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Introduction

Infertility affects approximately 10% of couples, with half of 
these cases attributable to the male partner.1 Though many of 
these cases are idiopathic, a high proportion of men with non-
obstructive azoospermia (no sperm produced) have a microdele-
tion on the Y chromosome.2 The discovery of such deletions led 
to the proposal of an “Azoospermia Factor” (AZF) as a genetic 
cause for some cases of infertility.2 The AZF region has been fur-
ther mapped into the three candidate regions AZFa, AZFb and 
AZFc,3,4 each deleted in subsets of infertile men. Among the hand-
ful of genes in these regions, Deleted in Azoospermia (DAZ) was 
found to be deleted in 12–15% of a cohort of azoospermic men, 
making it a strong candidate for the AZFc gene.5 DAZ is part of 
a large gene family (DAZ family) with autosomal homologs Dazl 
(DAZ-Like) and Boule, all of which encode RNA-binding pro-
teins.6-9 DAZ family genes are reproduction-specific and present 
in nearly all animals,10 making them an important gene family 
in reproduction. The identification of the DAZ family has led to 
research into genetic causes of infertility, and expansive work into 
understanding how the DAZ family regulates fertility.

RNA-binding proteins are abundant during spermatogen-
esis, largely involved in post-transcriptional regulation. During 
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The DAZ family of genes are important fertility factors in 
animals, including humans. The family consists of Y-linked 
DAZ and autosomal homologs Boule and Dazl. All three genes 
encode RNA-binding proteins that are nearly exclusively 
expressed in germ cells. The DAZ family is highly conserved, 
with ancestral Boule present in sea anemones through humans, 
Dazl conserved among vertebrates and DAZ present only in 
higher primates. Here we review studies on DAZ family genes 
from multiple organisms and summarize the common features 
of each DAZ gene and their roles during spermatogenesis 
in animals. DAZ family proteins are thought to activate the 
translation of RNA targets, but recent work has uncovered 
additional functions. Boule, Dazl and DAZ likely function 
through similar mechanisms, and we present known functions 
of the DAZ family in spermatogenesis, and discuss possible 
mechanisms in addition to translation activation.
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spermatogenesis, extensive translational regulation is used to con-
trol the proper timing of differentiation, particularly during sper-
miogenesis, the differentiation of round spermatids into mature 
sperm (reviewed in ref. 11 and 12). Many genes are transcribed 
several days before translation occurs, necessitating a network of 
mRNA storage and translational control. In addition to mRNA 
regulation, multiple species of non-coding small RNAs have been 
identified in the testis. These include miRNAs, piRNAs and 
MSY-RNAs, though how they intersect with translation regula-
tion and sperm differentiation is unclear.13-18 Some of this RNA 
storage and control has been proposed to occur at the chromatoid 
body, a perinuclear structure most prevalent in round spermatids 
that contains mRNA, miRNA and several RNA-binding pro-
teins (reviewed in ref. 19). The presence of such a structure and 
the abundance of multiple classes of small RNAs highlight the 
importance of RNA binding proteins during spermatogenesis.

The DAZ family of proteins is thought to be involved in the 
translation activation of mRNA targets.20,21 In recent years, rel-
evant candidate targets have been identified and the mechanism 
underlying this regulation is becoming clearer. Additionally, 
novel roles for DAZ family genes in mRNA transport and stabil-
ity have been discovered. Here we review the functions of the 
DAZ family of genes during spermatogenesis and discuss the 
various models of their action.

Evolution of the DAZ Gene Family

After the discovery of DAZ as a candidate gene for AZFc,5 the 
identification of homologs in other species revealed a larger gene 
family. DAZ family genes have a common structure consisting 
of a RNA-Recognition Motif (RRM) and at least one copy of a 
motif rich in basic amino acids termed the DAZ repeat.5,6,8,22-24 
Boule is the ancestral member of the family, and is widely con-
served across Metazoa, from the sea anemone through humans 
(Fig. 1).10,23,25 Boule is autosomal and has a single RRM and one 
DAZ repeat.8,23,25 The RRM is highly conserved among all Boule 
homologs, with a distinct signature in the RNP1 and RNP2 
motifs within the RRM. Boule is not found in fungi or plants, 
indicating that the DAZ family is an animal specific family of 
reproduction genes.10

Dazl arose from a duplication of Boule during vertebrate evolu-
tion (Fig. 1).8,10 Dazl homologs are also autosomal with only one 
RRM and one DAZ repeat,6,9,22,24 and are distinguishable from Boule 
homologs by unique sequences in the RNP1 and RNP2 motifs.8,10 
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DAZ Family Gene Expression

Though each DAZ family gene has a unique expression pattern, 
the whole family is restricted to germ cells in nearly all animals. 
Despite the presence of newer members Dazl and DAZ, repro-
duction-specific expression has been preserved for all three DAZ 
family genes. While there is some species specific expression for 
each DAZ family homolog, each gene has maintained the same 
general pattern across species. Gene families may often show 
similarities in expression among species, but such clear conser-
vation of homolog-specific expression is unusual. This phenom-
enon allows a composite picture of common RNA and protein 
expression to be constructed for each DAZ family homolog, 
summarized in Figure 2 (red and green lines, respectively). This 
summary view does not represent the data from any single spe-
cies, but rather the common expression patterns seen in multiple 
organisms. Data from specific species is discussed below, with a 
focus on each homolog’s common pattern of expression.

