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Abstract

Cells adapt to stress by altering gene expression at multiple levels. Here, we propose a new mechanism regulating
stress-dependent gene expression at the level of translation, with coordinated interplay between the tRNA
epitranscriptome and biased codon usage in families of stress-response genes. In this model, auxiliary genetic
information contained in synonymous codon usage enables regulation of codon-biased and functionally related
transcripts by dynamic changes in the tRNA epitranscriptome. This model partly explains the association between
synchronous stress-dependent epitranscriptomic marks and significant multi-codon usage skewing in families of
translationally regulated transcripts. The model also predicts translational adaptation during viral infections.

Introduction

The ‘central dogma’ defines the ‘what’ of biology—genes
are transcribed into messenger RNAs that are translated
into proteins. But it says nothing about the ‘when’ or ‘how
much’ of gene expression. The application of systems-level
“omic’ technologies has led to the discovery of
information-rich and combinatorial scheduling systems
for gene expression involving dozens of enzyme-catalyzed
chemical modifications of DNA, RNA and proteins—the
epigenome and epitranscriptome. Here, we explore the
evidence for a mechanism of translational control of gene
expression in which the earliest and best-known RNA
‘marks’—the dozens of modified nucleosides in the trans-
fer RNA (tRNA) epitranscriptome—interact with what
amounts to families of transcripts that possess skewed
usage patterns for many codons to fast-track production
of survival proteins during stress.

The scheduling of gene expression at the level of tran-
scription is well established in the literature of transcrip-
tion factors, splicing, and messenger RNA (mRNA)
stability, among many other mechanisms, including the
complicated function of micro-RNAs (miRNAs), Piwi-
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interacting RNA (piRNA), small nuclear RNA (snRNA),
long non-coding RNA (IncRNA), tRNA-derived stress-in-
duced RNA (tiRNA), and tRNA-derived RNA fragment
(tRF) RNA [1]. The idea of heritable mechanisms for
scheduling transcription in eukaryotic cells has more re-
cently emerged in the form of the epigenome, with unique
DNA and histone protein modification patterns in each
cell type determining which genes are transcribed [2, 3].
However, there has been a long-standing dilemma posed
by the observation that the correlation between changes
in levels of mRNA and protein can be relatively poor, with
correlation coefficients on the order of 0.4 [4, 5]. The cor-
relation in changes in mRNA and protein levels improves
somewhat when systematic delays between transcription
and translation are considered [6], but other mechanisms
must exist to account for changes in protein levels that do
not reflect the abundance of their mRNA. Among the
post-transcriptional mechanisms for scheduling gene ex-
pression, protein degradation mechanisms [7] have been
more clearly delineated than translational mechanisms,
with the latter largely focused on translation initiation, ef-
ficiency, and fidelity rather than scheduling [8].
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Enter the epitranscriptome—now defined as the set of
modified ribonucleotides in all forms of RNA, coding
and non-coding (Fig. 1). While more than 120 different
modifications have been cataloged in transfer RNA
(tRNA) and ribosomal RNA (rRNA) over the past
half-century, the term ‘epitranscriptome’ was first ap-
plied in 2012 to the subset of modifications in mRNA,
with the observation of dynamic changes in the levels of
N®-methyladenosine (m®A) in different transcripts [9]. It
is now recognized that virtually every form of RNA con-
tains modified ribonucleotides (Fig. 1), and these have
been extensively reviewed elsewhere [10—16]. Significant
advances have been made in defining the role of individ-
ual modifications in regulating RNA stability and trans-
lation rate, efficiency, and fidelity [10, 17-37]. However,
the most mechanistically detailed models for systems-
level functions of RNA modifications have arisen from
studies of stress reprogramming of the tRNA epitran-
scriptome, and were further supported by computational
studies of codon usage and the analysis of codon pausing
using ribosome profiling of cells deficient in or ‘addicted’
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to tRNA modification enzymes [21-23, 25, 27-29, 34,
38—40]. Based on a growing literature, we propose a
model for scheduling protein synthesis of many crucial
stress-response proteins involving coordinated interac-
tions between the tRNA epitranscriptome and a select
group of transcripts possessing skewed usage patterns
for many codons (Fig. 2a). Supporting this ‘translational
control model; stress-induced changes in tRNA modifi-
cations that regulate the translation of codon-biased
transcripts have been observed in bacteria, yeast, and
mouse cells [21-23, 27-29, 34, 38, 39]. Defects in
tRNA modifications and specific tRNA-modifying en-
zymes have also been shown to coordinately regulate
the synthesis of groups of proteins from codon-biased
genes in human cancer models and many other cell
types [21-23, 25, 27-29, 34, 38—41]. Here, we consider
the general principles of how dynamic changes in the
tRNA epitranscriptome can coordinately regulate the
translation of codon-biased transcripts. We note that this
model is not applicable for all the expressed transcripts in
a cell, but the ~ 5 to 10% that have statistically significant
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Fig. 1 Prototypical RNA species and their modifications. All types of RNA are modified; structures for three of more than 120 modifications are
shown in the lower panel. RNA secondary structures were adapted from the following sources: XIST long non-coding RNA (IncRNA) [82]; 55 and
5.85 rRNA, tRNA, microRNA (miRNA), small nuclear RNA (snRNA), transfer-messenger RNA (tmRNA), 16-18S, 23-28S rRNA [83]. Abbreviations: ac'c
N4-acetylcytidine, ac’Cm N4-acetyl-2-O-methylcytidine, Am 2-O-methyladenosine, Cm 2-O-methylcytidine, Gm 2-O-methylguanosine, / inosine,
A Né6-isopentenyladenosine, mcm’U 5-methoxycarbonylmethyluridine, m°C 5-methylcytidine, m*U 5-methyluridine, m°A N®-methyladenosine, nt
nucleotide, 3-U/A 3"-uridylation/adenylation, 2-O-Me 2'-O-methylation, Um 2'-O-methyluridine, Y pseudouridine
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Fig. 2 (See legend on next page.)
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phosphatase, PLS partial least squares, Thr threonine

