
Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 11 (2019) 170-179
Cognitive & Behavioral Assessment

Breadth and depth of working memory and executive function
compromises in mild cognitive impairment and their relationships to

frontal lobe morphometry and functional competence
Leticia Garcia-Alvareza,b,c,1, Jesus J. Gomarb,d,e,1, Amber Sousad, Maria P. Garcia-Portillaa,b,c,
Terry E. Goldbergf,*

aDepartment of Psychiatry, University of Oviedo, Oviedo, Spain
bCentro de Investigaci�on Biom�edica en Red de Salud Mental, CIBERSAM, Spain

cFundaci�on para la Investigaci�on e Innovaci�on Biosanitaria del Principado de Asturias (Finba), Oviedo, Spain
dThe Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institute for Medical Research, Manhasset, NY, USA

eFIDMAG Hermanas Hospitalarias Research Foundation, SantBoi de Llobregat, Spain
fDivision of Geriatric Psychiatry, Psychiatry, Columbia University Medical Center, NY, USA
Abstract Introduction: The extent of working memory (WM) and executive function (EF) impairment in
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mild cognitive impairment (MCI) is not well-characterized.
Methods: We compared 48 patients with MCI, 124 noncognitively impaired elderly healthy con-
trols, and 57 patients with Alzheimer’s disease (AD) on multiple WM/EF measures, frontal lobe
integrity indexes, and functioning.
Results: Patients withMCI demonstrated worse performance on nearly allWM/EF tests. This profile
of impairment was refined in a factor analysis that identified three primary WM/EF constructs: WM
storage; speed and controlled visual search; and manipulation of information and problem solving.
EF impairments were associated with reductions in prefrontal cortical thickness. WM/EF accounted
for over 50% of the variance in functional competence.
Discussion: In MCI, WM/EF impairments are far from rare, based on specific compromises to fron-
tal cortex circuitry, and are associated with loss of everyday functioning. WM/EF impairments, even
at this potentially prodromal stage of AD, have clinically deleterious consequences.
� 2019 Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Background

Mild cognitive impairment (MCI) is considered to be a
symptomatic prodromal phase of Alzheimer’s disease
(AD) [1,2]. Diagnostic criteria for MCI include objective
evidence for cognitive impairment typically involving
memory and subjective memory complaints, in the context
of preserved functional abilities [3,4]. However, MCI is a
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heterogeneous and complex clinical entity [5]. Some form
of working memory (WM) and executive function (EF)
impairment may be evident in MCI, not only in the nonam-
nestic form of the disorder, but also in the most common am-
nestic presentation [6–8]. These cognitive functions
generally refer to “high-level” processes that coordinate
cognitive, emotional, and behavioral functions to optimize
performance in the pursuit of goals [9,10]. Processes
subserving these functions include planning and problem
solving, set shifting, information updating, simultaneous
storage and manipulation of information, and inhibition of
prepotent responses, as well as more basic short-term main-
tenance of information [11–14].
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Based on behavioral data, simple WMmaintenance func-
tions are relatively better preserved with age than various
control and information manipulation processes [15],
including planning and inhibition, although it remains
possible that executive processes may compensate to some
degree for subtle declines in the former [16]. These execu-
tive processes are more severely compromised in AD both
at late and early stages [17–20], as well as “late” MCI
[21,22]. In addition, it has been proposed that episodic
memory deficits contribute to the observed WM/EF
deficits [23].

Importantly, while the typological differentiation of MCI
allows for WM/EF impairment (as does AD), to date only
limited numbers and types of WM/EF tests have been used
to characterize these processes [24–28]. Moreover,
characterization of WM/EF impairments has been limited
by the use of composite scores including measures of
general cognitive ability (memory, executive function,
language, and visuospatial) that might obscure specific
WM/EF impairments [29]. Recent research using cluster an-
alytic techniques has demonstrated that individuals with
MCI, a so-called “dysexecutive” MCI subtype was more
severely impaired than the classical amnestic subtype and
associated with greater longitudinal decline [25]. However,
the restricted range of WM/EF tests in ADNI used in this
study (i.e., confined to trail making part B) may not thor-
oughly capture the larger range of WM/EF processes.