At least one DAZ family homolog is expressed in nearly every 
stage of spermatogenesis. Though spermatogenesis begins when 
spermatogonia differentiate, it can be traced back to the differen-
tiation of a subset of embryonic stem cells (ESCs) into primordial 
germ cells (PGCs). These migrate to the embryonic gonad and 
become gonocytes (also called prospermatogonia), which prolif-
erate further and eventually become spermatogonia, containing 
the adult stem cell population. Spermatogonia proliferate further 
and give rise to primary spermatocytes, which undergo meiosis 

Dazl arose around the time of vertebrate radiation, and homologs 
are conserved from bony fish through humans,6,9,10,22,24,26-28 but are 
not present in cartilaginous or jawless fish.10

During primate evolution, a duplication and transposition of 
Dazl onto the Y chromosome led to DAZ (Fig. 1).6,7,29 Subsequent 
duplication and gene pruning led to four DAZ genes in two clus-
ters, each with multiple numbers of DAZ repeats and two with 
duplications of the RRM.30 The number of DAZ repeats among 
the DAZ genes is polymorphic both between and within indi-
viduals.30,31 DAZ homologs are only present in humans and catar-
rhine primates (old world monkeys).7,24,29,32

Surprisingly, sequence analysis has shown that the presence 
of DAZ has had little effect on either Dazl or Boule gene evolu-
tion in primates, indicating strong functional constraint on these 
two genes.33 DAZ itself has a higher rate of genetic changes,34 
but neither nonsense nor frameshift mutations affecting the 
ORF have been detected, suggesting positive selection on DAZ.35 
Dazl homologs have a higher rate of change than Boule,33 while 
Boule homologs have been shown to be under purifying selec-
tion.10 Indeed, no polymorphisms within the Boule coding region 
were detected among more than 200 fertile and infertile men 
examined in two different studies,36 further indicating a strong 
functional constraint. Such a high level of conservation is rare 
among reproductive genes, suggesting that Boule has an essential 
germ cell role in animals. Similarly, the continued maintenance 
of multiple gene duplications suggests that all DAZ family genes 
are critical regulators of fertility.

Figure 1. DAZ family evolution. Boule is the ancestral member of the family, and is conserved from the sea anemone through humans, but is not 
present in Trichoplax, fungi or plants. A duplication of Boule during early vertebrate evolution led to Dazl. Dazl was then duplicated and transposed 
onto the Y chromosome in the evolution of old world monkeys. It further expanded into a cluster of multiple DAZ genes in the evolution of the human 
lineage. Symbols at right indicate sex-specific roles. Boule has predominantly testis functions with occasional ovarian roles, Dazl functions in testes 
and ovaries, while DAZ is testis-specific.
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by the time elongation begins (Fig. 2, Boule green line).8,41,42 
This is true in flies, mice and humans.8,41 Cell-type specific Boule 
mRNA expression has only been examined in medaka fish, where 
it is similarly present in both spermatocytes and spermatids.38 
This mRNA pattern is likely the same in both flies and mam-
mals, given the similar protein expression patterns, but it has not 
been confirmed.

Dazl homolog expression has diverged from Boule, and homo-
logs are expressed in both males and females in all species so 
far examined.10 Dazl homologs are initially expressed in ESCs 
through PGC specification in frogs, fish and mammals (Fig. 2, 
Dazl red and green lines). In Xenopus, Xdazl mRNA and protein 
are both present in the embryonic germ plasm,26,43 and zebraf-
ish zDazl mRNA is detected in the vegetal pole of embryos,28 a 
region that later gives rise to germ cells.44 Similarly, mouse Dazl 
mRNA and human DAZL mRNA and protein are present in 
ESCs through PGCs.45-47 Together, these expression data indica-
tethe  common expression of Dazl during PGC determination of 
early embryogenesis.

to produce haploid round spermatids. Through a process called 
spermiogenesis, round spermatids undergo dramatic morpho-
logical changes and first become elongating spermatids, and are 
finally released from the testis as mature spermatozoa.

Boule homologs are predominantly transcribed in the testes 
of fruit flies, sea urchins, chickens, mice and primates,10 though 
mRNA expression is reported in the ovaries of C. elegans, medaka 
fish and at low levels in mice.10,25,37,38 However, in these three spe-
cies, testis transcription is also observed. Furthermore, since the 
only instance of Boule protein in ovaries is in C. elegans,37 Boule 
transcription in the ovaries of fish and mice may not lead to protein. 
Similarly, we have seen low levels of Boule mRNA in embryonic 
gonocytes in mice,10 but do not detect protein (our unpublished 
observations). Additionally, boule mRNA is detected in the brains 
of flies,39,40 but this has not been reported in any other animals.