Fig. 2 tRNA reprogramming and codon-biased translation of stress-response proteins. a Model illustrating the effects on Mycobacterium bovis
BCG of hypoxia encountered during infection. Hypoxia induces expression of 48 proteins in the Dos regulon that causes the cell to become
dormant. b The tRNA epitranscriptome consists of over 120 post-transcriptionally inserted modified ribonucleosides. During hypoxia, the relative
quantities of 40 tRNA modifications (rows in heat map) change as a function of time during the response to the stress (days 0-21; columns in
heat map) and again during O, resuscitation (days 22-24). In early hypoxia (day 9), the wobble position of tRNAThr
ACG, switches from 5-methoxyuridine (mo°U) to 5-oxyacetic acid uridine (cmo’U; structure shown). € RNase/LC-MS maps cmo°U to the wobble
of tRNAThVY. d Families of response genes are organized by biased use of synonymous codons. The heat map shows over-use (purple) and
under-use (yellow) of 62 codons (columns) across all genes (rows) in BCG. The gene for DosR, the master regulator of the 48-gene Dos regulon,
over-uses the ACG codon and under-uses ACC, the most common Thr codon. e Codon analysis of proteomics data shows that > 80% of proteins
upregulated in early hypoxia use ACG to code for Thr, whereas downregulated proteins are enriched in the so-called ‘optimal’ codon for Thr,
ACC. Evidence that the auxiliary information in the genetic code is utilized for regulatory purposes is supported by examining codons associated
with highly upregulated and downregulated proteins across all time-points of hypoxia in BCG. Pairs of synonymous codons are differentially
enriched in upregulated and downregulated proteins, with the codon enrichments defining functional gene families. Alk phos alkaline

USU which reads the codon

deviations in codon-usage patterns for multiple codons,
relative to genome averages. We primarily illustrate de-
tailed features of our model with our work on the myco-
bacterial response to hypoxic stress. We conclude by
describing the potential implications of the tRNA epitran-
scriptome and codon-usage patterns for viral infections.

