds of additional connections between Hsp90 and factors known
to aide this process remains unresolved. These interactors broadly support transport pathways
including endocytic and exocytic vesicular transport, the transfer of polypeptides across membranes,
or unconventional protein secretion. In resolving how Hsp90 contributes to the protein transport
process, new therapeutic targets will likely be obtained for the treatment of numerous human health
issues, including bacterial infection, cancer metastasis, and neurodegeneration.
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1. Introduction

For decades, molecular chaperones have been recognized as essential agents in the
maintenance of protein homeostasis (proteostasis). One of the earliest-identified molec-
ular chaperones is the highly conserved heat shock protein 90 (Hsp90) [1,2]. Apart from
Archaea, Hsp90 is present in almost all bacterial and eukaryotic life [3,4]. In general, the
number of Hsp90 homologues expands in parallel with increased cellular complexity [4,5].
For example, the majority of bacteria only contain one nonessential Hsp90 homologue
often referred to as high-temperature protein G (HtpG) while eukaryotes can have multi-
ple Hsp90 proteins including several cytoplasmic/nucleoplasmic Hsp90s, mitochondrial
TRAP1 (tumor necrosis factor receptor-associated protein 1), endoplasmic reticulum (ER)
GRP94 (94 kDa glucose-regulated protein), and chloroplast HSP90C (plastid heat shock
protein 90) [5]. Each of the homologues, except for cytoplasmic/nucleoplasmic Hsp90s,
is retained in its respective organelle to help maintain protein quality control within that
compartment [6–8]. Here, we will focus on how the cytoplasmic/nucleoplasmic Hsp90
proteins contribute to the protein transport process.

Although compartmentalization has many benefits, it does require a multi-faceted
delivery mechanism to transport biological molecules into, out of, within, and between
organelles. Despite being historically implicated as a signaling pathway regulator of steroid
hormone receptors and kinases [9,10], Hsp90 is increasingly associated with many other
cellular processes, including protein transport [11–13]. Given the physiological relevance of
protein transport to health and disease, including implications in neurotransmitter release,
cell differentiation, bacterial infection, and autophagy [14–17], it is important to better
understand how and when Hsp90 contributes to this process.

To gain insights into how one of the most abundant proteins in a cell cytoplasm/nucle-
oplasm contributes to life, multiple studies have attempted to identify the physical, genetic,
and chemical–genetic interactors of Hsp90 using a variety of unbiased high-throughput
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screens including two-hybrid, synthetic genetic arrays and mass spectrometry-based tac-
tics [11–13,18,19]. Significantly, within the conundrum of hits, there are numerous players
with established roles in the transport and secretion pathways [11–13]. These connections
include proteins involved in various aspects of exocytosis and endocytosis [13]. Focusing
on the physical and genetic interactors of budding yeast’s only two isomers, cytoplas-
mic/nucleoplasmic Hsc82 and Hsp82, Hsp90 is linked to 202 different proteins driving
most aspects of intracellular transport and secretion (Figure 1). Hence, Hsp90 likely has
a significant influence on the transport process that goes well beyond our current under-
standing. Perhaps of note, the human homologs of many of the yeast Hsp90-interactors are
associated with various diseases, including bacterial infections (e.g., tetanus (SEC18/NSF),
infant botulism (YKT6/YKT6), and diphtheria (RRT2/DPH7)), cancer (e.g., breast mucinous
carcinoma (TRX2/TXN), primary bone cancer (SLT2/MAPK7), and endometrial cancer
(PKH1/PDPK1)), and neurodegeneration (amyotrophic lateral sclerosis (VPS21/RAB5A,
CDC48/VCP, VPS60/CHMP5), Parkinson’s disease (BET4/RABGGTA, VPS35/VPS35,
RIC1/RIC1), and dementia (CDC48/VCP, VPS60/CHMP5)) [20]. Unfortunately, for the
majority of the connections, the molecular/physiological basis for the interaction has not
been revealed. In this review, we will highlight the few established roles of Hsp90 in
transport as well as underscore areas linked to Hsp90 through a variety of high-throughput
screens [11–13,18,19].
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Slim Term Mapper from Saccharomyces Genome Database (http://genome-www.stanford.edu/
Saccharomyces/ accessed on 6 June 2022). Six Gene Ontology terms relevant to protein transport
were selected including Golgi Vesicle Transport, Endocytosis, Endosomal Transport, Regulation
of Transport, Exocytosis, and Membrane Fusion. The interactors were organized into the shown
interaction map using Cytoscape [21] by setting the Gene Ontology term as a source interactor and
each gene as a target interactor.