In the testis, Boule proteins are first present in mid-pachytene 
spermatocytes and remain through metaphase spermatocytes, 
with peak levels occurring just before metaphase of meiosis. 
Boule protein then persists into round spermatids, but is gone 

Figure 2. Common expression and functions of DAZ family genes. Data from multiple species are combined to present a picture of common expres-
sion patterns and functions for each DAZ family gene during spermatogenesis. A schematic of different steps of germ cell specification and spermato-
genesis is shown at top and mRNA expression (red lines) and protein expression (green lines) relative to these steps is shown for each gene. Black 
lines represent steps in spermatogenesis where each gene is known to have a function. Solid lines represent data confirmed in at least two studies, 
while dashed lines are either unconfirmed, or inferred from known expression or function data. Boule protein is present in pachytene spermatocytes 
through round spermatids (solid red line) and functions in both meiosis and spermiogenesis (solid black line). Boule mRNA is presumed to be present 
(dashed red line) in cells with Boule protein. Dazl homologs are expressed continuously from embryonic stem cells through round spermatids (red 
and green lines) and are known to function in ESCs, PGCs, gonocytes, spermatogonia and early spermatocytes (solid black lines). Dazl likely functions 
in other cells where it is expressed (dashed black line), but this has not been shown. DAZ is known to be expressed in spermatogonia (solid green 
line) and presumably functions in those cells, though it has not been shown (dashed black line). For details, see text. ESC, embryonic stem cell; PGC, 
primordial germ cell; Spg, spermatogonia; Early Spc, leptotene/zygotene spermatocyte; Pachy Spc, pachytene spermatocyte; R. Spd, round spermatid; 
E. Spd, elongating spermatid.
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multiple points during spermatogenesis (summarized in Fig. 
2, black lines). DAZ is known to be important in human sper-
matogenesis since its deletion is associated with azoospermia.5 
However, causative point mutations in infertile men have yet to be 
identified, and some DAZ deleted men still produce low levels of 
sperm.59 Indeed, men with DAZ deletions have fathered children 
both through the use of reproductive technologies60,61 and though 
rare, naturally,3,62 indicating that DAZ is not absolutely required 
for spermatogenesis. However, the presence of DAZ within the 
AZFc region as well as studies detailed below about spermatogen-
esis requirements of other DAZ family members strongly suggest 
that DAZ plays a critical role in normal spermatogenesis.

In accordance with its broad expression pattern, Dazl has been 
shown to have multiple roles throughout spermatogenesis. In frogs 
and mice, Dazl is initially important for PGC proliferation and 
development. Knockdown of Xenopus Xdazl leads to few surviv-
ing PGCs, and those that do survive fail to migrate.43 Similarly, 
Dazl knockout mice have few germ cells that survive into the 
adult, in both males and females.49 This defect is first evident at 
the gonocyte stage in embryonic testes. In a mixed genetic back-
ground, Dazl null testes are sparsely populated with germ cells 
by embryonic day 19 (E19),49 while increased germ cell apoptosis 
is seen by E14.5 in a pure C57/Bl6 background.63 Additionally, 
Dazl null ESCs fail to differentiate to PGCs in vitro, while PGCs 
in vivo fail to properly erase genomic methylation marks.45 These 
defects together indicate a problem in PGC development and dif-
ferentiation, similar to those seen in Xenopus. Though few PGCs 
are present in Dazl null mice and frogs, the presence of germ cells 
indicates that germ cell specification is occurring in the absence 
of Dazl. However, the in vitro ESC differentiation defect may 
hint at a role in germ cell specification.

Further studies on Dazl null mice on a mixed genetic back-
ground have shown additional roles for Dazl in both spermatogo-
nia and early spermatocytes. Though most germ cells are absent 
at birth, some A

s
 (A-single) and A

pr
 (A-paired) spermatogonia sur-

vive, but most do not progress beyond the A
al
 (A-aligned) stages, 

revealing a function for Dazl in spermatogonia differentiation.64 
The few cells that do pass this block are able to enter meiosis, but 
synaptonemal complexes necessary for homologous recombina-
tion fail to form in postnatal day 19 (P19) knockout mice, and 
spermatocytes cannot progress beyond leptonema.65 Null germ 
cells in the pure C57/Bl6 background fail to induce meiosis genes 
in response to the meiotic signal retinoic acid, showing a fur-
ther requirement for Dazl at the onset of meiosis.66 This range 
of defects is specific to germ cells, as wild type spermatogonia 
can colonize and repopulate a Dazl null testis.67 Taken together, 
Dazl has functions during PGC development and migration, 
spermatogonia differentiation and the onset and progression of 
meiosis (Fig. 2). Dazl presumably also functions between these 
known steps, corresponding to known expression, but explicit 
demonstrations of such roles have not yet been shown.