Different stresses uniquely reprogram dozens of
tRNA modifications

All cells possess ~30-50 post-transcriptional modifica-
tions of ribonucleosides in RNA—known as the epitran-
scriptome (see Fig. 1 for sample structures and Fig. 2b for
names). With 10% of the ~ 80 nucleotides in tRNA modi-
fied from A, C, G, and U, tRNA is the most heavily deco-
rated form of RNA, greatly exceeding the diversity and
frequency of modification levels in mRNA, rRNA, and
other forms of RNA. Many of the > 120 modified ribonu-
cleosides identified to date [42, 43] influence tRNA stabil-
ity [17, 18, 20] and translational speed [30] and fidelity
[19, 26, 31-33, 36]. For example, 1-methyladenosine
(m'A) at position 58 of both yeast and human tRNAiMet
has been reported to be crucial for its stability [17, 18],
whereas ‘restrictive’ modifications at the tRNA anti-
codon wobble uridine position 34 in prokaryotes and eu-
karyotes, such as 5-methylaminomethyl-2-thio (mnm?’s?)
and 5-methoxycarbonylmethyl-2-thio (mcm®s?), re-
spectively, enhance the translation of the cognate
codons by enhancing ribosome A-site occupancy,
stacking interactions for codon—anticodon interactions,
and prevent frame shifting [19, 26, 36]. Similarly, modifi-
cations at tRNA position 37 adjacent to the anticodon
loop, such as Né-threonylcarbamoyladenosine (t°A)
and N6-isopentenyladenosine (i°A), are thought to pre-
vent frame shifting, thereby enhancing the fidelity of
translation [19, 33, 36].

An important enabler in the study of epitranscriptomics
was the development of sensitive mass-spectrometry-
based ‘-omic’ approaches to simultaneously identify
and quantify the full set of modified ribonucleosides

[44-47], which complements published studies quan-
tifying individual modification systems and their link
to codon-biased translation [22, 23, 38, 40, 48-51].
Using a sensitive method based on liquid chromatog-
raphy—tandem mass spectrometry (LC-MS/MS) [44,
52], it was found that cells respond to different
stresses by uniquely changing the relative quantities
of ~30-50 tRNA modifications. It was discovered
that tRNA modifications behave in a coordinated
manner to control gene expression at the level of
translation during cell stress responses—the first facet
of the translational control model (Fig. 2a). Subse-
quent studies profiling the tRNA modification land-
scape from bacteria [34] to yeast [21, 27, 39, 53] to
mammalian cells [29] subjected to a variety of
stressors revealed the generality of tRNA epitran-
scriptome reprogramming as part of the cell-stress re-
sponse. For example, mycobacteria respond to
hypoxic stress by gradually shifting from logarithmic
growth to a non-replicative, drug-resistant dormant
state over several weeks. The heat map in Fig. 2b il-
lustrates the tRNA modification reprogramming dy-
namics in response to hypoxia—unique patterns of
increased (red) and decreased (green) levels of ~40
tRNA modifications (rows) at each time-point (col-
umns) during hypoxia (days 0-21) and subsequent
rescue by re-aeration (days 22-24). A striking ‘oxic’
pattern of tRNA modification changes can be ob-
served common to both pre-hypoxia (day 0) and dur-
ing re-aeration (day 24) conditions, but not during
hypoxia (days 4—21) [34]. These tRNA modification
signatures are >80% predictive of specific chemical
stresses in yeast and hence contain significant infor-
mation relevant to the underlying stress-response
mechanisms [27, 39]. How this population-level infor-
mation, which has been observed by others [54, 55],
can be linked to mechanisms governing translation
became apparent when stress-regulated modifications
were mapped to specific tRNAs.
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Stress reprograms specific wobble modifications
in specific tRNA isoacceptors