2. Hsp90 and General Principles of Protein Transport

The physical flow of proteins among cellular compartments is a highly proteostasis-
dependent process. Depending upon the precise transport step, the contribution from the
proteostasis system will vary, including protein unfolding (even partial) to allow transfer,
the maintenance of unfolded clients during transfer, polypeptide refolding after transfer,
assembling large macromolecular complexes (e.g., vesicle formation), disassembling protein
structures (e.g., vesicle fusion), monitoring the health of the transport machinery itself, and
mediating the removal of damaged factors including clients or machinery components. If
or how Hsp90 might contribute to these or other transport steps is an open investigation.
To better understand where Hsp90 might contribute, we will briefly review the primary
pathways used in the transport process, and then we will discuss established contributions
of Hsp90 relative to protein transport.

Two major intracellular trafficking mechanisms are the endocytic and exocytic path-
ways [22]. Notably, both mechanisms rely heavily on vesicles, and Hsp90 has been linked
to 106 different factors governing vesicle transport, including coat proteins, Rabs, soluble
N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), and Golgi com-
plex proteins (Figure 1). The endocytic pathway allows for the internalization, recycling,
and modification of membrane bound surface proteins such as signaling receptors as well
as other cargo from the environment. Significantly, Hsp90 shares a total of 96 linkages to
endocytosis and endosomal transport, including vacuolar protein sorting proteins, sorting
nexin family proteins, and actin (Figure 1). Proteins are endocytosed through a variety of
mechanisms whereby the plasma membrane invaginates to form a vesicle prior to being
delivered to an early endosome [23]. At the early endosome, an initial decision is made to
either recycle membrane proteins, such as receptors, back to the plasma membrane via recy-
cling endosomes to direct proteins to the trans-Golgi network via the retromer, or to degrade
proteins via the lysosome. To accomplish this sorting, cargo leaves the early endosome
in intraluminal vesicles to become multivesicular bodies, endosomal carrier vesicles, or
late endosomes, which can be sorted into lysosomes or fuse with autophagosomes [24–27]
(Figure 2).

http://genome-www.stanford.edu/Saccharomyces/
http://genome-www.stanford.edu/Saccharomyces/
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Figure 2. Hsp90 contributions to exocytic and endocytic trafficking. In the exocytic pathway (left),
Hsp90 (red) aides in anterograde vesicle trafficking between the ER and Golgi by supporting mi-
crotubule stability through the binding of MAP4 (light green) [28–32], and the recycling of Rab1
and Rab3 to enable vesicle targeting and fusion with the Golgi and plasma membrane [28,29,33–35].
In the endocytic pathway (right), Hsp90 supports the transport of recycling endosomes as well
as transport from early to late endosomes/multivesicular bodies (MVB) through the recycling of
Rab11 [15,36,37]. Hsp90 also allows for the fusion of MVB with the plasma membrane by aiding
in membrane deformations [38]. Transport events that Hsp90 is involved in are noted by solid
black arrows.