Boule functions complement those of Dazl, and homologs 
are important for meiotic division and spermatid differentiation. 
In Drosophila, boule mutant flies have a male-specific arrest at 
pachynema, prior to metaphase.23 However, meiosis completes 
normally in Boule knockout mice, and haploid round spermatids 

After germ cells are specified, Dazl homologs continue to be 
expressed in gonocytes, through spermatogonia and spermato-
cytes, and into early round spermatids (Fig. 2). Such protein 
expression is seen in humans, mice and frogs,8,48-50 while under-
lying mRNA expression has been confirmed in mammals only 
through pachytene spermatocytes.22,51-53 Though reports of post-
meiotic Dazl expression in mammals have differed,8,33,48 we have 
detected Dazl protein in both mouse and human spermatids (our 
unpublished observations), and Dazl is present post-meiotically 
in Xenopus.50 Additionally, a transgenic reporter driven by the 
Dazl promoter in mice has shown a similar transcription pat-
tern.54 Furthermore, one study found human DAZL protein in 
sperm tails,55 but this result has not been repeated. Such discrep-
ancies in the reports of Dazl expression are likely due to the use 
of different antibodies recognizing varying antigens that are dif-
ferentially accessible during spermatogenesis. Despite the absence 
of confirmed protein and mRNA data at each stage and slight 
variations in species-specific Dazl expression,32 a common pat-
tern of continuous Dazl expression from ESCs through haploid 
spermatids is clear (Fig. 2).

While several papers have reported DAZ gene expression, 
a consensus pattern is not yet clear. In addition to differing 
antibodies, cross-reactivity with Dazl proteins was sometimes 
unavoidable. Habermann et al. found DAZ2 protein in mature 
sperm tails,56 but this was not repeated in two other studies.48,57 
Using several antibodies to control for cross-reactivity with Dazl, 
Reijo et al. showed that DAZ is present only in spermatogonia 
and spermatocytes, with rare expression in spermatids.48 DAZ 
protein has been confirmed in human spermatogonia, though 
not in spermatocytes (Fig. 2, DAZ green line).57 All four DAZ 
genes are transcribed in humans,57 further complicating expres-
sion studies of DAZ.

Interestingly, though DAZ family proteins are predominantly 
present in the cytoplasm, occasional nuclear localization is also 
observed. In flies, Boule protein is initially in the nucleus of early 
spermatocytes, and then transits to the cytoplasm just before 
metaphase,41 though this is not seen in mammals.8 Similarly, 
human and mouse Dazl is nuclear in gonocytes,48,58 and may 
translocate from the nuclei of spermatogonia into the cytoplasm 
of spermatocytes.48 This translocation of Dazl has not been con-
firmed, but nonetheless raises an intriguing question of why DAZ 
family proteins localize to the nuclei of certain cell types. DAZ 
family proteins may sequester certain transcripts in the nucleus, 
or could be involved in mRNA processing. However, nuclear 
localization of Drosophila Boule is dispensable for its function, 
raising the possibility that Boule is simply stored in the nucleus 
prior to its function in the cytoplasm.41 However, the common 
presence of Dazl in the nuclei of spermatogonia in multiple spe-
cies suggests important functionality. What this role is remains 
to be seen, but will likely be important in fertility.

Functions of DAZ Genes during Spermatogenesis

Because of the broad evolutionary conservation of the DAZ fam-
ily, the functions of DAZ genes have been examined in a num-
ber of species, revealing requirements for DAZ family genes at 
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XX (female) ESCs, but not XY (male) ESCs.46 However, Boule 
expression has not been reported in ESCs of either sex, and 
Boule null female mice have no germ cell defects.10,42 While these 
experiments suggest in vivo roles for the ESC-expressed Dazl, the 
results for Boule and DAZ underscore the ability for compensa-
tion among the DAZ family when expressed in the right time and 
place. Together with the data that different homologs can func-
tionally replace each other, the similar in vitro results for each 
DAZ family gene suggest that all DAZ family genes can function 
through similar mechanisms.

Candidate RNA Targets for DAZ Family Proteins

Though many functions of DAZ family genes are known (dis-
cussed below), relevant and validated RNA targets are less clear. 

are abundant.42 Instead, there is a global arrest at step 6 of spermio-
genesis, with varying defects in acrosome biogenesis and a com-
plete lack of elongating spermatids.42 Despite the lack of a meiosis 
phenotype in Boule null mice, Boule regulation of meiosis is likely 
conserved among animals. A pachytene arrest similar to that seen 
in flies occurs in C. elegans with a mutation in the Boule homo-
log daz-1, but only in females.25 In addition, a human BOULE 
transgene can restore meiosis in boule mutant flies,68 and a lack of 
BOULE protein has been associated with meiotic arrest in men.36 
We therefore proposed that Dazl and Boule redundantly regulate 
the progression to meiotic metaphase in mice, and that Dazl can 
compensate for the loss of Boule in spermatocytes.42 While this 
model has not yet been tested, the accumulating evidence suggests 
that Boule regulation of meiosis is conserved in mammals.

Additionally, though knockout mice revealed a novel role for 
Boule in spermatid differentiation, this function may also be pres-
ent in flies. In boule mutant flies, it was noted that the pachytene-
arrested spermatocytes did not differentiate,23 a phenotype not 
common to other meiosis-arrest mutants. For example, flies with 
a mutation in the putative Boule target, twine, have a similar mei-
otic arrest, but many meiosis-arrested spermatocytes in those flies 
begin to elongate.69,70 Since differentiation was also disrupted in 
Drosophila boule mutants, this suggests that the spermiogenesis 
function of Boule is also conserved.