The link between stress-specific modification ‘repro-
gramming’ and the regulation of protein translation be-
came clearer through mapping the stress-altered
ribonucleosides to specific tRNA isoacceptors (Fig. 2c)
[44]. By leveraging another mass-spectrometry (MS)-
based approach similar to that applied to proteomics—
MS-sequencing of specific tRNAs [44, 45]—the exact
location of stress-altered ribonucleosides could be
mapped in individual tRNA molecules. For example,
the 5-oxyacetic acid uridine (cmo°U) modification ob-
served to increase as part of the early response to hyp-
oxia (day 6-9) in mycobacteria (Fig. 2b, yellow box)
was mapped to the wobble position of tRNA™ that
reads the ACG codon (Fig. 2¢). Using a systems-level
codon analytics tool [56], this observation led to a key
discovery—that cognate codons of tRNAs possessing
stress-altered modifications, such as cmo®U-dependent
ACG, are enriched in some families of stress-response
genes. Furthermore, these ACG-enriched transcripts
are also over-utilizing other codons. Our findings sup-
port the idea that the auxiliary genetic information
found in the form of synonymous codons is utilized
during stress responses. In addition, we and others have
predicted that there exists a system of differential use
of subsets of the genetic code, which can also be de-
fined as using codon bias as auxiliary genetic informa-
tion [28, 34, 38, 57]. In many cases, one of the
synonymous codons specific to each amino acid is dif-
ferentially enriched in genes coding for proteins that
are translationally regulated by epitranscriptomic marks
during a specific stress (Fig. 2d, e). This same
phenomenon linking stress-dependent changes in the
wobble modifications of specific isoacceptors or modifi-
cation enzymes to biased use of the cognate codon in
stress-response genes has been observed in diverse cell
types by various groups [21-23, 25, 27-29, 34, 38-40].

Building the case for codon-biased
translation—Families of stress-response genes are
distinguished by biased use of synonymous
codons

The idea that there is a system of biased codon usage in
groups of transcripts represents the second facet of the
translational control model (Fig. 2a). While obviously af-
fected by the GC-content of the genome of an organism,
the biological functions of biased codon usage have been
the subject of numerous studies over the past several de-
cades and include proposals for a relationship between
codon usage in 5’-mRNA secondary structures and trans-
lation initiation, modest correlations between enrichment
with ‘optimal’ codons and the abundance of cognate tRNA
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isoacceptors in the pool, and differential effects of codon
usage on translation elongation rate, translation fidelity
and, likely, protein folding [22, 30, 58—68]. Building on the
observation that genes encoding amino acid biosynthesis
pathways are enriched with rare codons that are read by
tRNAs that remain highly charged during amino acid star-
vation [64, 69], several groups have proposed the general
idea of a role for biased codon usage in families of
stress-response genes [21-23, 25, 27-29, 34, 38—40]. This
idea was supported by gene-specific analysis of
codon-usage patterns across eukaryotic and prokaryotic
genomes using an algorithm to quantify usage frequencies
of each of the 62 codons in each gene in an organism rela-
tive to genome-average values. The genomes of Mycobac-
terium bovis BCG and the budding yeast Saccharomyces
cerevisiae (Fig. 3; Additional file 1) [34, 38, 56] illustrate
the point that there are hundreds of genes with biased
codon-usage patterns (Fig. 3, ‘over-used’ codons in yellow,
‘under-used’ codons in purple) relative to genome aver-
ages. It is important here to clarify the difference between
‘over-used’ codons and the so-called ‘optimal’ codons—co-
dons that are the most frequently used based on a genome
average, with a high abundance of the decoding tRNAs in
the pool. There is a widely held view that the most abun-
dantly expressed proteins are the result of efficient transla-
tion of genes enriched in ‘optimal’ codons that match the
most abundant tRNAs in the pool [65, 66]. This has led to
the current practice of codon optimization for foreign
genes expressed in a different host cell, in which the co-
dons in the foreign gene are replaced with the ‘optimal’
codons of the host cell (e.g., see [70]). However, ‘optimal’
codons only reflect very specific high-abundance proteins
expressed in unstressed cells grown under optimal condi-
tions, with the many codon-biased genes not falling into
the category of being highly expressed [56, 71].