The exocytic or secretory pathway is responsible for the synthesis, folding, modifica-
tion, and trafficking of proteins that are members of the endomembrane system or destined
for secretion. In exocytosis, newly synthesized proteins are inserted into the ER where
they undergo maturation through folding and modifications, such as glycosylation and
disulfide bond formation [39,40]. Across the exocytosis pathway, Hsp90 is connected to
23 different proteins comprising some myosins, Rabs, and exocyst complex components
(Figure 1). From the ER, cargo is transported to the ER-Golgi Intermediate Compartments
(ERGICs) via vesicles and then to the cis-Golgi where ER resident proteins are returned to
the ER via retrograde transport [41]. In the Golgi, proteins undergo additional carbohydrate
modifications and proteolytic processing as the cargo travels from the cis- to trans-Golgi
either by vesicular transport or cisternal maturation [39,41]. From the trans-Golgi, cargo
vesicles are trafficked to the plasma membrane where they fuse to release secretory proteins
or deliver membrane proteins [41] (Figure 2). Hsp90 has been linked to 23 different proteins
mediating these late secretory events including syntaxin and vesicle-associated membrane
proteins (Figure 1). Furthermore, Hsp90 interacts with an additional 41 proteins that are
known to regulate the overall protein transport process comprising Rho GTPase, mitogen-
activated protein kinase (MAPK), cyclin-dependent kinase (CDK) and E3 ubiquitin–protein
ligase (Figure 1). Although endocytic and exocytic transport mechanisms are well-studied
pathways essential to the production, processing, and trafficking of proteins in cells, there is
still much to be learned about the underlying mechanisms driving these events, including
the contributions of the Hsp90 molecular chaperone.
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3. Hsp90 Input with Mitochondria and Chloroplast Protein Import

The transport of proteins into mitochondria or chloroplasts requires the assistance of
molecular chaperones. As ~95% of mitochondrial and chloroplast proteins are encoded by
the nuclear genome and translated by cytoplasmic ribosomes, the post-translational import
of proteins is considerable [42]. To successfully transport the various preproteins into these
organelles, chaperones, including Hsp90, have been shown to deliver both mitochondrial
and chloroplast preproteins to the respective outer membrane translocases [43,44]. In the
case of mitochondrial import, Hsp90 works with Hsp70 to target and transport unfolded or
hydrophobic preproteins to the translocase of the mitochondrial outer membrane (TOM)
complex for import [43,45]. Specifically, Hsp90 docks onto a peripherally associated re-
ceptor subunit, Tom70, releasing the preprotein in an ATP-dependent manner either to
be bound first by Tom70 or directly to the TOM pore complex [45,46]. To facilitate chloro-
plast import, Hsp90 binds precursor proteins and interacts with Toc64, a receptor subunit
of the translocon of the outer envelope of chloroplasts (TOC) complex [44]. Similarly
to mitochondrial transfer, the import of preproteins into the chloroplasts is Hsp90- and
ATP-dependent [44] (Figure 3A,B).

Interestingly, Hsp90 fosters transfer across either the organelle’s outer membrane by
docking onto a receptor (Toc64 for chloroplasts or Tom70 for mitochondria) using a similar
clamp-type tetratricopeptide repeat (TPR) domain present in the receptors [43,44,47]. At
least within chloroplasts, client proteins can remain reliant on an Hsp90 homolog after
crossing the outer membrane. Within the stroma, HSP90C and chloroplast Hsp90 (cpHsp70)
and Hsp93 aid the translocation of proteins across the inner chloroplast membrane while
Hsp90C also targets thylakoid lumen proteins to the thylakoid membrane translocase
SecY1 [8,48–50] (Figure 3A,B). Hsp90’s common role in preprotein targeting and transport to
endosymbiotically derived organelles may indicate that in eukaryotic evolution, chaperones
were used as an effective solution to import preproteins translated in the cytosol [42,47].
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the outer membrane of mitochondria through interactions with the TPR domain (hexagon) of periph-
erally associated Tom70 [43,45]. (B) Hsp90 with the aid of Hsp70 delivers preproteins to the TOC
complex in the outer membrane of chloroplasts through interactions with the TPR domain (hexagon)
of peripherally associated Toc64 [44]. Chaperones in the chloroplast stroma including cpHsp70,
Hsp93, and Hsp90C aid in protein transport through the TIC complex in the inner membrane and
Hsp90C additionally targets proteins to the SecY1 translocase in the thylakoid membrane [8,48–50].
(C) HSP90A mediates UPS of IL-1β by unfolding the protein to allow for its transport into the ERGIC
through the TMED10 translocase aided by HSP0B1, and then from ERGIC, IL-1β is secreted in
vesicles (left) [51]. eHsp90 is thought to be secreted by UPS through vesicle fusion, across mem-
brane transporters, on the surface of exosomes, and/or fusion of MVBs with the plasma membrane
(right) [52,53].