Regardless of which specific spermatogenesis roles are con-
served, the male-fertility requirement of Boule is the same 
between flies and mice. Despite about 600 million years of evo-
lution separating mice and flies, Boule mutations in both spe-
cies lead to a complete lack of sperm due to a global arrest in 
spermatogenesis, and the presence of similar-looking multinucle-
ate cysts in the testis (Fig. 3). Furthermore, these testes defects 
are the only phenotype reported in Boule null animals of either 
species,10,23,39,40,42 highlighting the conservation of a male fertility 
requirement of Boule.

Many experiments have shown a remarkable ability of the 
DAZ family genes to functionally replace each other. Both 
human DAZ and DAZL can partially restore germ cell numbers 
in Dazl null mice, though the rescue was moderate and variable 
among animals.71,72 These experiments showed that human DAZ 
can function during mammalian spermatogenesis, despite the 
lack of direct evidence that DAZ is necessary for human sper-
matogenesis. Interestingly, Xenopus Xdazl can restore meiosis in 
boule mutant flies,26 similar to the human BOULE rescue dis-
cussed above,68 further supporting the model of Boule and Dazl 
redundancy during mammalian meiosis.42

Finally, all three DAZ family genes have been shown to 
enhance human ESC differentiation into germ cells in vitro, with 
overexpression of each DAZ family gene alone or in combina-
tion leading to varying degrees of enhancement.46 When all three 
were expressed together, ESCs were able to differentiate into germ 
cells with molecular features of spermatids, highlighting the wide 
range of functions DAZ family genes play in spermatogenesis. 
A similar transient overexpression of Dazl in mouse ESCs was 
also able to promote germ cell differentiation.73 These ectopic 
expression studies may not reflect in vivo functions, however. For 
example, Boule overexpression enhanced PGC differentiation in 

Figure 3. Boule testis function is conserved in flies and mice. Despite 
the wide divergence of flies and mice, Boule mutations in each species 
leads to male-only sterility due to a global arrest of spermatogenesis. 
Mature sperm (red arrowhead) and elongating spermatids (black 
arrowhead) are abundant in the testis tube of wild type flies, and for 
the wild-type mouse testis section. Mature sperm (red arrowhead) are 
seen in the lumen of seminiferous tubules and elongating spermatids 
are often located next to the lumen (black arrowhead). However both 
mature sperm and elongating spermatids are completely absent in 
Boule knockout testes of both species. Multinucleate cysts are prevalent 
throughout null testes of both animals (arrows), further highlighting the 
conserved spermatogenesis function of Boule. Fly testes are from 1-day- 
old males and images taken at 10x. Mouse testes are from 3-month-old 
mice and images taken at 10x. Myr, million years.
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a common U
2-10

(G/C)U
2-10

 binding motif among Dazl targets. It 
is not known how prevalent this motif is among testis transcripts, 
but the flexible nature of this motif suggests that Dazl may bind 
a wide range of mRNAs.

Notably, using in vivo UV-crosslinking followed by IP and 
RT-PCR, Reynolds et al. failed to detect Dazl binding to Prm2,81 
a target identified by an in vitro screening method.79 This experi-
ment showed that while in vitro binding studies can correctly 
uncover a particular binding motif, the specific targets identified 
may not be relevant in vivo. Therefore, while multiple studies 
have examined targets of Dazl, only a few candidates have in vivo 
significance.

The most promising in vivo targets are Mvh, Sycp3 and 
Cdc25 homologs (Table 1). Three reports showing Dazl binding 
to Cdc25 homologs76-78 together with meiosis rescue studies in 
flies26,68,74 is strong evidence for in vivo Cdc25 binding. Mice have 
three Cdc25 genes,83,84 and Venables et al. only detected bind-
ing to Cdc25c,76 while Jiao et al. could only detect binding to 
Cdc25a.78 Both of these Cdc25 genes are abundantly expressed in 
the testis,83,84 and whether the differential binding is due to the 
different techniques used, or represents artificial binding due to 
the in vitro systems remains to be seen.

Mvh and Sycp3 were both identified by the in vivo approach,81 
and are related to known Dazl functions. Mvh is highly expressed 
in all germ cells, similar to Dazl, and Vasa homologs have con-
served roles in PGC differentiation.85 In addition, the male ster-
ile phenotype in Mvh knockout mice is due to a final arrest at 
zygonema,85 close to the reported leptotene arrest seen in mixed 
background Dazl null mice.65 Similarly, Sycp3 is an essential part 
of the synaptonemal complex that forms during the early stages 
of meiosis, a time when Dazl has been shown to function.45,65,66 
A demonstrated in vivo interaction, translation defects in knock-
outs and relevance to the observed phenotype together make 
these genes the best candidate targets so far reported, though 
none of these targets are a “magic bullet” that explains the pri-
mary Dazl null phenotype. Similar physiologically relevant data 
are needed for other reported targets in order to confirm their in 
vivo regulation by Dazl.

Using a similar in vivo immunoprecipitation approach, we 
have identified the first candidate targets for Boule in mice 
(VanGompel and Xu, in preparation). We were able to detect 
interactions between Boule and Prm1 and Prm2 mRNAs, genes 
important for round spermatid differentiation. While not a com-
plete list, these targets are directly relevant to the major pheno-
type of spermiogenesis arrest in Boule null mice.