In contrast to classical codon optimality and many of
the proposed functional models for genomic codon bias, a
number of studies in eukaryotes and prokaryotes have
now shown that groups or families of genes involved in
stress responses systematically over-use and under-use
specific ‘non-optimal’ synonymous codons. This is illus-
trated by the observation that the 48 genes in the DosR
regulon in M. bovis BCG, which are essential for survival
under hypoxic stress [34, 72], are enriched in G- and
C-ending codons [34] (Figs. 2d and 3). More examples of
this idea of codon-biased stress-response genes are pro-
vided by amino acid biosynthesis genes that are crucial
during amino acid starvation in Escherichia coli [64, 69],
Elongator-dependent translation of codon-biased families
of cell-division genes [22, 23], and wobble uridine U34
modification-dependent regulation of glycolytic genes by
codon-biased expression of the HIFIA gene in melanoma
cells [40], as well as tRNA modification-dependent and
codon-dependent regulation of the oncoprotein DEK,
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Fig. 3 Patterns of synonymous codon usage define families of stress-response genes and might predict epitranscriptomic responses to viral
infections. a The idea that translation regulation uses auxiliary genetic information in the form of codon bias arose by linking systems-level
analyses of stress-induced proteomic upregulation and downregulation [21, 28, 34] with codon analytics [28, 38]. The heat maps shown here are
examples of genome-level application of a codon-counting algorithm and visualization approaches [28, 34] to the genomes of Mycobacterium
bovis BCG and Saccharomyces cerevisiae. The maps show over-use (yellow) and under-use (purple) of 62 codons (columns) across all genes (rows).
For each organism, clusters represent groups of genes that have distinctly different codon-usage patterns compared with genome averages, with
two opposing groups of genes identified in humans. As shown in Fig. 2d, the smaller of two clusters of codon-biased genes in M. bovis BCG
consists of the DosR regulon of 48 genes that control the response to hypoxic stress [34]. b Widely differing codon-usage patterns in the human
genome and a representative dengue serotype 2 genome (DENV2) could predict reprogramming of the host cell tRNA epitranscriptome both to
accommodate the codon mismatch in the viral RNA genome and to respond to the stress of viral infection. Codon frequency data were
generated using the web-analysis interface on the published Codon Utilization Tool (CUT) [56] and the publicly available human and dengue
sequence information (Human refseq_hg38 and dengue virus 2, complete genome NCBI Reference Sequence: KM204118.1), together with human
and dengue frequency data found in Additional file 1. The analysis shows that the DENV2 genome is biased toward A-ending codons, whereas
the human genome is biased toward G- and C-ending codons. This leads to the testable hypothesis that DENV2 infections will cause changes in

translation of codon-biased host stress-response genes

the host cell tRNA pool, both modifications and copy numbers, to simultaneously accommodate translation of the viral mRNA and facilitate

J

which regulates the IRES-dependent translation of the tran-
scription factor LEF1 in breast cancer metastasis models
[41]. These observations of codon bias in gene families and
global regulators further support the idea that some tran-
scripts will be more efficiently translated under specific stress
conditions through stress-induced changes in the tRNA
epitranscriptome in order to optimize translation and levels
of the appropriate protein response systems and networks
(Fig. 2). The evidence for this model is discussed below.