4. Hsp90 and Unconventional Protein Secretion

Classically, secreted proteins have a signal peptide or leader sequence that targets
the polypeptides for ER–Golgi trafficking via vesicles to eventually export the factors out
of a cell [54,55]. Still, there are secreted proteins that lack such sequences and bypass
the ER–Golgi route. These “leaderless” proteins are exported by unconventional protein
secretion (UPS) that uses both non-vesicular and vesicular paths to export proteins [56]. One
mechanism, which is dependent upon Hsp90, is the secretion of interleukin-1β (IL-1β) by
mammalian cells during autophagy known as the TMED10-channeled UPS (THU) [17,51].
Following autophagy induction, IL-1β is produced and captured in its mature form by
cytosolic HSP90A, potentially though the binding of KFERQ-like motifs in IL-1β [17,51].
It has been suggested that HSP90A then unfolds IL-1β to expose a signal motif allowing
direct translocations into the ERGIC through transmembrane Emp24 domain-containing
protein 10 (TMED10) [51] (Figure 3C). Of note, the import of IL-1β by TMED10 is also aided
by HSP90B1, although HSP90B1 mechanistic contributions are less well understood [51].
The idea that Hsp90 recognizes Hsp90 through its KFERQ-like motifs is questionable,
however, because so far only Hsc70, an Hsp70 family member, has been shown to bind
KFERQ motifs, which are primarily used to target proteins to lysosomes for degradation in
Chaperone-Mediated Autophagy (CMA) [57]. In CMA, Hsp90 plays a more indirect role
through the stabilization and oligomerization of lysosome-associated membrane protein
type 2A (LAMP2A) from inside the lysosome to allow for the Hsc70-delivered proteins
to enter the lysosome through the LAMP2A translocation complex [58,59]. Thus, it is
possible that Hsp90 may recognize IL-1β for UPS through another mechanism other than
its KFERQ-like motifs.

Intriguingly, many heat shock proteins including Hsp60, Hsp27, Hsp20, Hsp70, and
Hsp90 itself are likely exported out of cells via UPS [60]. Migratory cells during wound
healing or cancerous growth continuously secrete Hsp90 [61–63] and normal cells exposed
to a variety of stresses, including heat, hypoxia, serum starvation, reactive oxygen, or virus
infection, transiently export Hsp90 [62,64–68]. Minimally, extracellular Hsp90 (eHsp90)
increases cell motility. In the case of wound healing, Hsp90 is secreted in response to
hypoxia at the wound site where Hypoxia-Inducible Factor-1alpha (HIF-1α) promotes the
secretion of Hsp90α [62]. Notably, eHsp90 accelerates wound healing by inducing the
migration of dermal fibroblasts, including facilitating wound healing in mice when applied
topically [62,69].

In contrast to the beneficial role in wound healing, the secretion of Hsp90 on its own
or on the outer surface of vesicles has been shown to increase cancer metastasis [70]. The
eHsp90 enhances metastasis by dysregulating the extracellular matrix (ECM) through the
activation of ECM-modifying proteases [52,71]. Thus, there is growing interest in utilizing
eHsp90 as a biomarker and/or target for cancer treatment [52]. Despite the potential
importance of eHsp90, the mechanism by which Hsp90 is secreted from cells is not fully
understood. Minimally, Hsp90 can exit a cell via exosomes generated in the endocytic
pathway rather than the canonical secretory pathway [72] (Figure 3C). How Hsp90 is
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loaded into these exosomes prior to export is not clear [52]. Nevertheless, Hsp90’s influence
with other types of vesicles has been shown.