Drosophila boule enhances translation of a Lac-Z reporter carry-
ing the 3' UTR of the Cdc25 homolog twine in vivo, suggesting 
that the fly germ cell-specific Cdc25 homolog is a downstream 
target of Boule.74 In addition, a twine transgene with a tubulin 3' 
UTR was able to rescue meiosis in boule mutant flies, indicating 
that twine translation is absent in mutants. Though this model 
nicely explains the observed meiosis arrests in both Drosophila 
and C. elegans,8,25,74 no direct interaction between any Boule and 
Cdc25 homologs has been shown.

Subsequent research into targets has focused on Dazl homo-
logs. In homopolymeric binding studies, frog, mouse and human 
Dazl preferentially bind polyU RNA.26,75 A SELEX approach 
identified a (G/CU

n
)

n
 motif which is found in the 5'UTR of 

mouse Cdc25c,76 and zebrafish zDazl binds to GUUC, a site 
found in the 3'UTR of Drosophila twine RNA.77 Using GST-
Dazl bound to a column, a 26 bp motif was identified that is 
present in the Cdc25a 3' UTR.78 Another study identified targets 
bound by both Dazl and Pumilio2 (Pum2),79 an RNA-binding 
protein shown to interact with Dazl.80 Follow-up studies con-
firmed Dazl binding to a U-rich motif in Sdad1 mRNA, another 
cell cycle regulator first identified in yeast.79

However, despite multiple reports of candidate targets, there 
is no overlap between lists, and a discrepancy in the Dazl binding 
site, perhaps due to the in vitro approaches used in these experi-
ments. Binding conditions are unlikely to match those found 
in vivo, mRNAs normally in separate cells from Dazl are inap-
propriately brought together, or legitimate targets may be tightly 
bound by endogenous protein, therefore preventing their bind-
ing to Dazl in vitro. To determine in vivo targets, Reynolds et 
al. used endogenous immunoprecipitation from whole mouse 
testes followed by a microarray on co-precipitating RNA, and 
identified 15 targets with high confidence.81 Targets were further 
validated by IP followed by RT-PCR on UV-crosslinked testes 
to reduce non-specific interactions. Dazl binding to Mvh (Mouse 
vasa homolog) and Sycp3 (Synaptonemal complex protein 3) has 
been confirmed, and translation defects for both of these targets 
occurs in Dazl null animals.81,82

Additionally, the presence of the proposed binding sites in the 
15 target genes was analyzed.81 The initial 26 bp motif78 was only 
found in six targets, and was not present significantly more than 
predicted by chance.81 The SELEX defined (G/CU

n
)

n
 motif, 

however, was statistically over-represented in the 3'UTRs of tar-
gets, and was found to be in evolutionarily conserved regions of 
the transcripts. This motif was also found in the eight targets 
previously reported by Jiao et al.78,81 providing strong support for 

Table 1. Candidate in vivo mRNA targets

Gene Candidate target Motif bound References

Fly boule, Zebrafish zDazl twine GUUC 74, 77

Mouse Dazl Cdc25c 5’ UTR GU7GU10GU10GU7 76

Cdc25a 3’ UTR U/AA/GUUC/UAGUAU/AAANAACUUUG/UGAAU/AUG/A 78

Mvh UUCUUCUGUUCUU 81

Sycp3 U6GU3GU3GU4 81, 82

Though many mRNA targets have been reported, the in vivo candidates shown fulfill three criteria: (1) demonstrated in vivo binding, (2) reported 
translational defect in Boule or Dazl null animal model, (3) functional relevance to Boule or Dazl null phenotype.
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depending on the stage of spermatogenesis and what other pro-
teins are present at any given time (Fig. 4). Additionally, while 
the general mechanisms are likely to be broadly conserved, the 
specific contexts and players involved may differ among species. 
Further studies into how other interacting proteins regulate DAZ 
family function will prove fruitful.

While these studies examined the mechanism of DAZ fam-
ily function in vitro, others have shown a similar translational 
role in vivo. Mammalian Dazl is present in active polysomes in 
mouse testes,75 and Drosophila Boule enhances the translation of 
a transgenic reporter through the twine 3' UTR.74 As discussed 
previously, translation of the two Dazl candidate targets, Mvh 
and Sycp3, was reduced in Dazl null testes, further suggesting 
that Dazl is a translational activator in vivo.81,82 Protein of these 
targets was still detectable in Dazl knockouts, however, indicat-
ing that Dazl is acting as an enhancer of translation, and not an 
essential activator as proposed in the Boule-Cdc25 model. While 
the combined evidence for the translational regulation of mRNA 
targets is strong, it is important to note that these data can not yet 
account for the dramatic loss of germ cells in Dazl null mice. Key 
targets that regulate germ cell numbers may not yet be identified, 
or alternate functions that have broader effects may cause the 
observed phenotype.