Stress-reprogrammed tRNAs are required for
translation of codon-biased mRNAs encoding
stress-response proteins in bacteria, yeast, and
mammals

That there is a mechanistic link between the stress-re-
programmed tRNA epitranscriptome, the existence of
gene-specific codon-usage patterns, and selective trans-
lation of codon-biased mRNAs for stress-response genes
(Fig. 2a) is borne out in a variety of studies in bacteria,
yeast, and human cells [21-23, 25, 27-29, 34, 38-40].
The most striking illustrations of this mechanism arise
from linked analysis of stress-induced changes in the
transcriptomes, epitranscriptomes, and proteomes in
yeast and bacteria [21, 28, 34]. In the case of M. bovis
BCG subjected to hypoxic stress, multivariate statistical
analysis of proteomic data revealed that pairs of syn-
onymous codons were differentially enriched in genes
for proteins that were upregulated or downregulated
across the hypoxia time-course (Fig. 2e). For example,
the early-response (day 9) of mycobacteria to hypoxic
stress involves upregulating proteins from genes
enriched with the Thr codon ACG and downregulating
proteins from genes enriched with the synonymous Thr
codon ACC (Fig. 2e, left panel). That the expression of
codon-biased gene families is controlled mainly at the
level of translation and not transcription was established
by correcting the proteomic analyses for mRNA expres-
sion and protein abundance differences [21, 28, 34, 38].

We have further observed that this dichotomous pattern
of differentially used codons generalizes in all sampled
time-points of the mycobacteria hypoxic stress response
(Fig. 2e)—under a specific stress condition, most upreg-
ulated proteins are enriched with one synonymous
codon, whereas downregulated proteins are enriched
with the partner synonymous codon. It is important to
point out that hypoxic stress increased the translation of
proteins from genes enriched with non-‘optimal’ codons
ACG (Thr), CTA (Leu), GCG (Ala), and GGA (Gly),
whereas their synonymous partners ACC (Thr), CTT
(Leu), GCT (Ala), and GGT (Gly) were all overrepre-
sented in downregulated proteins in hypoxia [34].

In some cases, an organism will use an optimal
codon more than expected and pair it with low-usage
codons in a transcript [21, 28, 38]. Alkylation stress by ex-
posure to methyl methanesulfonate (MMS) increased
Trm9-dependent wobble uridine 5-methoxycarbonylmethyl
(mcm®) and mem®s® modifications linked to tM\IAArg(l_JCU)
and tMAGl“(l_JUC), with increased translation of mRNAs
enriched in the cognate AGA and GAA codons, re-
spectively [27, 38, 53]. Interestingly, however, the
Trm9-dependent codons AGA (Arg) and GAA (Glu)
are enriched in DNA damage and cell-cycle control
genes crucial to surviving alkylation stresses [28, 38].
In addition, the non-optimal codons GAC (Asp), ATC
(Iso), TAC (Tyr), AAG (Lys), and TTC (Phe) are found
paired with AGA and GAA on the transcripts whose trans-
lation is linked to 5-methoxycarbonylmethyluridine
(mem®U) and  5-methoxycarbonylmethyl-2-thiouridine
(mem?s®U) [38]. The identified codon-biased genes are
among those clustering in the heat map of codon usage
in the S. cerevisiae genome shown in Fig. 3. Coupled
with the biased use of synonymous codons in families
of stress-response genes, this more than pair-wise use
of one synonymous codon from a set to control pro-
tein upregulation and downregulation represents a sys-
tematic repurposing of the auxiliary information tied
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to the genetic code for adaptation and survival in a
changing environment.