5. Influence of Hsp90 in Endocytic Vesicle Transport

Hsp90 has been implicated in several endocytic mechanisms including endosome
vesicle transport and recycling. A well-studied impact of Hsp90 is on the regulation of
Rab recycling—Rabs are members of the Ras GTPase family [73]. Rab-GTPases generally
regulate the assembly and disassembly of complexes that enable vesicle targeting and
fusion [30]. Following the activation of Rab by GTPase-activating proteins (GAPs), GDP-
bound Rab is retrieved from membranes by GDP-dissociation inhibitors (GDIs), thus
enabling continuous vesicle transport [74,75]. Hsp90 modulates this recycling process by
binding to GDI and Rab. Hsp90 recruits GDI to the membrane and configures GDI into
an open confirmation to bind the geranylgeranyl (GG) lipids anchoring Rab-GDP to the
membrane, triggering its release into the cytosol [73]. Hsp90 has been shown to interact
with Rab11b in osteoclasts to mediate the transport of macrophage colony-stimulating
factor receptor (c-fms) and receptor activator of nuclear factor kappa B (RANK) surface
receptors in early to late endosomes and also to lysosomes for degradation [15] (Figure 2).
This Hsp90-mediated endosomal transport of receptors to lysosomes allows for the proper
regulation of osteoclastogenesis and the differentiation of hematopoietic precursors to
osteoclasts that are critical for bone homeostasis [15,76].

The endocytic pathway mediated by Rab11 and Hsp90 can be hijacked by Neisseria
meningitidis to aid in bacterial internalization [36]. In this study, endocytic vesicles contain-
ing both Neisseria meningitidis adhesin A (NadA) protein and Hsp90 recruited Rab11 in
human epithelial cells, causing the NadA endosomes to be recycled to the cell’s surface. Us-
ing the membrane-impermeable Hsp90 inhibitor FITC-GA to selectively inhibit the eHsp90
prevented the recruitment of Rab11 and subsequent endosomal recycling [36]. Hsp90 has
been shown to bind NadA and interfere with bacterial attachment [16,36]. Hence, eHsp90
might serve as an interesting target to combat bacterial infection for agents entering through
an endosomal transport mechanism. Significantly, disruption of membrane proteins re-
cycling upon Hsp90 inhibition also has been observed with the cancer-associated ErbB2
tyrosine kinase receptor [37,77,78]. Normally ErbB2 is trafficked in early endosomes for
recycling; however, upon treatment with an Hsp90 inhibitor, these receptors are instead
routed to multivesicular endosomes and lysosomal compartments [37]. These compart-
ments were found to have a modified ultrastructure, which is more tubular than under
normal conditions [37]. It is speculated that this disruption of normal transport and struc-
ture is due to Hsp90’s interactions with Rab12, which normally localizes to early/recycling
endosomes and lysosomes or through Hsp90’s regulation of cytoskeletal dynamics [37,78].