The DAZ Family as Translational Activators

Most studies have focused on the DAZ family as translational 
activators. This model was first established through the studies in 
Drosophila discussed above, implicating boule in the translational 
regulation of twine.74 Similarly, zebrafish zDazl can stimulate 
translation of a luciferase reporter fused to the twine 3' UTR in 
cell culture.77 Using a tethered assay in Xenopus oocytes in which 
proteins were forced into proximity of reporter mRNAs, Dazl 
homologs stimulated translation through enhanced recruitment 
of 80S ribosomes.86 This translation activation was dependent on 
an interaction with Poly(A) Binding Protein 1 (PABP1), but still 
occurred in the absence of poly(A) tails on reporter constructs. 
This led to a model in which Dazl recruits PABP1 to mRNAs 
in the absence of an adequate poly(A) tail, and thus promotes 
translation.86 This model is particularly intriguing in the con-
text of mammalian spermatogenesis because several transcripts 
are known to be deadenylated prior to translation.87,88 Xdazl was 
similarly shown to activate translation of RINGO/Spy mRNA, 
but in a Pum2 dependent manner.89 Dazl bound target mRNA, 
but could not activate translation until the translational repres-
sor Pum2 dissociated from the transcript. This shows that the 
function of the DAZ family is context dependent, and may vary 

Figure 4. Model for DAZ family gene functions. DAZ family proteins likely function through similar mechanisms and a composite model representing 
known cytoplasmic functions of DAZ family proteins is presented. A generic DAZ family protein (orange circle labeled “D”) bound to RNA is repre-
sented in the middle of the figure. DAZ family proteins have multiple functions, likely dependent on which protein partner they are bound to. Binding 
to PABP1 promotes association with ribosomes and translation, while binding to the repressor Pum2 inhibits translation. Interactions with Dynein may 
mediate transport of mRNA targets. Where mRNA is transported is unknown, but DAZ family proteins may transport targets to and from RNA granules, 
such as the chromatoid body, or to polysomes for translation activation. DAZ family proteins may promote mRNA stability either through the inhibi-
tion of miRNA-mediated degradation, or the promotion of polyadenylation through binding to an unknown factor (beige circle labeled “?”). Increased 
stability may enhance translation, or vice versa. Solid lines represent known mechanisms, while open double-sided arrows represent speculated links 
between known roles.
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determine if Dazl transports targets to the CB or other RNA 
granules in germ cells, and whether other DAZ family proteins 
are similarly involved in transport.

Could the DAZ family transport RNA for safe storage? If pro-
tecting mRNA from degradation is important in spermatogenesis, 
what is the targeting mechanism? A likely candidate is through 
specific miRNAs (Fig. 4). miRNAs are known to inhibit transla-
tion of targets, and this inhibition is often due to miRNA-medi-
ated mRNA degradation.99 Zebrafish zDazl was recently shown 
to prevent miRNA mediated decay of nanos1 and tdrd7 tran-
scripts,100 though direct binding to these mRNAs was not shown. 
Using injections into zebrafish embryos, the authors showed that 
zDazl prevents miRNA mediated inhibition of reporters, depen-
dent on the presence of the GUUC binding motif. Furthermore, 
this motif does not overlap with the miRNA binding site, but was 
necessary for zDazl to stabilize the mRNA.100 Since miRNA is 
present in the chromatoid body, it is an intriguing possibility that 
DAZ family proteins are either protecting targets from miRNA 
within the CB, or are involved in transporting them away from 
miRISC (microRNA Induced Silencing Complex) in germ cells.

While surprising, reduction of mRNA levels of Dazl targets 
has also been reported. Though reduced translation was noted 
for Mvh and Sycp3 in Dazl null mice, transcripts were reduced in 
postnatal day 5 (P5) null testes, a result that contributed to their 
identification as targets.81 This instability was presumed to be a 
consequence of reduced translation, but a direct stability effect 
could not be ruled out.81 Furthermore, quantitative RT-PCR 
using Dazl null embryonic testes has also shown a reduction in 
mRNA of both of these targets.45,66 Those experiments focused 
on the ability of Dazl null germ cells to respond to meiosis sig-
nals, so the reduction was noted only as a failure to initiate meio-
sis. Additionally, a microarray study on P7 wild type and Dazl 
null testes found a large number of transcripts that were reduced 
in knockouts.101 A similar result was obtained in a human micro-
array study on men with DAZ deletions.102 These studies hint 
at a potential role for the DAZ family in maintaining RNA lev-
els, though a direct role for this in vivo has not yet been shown. 
Determining if reductions in transcript levels are due to a direct 
loss of DAZ family genes will clarify these new data.