This association between the stress-altered epitranscrip-
tome and translation of codon-biased stress-response
genes has also been observed in two forms of yeast, the
nematode Caenorhabditis elegans, and human [21-23, 25,
27-29, 34, 38-40]. For example, S. cerevisiae responded to
H,0O,-induced oxidative stress by increasing Trm4
methyltransferase-dependent wobble 5-methylcytidine
(m°C)-modification in tRNALe“(QAA), which resulted in
the selective translation of mRNA from genes enriched in
the cognate TTG codon [21]. Similarly, mitosis and cyto-
kinesis in the fission yeast Schizosaccharomyces pombe is
controlled by Elongator-mediated synthesis of mcm®s” in
tRNAs recognizing AA-ending codons, with these codons
enriched in three different groups of proteins, including
proteins involved in cell division [22, 23]. More recently,
Close and colleagues demonstrated that the carcinogenic
and drug-resistant phenotype of human melanoma cells
required Elongator-dependent translation of codon-biased
mRNAs, including the stress-response mediator HIFIA
[40]. These results are consistent with a general mechan-
ism for enhancing or scheduling translation of proteins
needed by the cell to mount an appropriate response to
specific stress conditions.

Further support that stress-regulated tRNA modifica-
tions are directly linked to expression of codon-biased
survival proteins has emerged in the previously de-
scribed studies in yeast, C. elegans, and human [21-23,
25, 27-29, 38, 40]. In all cases, cells lacking the
tRNA-modifying enzymes did not show the specific,
modification-dependent codon-biased translation and
had distinct proliferative defects [21-23, 25, 27-29, 38,
40]. In yeast, this rendered the cells hypersensitive to
killing by the stresses [21, 28, 39], whereas in human
melanoma cells, this reduced the tumorigenicity and
drug resistance of the cancer cells [40]. For example,
loss of Trm4 in S. cerevisiae prevented m°C formation
at the wobble position of tRNALe“(QAA), abolished se-
lective translation of mRNA from genes enriched in the
TTG codon, and resulted in hypersensitivity of cells to
H,O, [21]. Similarly, deletion of Trm9 prevented for-
mation of its product mem®U in tRNAArg(QCU), with a
concomitant enhanced sensitivity to MMS [28, 38, 67].

In mammals, a good example of a specific tRNA epi-
transcriptomic mark regulating the translation of
codon-biased mRNAs has been identified in the synthe-
sis of the stress-important selenoproteins [29], which
include the H,O,-detoxifying glutathione peroxidase
(Gpx) and thioredoxin reductase (TrxR) enzymes. The
approximately 25 known selenoproteins contain the
21st amino acid selenocysteine (Sec). Notably, Sec does
not contain a dedicated codon, but instead uses a
recoded stop-codon (UGA) along with specific wobble
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U modifications in tRNASRSES) and many other fac-

tors to promote the incorporation of Sec into the
growing peptide chain [73-75]. Stress-responsive seleno-
proteins are an excellent example of our translational con-
trol model, albeit very specific, as corresponding
transcripts have at least twice as many stop codons as ex-
pected (ie., biased codon usage) and require increased
5-methoxycarbonylmethyl-2'-O-methyluridine (mcm®Um)
modifications in tRNA to increase the levels of some Gpx
and TrxR enzymes in response to HyO, [29, 56]. The
observations of Close and coworkers in human melan-
oma cells and breast cancer cells provide two examples
of mechanisms where tRNA modification-enzyme-
dependent codon-biased translation of a master regula-
tor controls network-based responses [40, 41].
Although the observations of codon-dependent transla-
tional control of HIF1la and DEK are not examples of
broad translational control itself, they do nevertheless
control broad transcriptional networks. Combined,
these findings further support the notion of coordi-
nated interactions between the tRNA epitranscriptome
and biased codon usage to enhance translation of sur-
vival proteins.