6. Modulation of Exocytic Intracellular Transport by Hsp90

In addition to endocytic events, Hsp90 aids exocytic pathways, including ER-Golgi
vesicular transport and protein secretion. The influence of Hsp90 on these events has been
primarily delineated by tracking the transport of vesicular stomatitis virus glycoprotein
(VSV-G) in mammalian cells [31,32,73]. In these studies, the loss of Hsp90 blocks ER to
Golgi and intra-Golgi transport, as evidenced by an impaired anterograde vesicle transport
and Golgi fragmentation [31,32]. Of note, these observations have been attributed to
multiple Hsp90 roles, including the following: (1) Hsp90’s regulation of vesicular transport
by associating with the membrane-bound protein VAPA in complex with the co-chaperone
tetratricopeptide repeat protein TTC1 [31]; (2) Hsp90’s modulation of microtubule stability
by controlling microtubule-associated protein 4 (MAP4), which is essential for maintaining
microtubule acetylation and stability [32]; and (3) Hsp90’s control of Rab1 recycling. Rab1 is
responsible for ER to Golgi trafficking with mammalian Rab1b also dictating the transport
of proteins through the cis- and medial-Golgi compartments [28–30] (Figure 2). Hence,
Hsp90 facilitates ER to Golgi vesicular transport by both promoting vesicle targeting and
maintaining the structure of the Golgi.
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In the secretory pathway Hsp90 has been shown to have diverse functions with ex-
osome release. For instance, Hsp90 influences membrane conformation to promote the
fusion of multivesicular bodies and the plasma membrane [38] (Figure 2). This membrane-
remodeling activity is dependent upon an evolutionarily conserved amphipathic helix
in Hsp90 both in vitro and in vivo at synapses and is further promoted by the Hsp90
cochaperone HOP [38]. Besides HOP, the AHA1 cochaperone fosters the release of secretory
vesicles associated with Rab3, which supports the cell migration of cancer cells [33]. The
involvement of Hsp90 with Rab3 is a common thread in many exocytosis events (Figure 2).
For example, Hsp90 is key to Ca2+-triggered neurotransmitter release through the αGDI-
dependent recycling of Rab3A [34]. Similarly to other Rabs, Hsp90 forms a complex with
αGDI to remove Rab3A from the lipid bilayer during neurotransmitter release [34]. Sig-
nificantly, the Hsp90-αGDI regulation of Rab3A controls the association of α-Synuclein,
a presynaptic protein linked to neurodegeneration, with the synaptic membrane [35]. At
the pre-synaptic membrane, α-synuclein associates preferentially with Rab3A-GTP and is
subsequently released from the membrane following the actions of GDI and Hsp90 [35].
Of note, the Hsp90-GDI regulation of Rab11A, which is typically involved in the recycling
of endosomes, has been linked to the secretion of α-synuclein, and the Hsp90-dependent
release of α-synuclein is associated with increased neurotoxicity [79]. Although not specifi-
cally connected to Rab recycling, Hsp90 has also been found to mediate the transport of
Aldo-Keto Reductase 1B10 (AKR1B10), a tumor biomarker, by regulating its transport to
lysosomes or secretion out of the cell [80]. Hence, an improved understanding of how
Hsp90 governs secretion may lead to improved future therapies for treating cancer and
neurodegeneration.

7. Conclusions

The cytoplasmic/nucleoplasmic Hsp90 interactome contains hundreds of connec-
tions to factors working in various aspects of the protein-transport process (Figure 1).
Yet, the defined contributions of Hsp90 to the various transport pathways remains lim-
ited. Nevertheless, it is clear that Hsp90 facilitates central features of protein transport,
including promoting endocytic and exocytic vesicular transport, docking clients onto mem-
brane translocation machinery, and fostering unconventional protein secretion [32,43,44,73].
Perhaps significantly, the established roles of Hsp90 in transport have important health
implications as the chaperone-dependent steps link to wound healing, bacterial infection,
cancer metastasis, and neurodegenerative diseases [16,35,36,62,70,79]. Given the number of
connections that have yet to be resolved both mechanistically and physiologically, it is prob-
able that the relevance of the cytoplasmic/nucleoplasmic Hsp90s with protein transports
will continue to grow. Beyond these Hsp90 homologues, it is important to consider how
organelle Hsp90s (GRP94, TRAP1, and HSP90C) add to the influence of the Hsp90 system
on protein transport. For instance, does the dependence of SARS-CoV-2 on Hsp90 [74–77]
relate to its influence on the protein transport process? Minimally, it is apparent that
Hsp90’s role in proteostasis will extend well beyond the maintenance of metastable clients.
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