Finally, in the zebrafish miRNA study described above, 
zDazl induced polyadenylation of transcripts, a novel function 
for the DAZ family. This polyadenylation was independent of 
translation, indicating that mRNA stability is independent from 

Non-Translational Roles for the DAZ Family

In addition to translation activation, DAZ family genes have 
other roles. Several binding partners have been identified (Table 
2 and Fig. 4), and interactions with other RNA-binding proteins 
is a common theme. The mammalian proteins can form homo- 
and heterodimers,8,58,80,90 further indicating similar functions, 
and suggesting a possible mechanism for the flexibility in func-
tionality observed in ectopic rescue studies. The translational 
repressor Pum2 can bind all three DAZ members in humans.80,90 
PABP1 can interact with Boule, Dazl and DAZ homologs from 
frog, mouse and humans,86 while Xdazl also interacts with 
ePABP (embryonic PABP),86,89 and C. elegans DAZ-1 interacts 
with the CPEB (Cytoplasmic Polyadenylation Element Binding 
protein) homolog Cpb-3.91 Both human DAZ and DAZL have 
also been shown to interact with RNA-binding proteins hQK3 
and DAZAP1.80,92 In addition, novel, non-RNA-binding proteins 
DZIP1 and DAZAP2 have been identified as binding partners 
through interaction screens with DAZ and DAZL.80,92,93 Such a 
variety of interactions further supports a model of context-depen-
dent DAZ family function, where specific protein partners medi-
ate a range of roles (Fig. 4). Indeed, which RNA targets DAZ 
family proteins are bound to may also depend on the context 
of other protein partners. The Pumilio family of RNA-binding 
proteins has been shown to differentially bind RNA targets based 
on what protein partners they are bound to,90 and DAZ family 
proteins may utilize a similar mechanism for binding different 
targets.

Mouse Dazl was also found to interact with dynein light chain 
in mouse testes, and can move on the microtubule network in cell 
culture (Fig. 4).94 In a dynein-dependent manner in vitro, Dazl 
can transport mRNA carrying putative binding sites, includ-
ing those found in candidate targets Tpx-1, Cdc25c and Mvh, 
on microtubules. These mRNAs formed perinuclear aggregates, 
at structures presumed to be stress granules, where ectopic Dazl 
also accumulated.94 Active mRNA transport in male germ cells is 
not well-studied, but has been reported. The testis specific kine-
sin KIF17b can shuttle protein-RNA complexes in and out of 
the nucleus,95 and also associates with Miwi and the chromatoid 
body (CB),96 suggesting transport of mRNA to and from the CB. 
In other cell types, mRNA is stored in stress granules to protect 
transcripts from degradation,97,98 a parallel the authors propose 
occurs with Dazl-bound targets.94 Further studies are needed to 

Table 2. DAZ family interacting proteins

Gene Partners Category References

Boule Boule, Dazl, DAZ DAZ Family 8, 80, 90

PABP1, Pum2, Cpb-3 Other RNA-Binding Proteins 86, 90, 91

Dazl Boule, Dazl, DAZ DAZ Family 8, 58, 80, 90

PABP1, ePABP, Pum2, hQK3, DAZAP1 Other RNA-Binding Proteins 80, 86, 90, 92

Dynein, Dzip1, DAZAP2 Non-RNA-Binding Proteins 80, 92, 94

DAZ Boule, Dazl DAZ Family 58, 80

PABP1, Pum2, hQK3, DAZAP1 Other RNA-Binding Proteins 80, 86, 92

Dzip1, DAZAP2 Non-RNA-Binding Proteins 80, 92, 93
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Conclusion

Recent findings are painting a new picture for DAZ family-medi-
ated regulation of targets, beyond the simple model of translation 
activation. Their roles in translation activation have been well-
established using many systems, but likely represent only one of 
many functions. Specific mechanisms may differ in the broad 
range of cell types in which this family functions, and DAZ fam-
ily genes may play multiple roles within the same cells. This range 
of functions may be determined in part by which proteins the 
DAZ family is bound to at any given time. Yet despite the vari-
ety of functions and mechanisms, the DAZ proteins have been 
highly conserved, and can still functionally replace each other in 
limited contexts. Such strong selective pressure on reproductive 
genes is rare, and suggests an essential role for these genes in the 
germ cells of animals. While possible mechanisms are emerging, 
why these functions are required in germ cells of all animals, and 
why humans require more DAZ family genes than other species 
are puzzles that remain. Much work is needed to address these 
interesting questions.
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translation activation. Furthermore, polyadenylation may be an 
alternate method of PABP recruitment and subsequent trans-
lation activation. How zDazl mediates polyadenylation is not 
known, but it is likely through an as yet unidentified binding 
partner (Fig. 4). Cytoplasmic polyadenylation is well described 
during oogenesis (reviewed in ref. 103), and is beginning to be 
appreciated in spermatogenesis.104 In one well-studied mecha-
nism in females, CPEB binds to cytoplasmic polyadenylation ele-
ments and recruits the polyadenylation apparatus. As mentioned, 
C. elegans DAZ-1 interacts with a CPEB homolog,91 suggesting a 
role for DAZ family genes in polyadenylation in worms. In mice, 
knockout of the testis-specific cytoplasmic poly(A) polymerase 
Tpap leads to a spermiogenesis arrest similar to that seen in Boule 
knockouts.42,105 Whether Boule and Tpap interact is not known, 
but the similar knockout phenotypes suggest that they may func-
tion in the same pathway, perhaps through regulation of mRNA 
stability. It is also possible that translation activation is a con-
sequence of increased mRNA stability through polyadenylation, 
and not a direct function of the DAZ family. Determining how 
Boule regulates targets will help determine if such mechanisms 
are broadly used, and what roles they play in spermatogenesis.
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