Implications of a system linking the
epitranscriptome to a code of codons—Viral
infections

One example of how the proposed epitranscriptome-based
gene regulation model can be ‘translated’ to other arenas
involves viral infections. Viruses depend on the transla-
tional machinery of the host cell for survival and replica-
tion, which poses a significant problem in light of the
highly different codon-usage patterns in the viral and
host-cell genomes. Consider, for example, RNA-based Fla-
viviruses that rely on the translational machinery of the
host for immediate synthesis of viral proteins essential for
replication and survival after infection. A comparison of
the codon usage frequencies in the human genome and
the ~ 11 kb genome of a representative Flavivirus—dengue
virus serotype 2 (DENV2)—showed that the viral RNA
genome is heavily biased toward A-ending codons, whereas
the human genome is biased toward C- and G-ending co-
dons (Fig. 3b), in spite of the similar GC content of the
two genomes (human 42% GC versus DENV2 46% GC).
This raises a potential problem for the virus, in part when
it needs to translate what are rare codons for the host and
for which the cognate tRNAs are present in the pool at
low levels or with inappropriate modifications. This mis-
match between codon usage and the tRNA pool could lead
to stalled translation, mistranslation, and proteotoxic
stress, which would be detrimental to the virus. In addition
to potentially optimizing the levels of specific host tRNA
isoacceptors as a strategy by the virus to ensure efficient
translation of its unique genome, our translational control
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model predicts the need to reprogram the host tRNA epi-
transcriptome, particularly at the wobble uridine bases to
enhance decoding of what would normally be considered
rare A-ending codons for the human host.

An intriguing feature of the dengue genome raises ques-
tions about the ability of the virus to co-opt the host
translational machinery to facilitate translation of viral
proteins in the face of codon mismatch. Among the ten
proteins coded by the dengue genome, the NS5 protein is
an RNA methyltransferase that catalyzes formation of
7-methylguanosine (m’G) and 2’-O-methyladenosine
(Am) in the GpppA cap added to the viral RNA, and add-
itionally forms Am throughout the viral genome [76]. In
vitro reactions revealed that NS5 can methylate human
rRNA [76], raising the possibility of a viral methyltransfer-
ase that could directly coordinate reprogramming of the
host translational epitranscriptome to enhance translation
of the viral genome. Recent studies using a similar
LC-MS/MS approach to ours but applied instead to the
analysis of non-size-selected, hydrolyzed total cellular
RNA and viral RNA isolated from RNA-virus-infected cell
cultures showed changes in RNA post-transcriptional
modifications (PTMs) occurring following viral stress on
host cells [54, 77]. Future studies are needed to carefully
deconvolute this initial landscape of PTMs in terms of
their site, function, and interplay in the cell-stress re-
sponse. Additionally, the promiscuity of the dengue NS5
methyltransferase for both rRNA and tRNA substrates is
reminiscent of known dual-specificity RNA-modifying en-
zymes such as pseudouridine synthase RluA and RNA
methyltransferase RImN in E. coli that modify both tRNA
and rRNA bases [78, 79]. Could this be a common mech-
anism to synchronize changes across epitranscriptomes?
Recent work demonstrating the synchrony between cyto-
solic and mitochondrial translation [80] raises yet another
interesting possibility of crosstalk between both epitran-
scriptomes that can build on the translation control model
we present here. With a direct-acting methyltransferase
and known modulatory effects on the cellular metabolism
of the host [81], the Flavivirus—human host-cell infection
model presents an attractive system to probe the ribonu-
cleome and epitranscriptome reprogramming of the host
cell in response to viral stress and to gain insights into po-
tentially important mechanisms.

Concluding remarks

Our proposed mechanism for translational adaptation
involving coordinated interplay between the tRNA epi-
transcriptome and biased codon usage represents a
complicated interaction among diverse systems and is
well supported by observations in prokaryotes and eu-
karyotes. In addition to generating numerous testable
hypotheses concerning controlling gene expression at
the level of translation—such as using codon bias as a
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predictor of epitranscriptome dynamics—this system
has important implications for synthetic biology in the
form of genetic tools to tune the pool of tRNA molecules
and the dozens of programmable tRNA modifications, for
predicting translational adaptation during viral infections,
and for expression of foreign genes in cells.
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