The present study aimed to investigate the breadth and
depth of WM/EF impairments in elderly healthy control in-
dividuals (EHCs), individuals with MCI, and individuals
with AD. We hypothesized that WM/EF would be impaired
in MCI and in AD. In this adequately powered study con-
ducted with a reasonable range of WM/EF tests, our goals
were to investigate 1) how pervasive, i.e., frequent, are
WM/EF impairments in MCI (and AD); 2) how severe are
these impairments; 3) the subdomains of WM/EF impair-
ment; 4) relationships between WM/EF and everyday func-
tional competence; and 5) brain morphometric predictors of
WM/EF performance. This is the first study to comprehen-
sively examine WM/EF in an MCI sample using these
approaches.
2. Methods

2.1. Subjects

A total of 48 individuals with MCI defined following Pe-
tersen’s criteria [30], and a sample of 57 “probable” AD
diagnosed according to National Institutes of Neurological
and Communicative Disorders and Stroke–Alzheimer’s Dis-
ease and Related Disorders Association criteria [31] were
identified for inclusion in these analyses from the Litwin-
Zucker Alzheimer’s Disease Center by diagnostic consensus
conferences (comprising neurologists, neuropsychologists,
and psychiatrists). Note that while all subjects in our MCI
sample were amnestic, i.e., had episodic memory impair-
ments ,1.5 SDs below the mean, as were our AD subjects,
cognitive impairments were not necessarily restricted to
memory. A control sample of 124 noncognitively impaired
EHC volunteers were included for comparison. Details
about inclusion/exclusion criteria are elsewhere [32] and in
the Supplement. All subjects provided written informed con-
sent after receiving a complete description of the study.
2.2. Clinical stage

The global level of dementia of the sample was measured
by the Clinical Dementia Rating (CDR) [33] and the Mini-
Mental State Examination (MMSE) [34]. We used CDR
sum of “boxes” to derive its global score. Patients with
MCI obtained a score of CDR5 0.5 (questionable dementia)
and patients with AD had scores of 1 or 2 (mild or moderate).
EHCs had scores of 0. The MMSE is a 30-point cognitive
screening test. All patients with MCI had scores greater
than 23, all patients with AD had scores of 16 to 23, and
all EHCs had scores greater than 23.
2.3. Neuropsychological assessment

We used a large test battery designed to assess different
domains of WM/EF. The tests used to assess them are listed,
and detailed descriptions are included in the Supplement:
digit span, letter-number span, trail making test A and B
(TMT-A and TMT-B), N Back (Zero- and One-back), Tower
test, Stroop test. Memory tests used were selective remind-
ing and logical memory.
2.4. Functional assessment

The University of California, San Diego, Performance-
Based Skills Assessment (UPSA) is a performance-based
measure of functional abilities that includesmeasures of simu-
lated real-world activities, for example, planning a trip to the
beach, remembering a phone number, andwriting a check.We
used the brief version of the task that includes the communi-
cation and comprehension/planning domains [35].
2.5. MRI acquisition and extraction of brain morphometry
measures

Scans were performed in a GE 3T MRI scanner using an
8-channel phased-array head coil. High resolution structural
T1-weighted spoiled gradient-echo recalled (SPGR) images
in the coronal plane were acquired with TR 5 7.8 ms,
TE 5 3 ms, TI 5 450 ms, flip angle 5 20�, 24 cm field of
view, 256 ! 256 matrix for pixel dimensions of
0.9375 mm by 0.9375 mm, and 136 slices of 1.5 mm thick-
ness. Images were parceled and segmented using the Free-
Surfer software version 5.3 [36,37]. See Supplement for a
more detailed explanation about this procedure. Jack et al
recently found in large ADNI and Mayo Clinic samples
that using these exact methods (fully automated FreeSurfer



L. Garcia-Alvarez et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 11 (2019) 170-179172
v. 5.3. thickness method) afforded greater sensitivity and
reliability than voxel-based morphometry techniques [38].

We used the following FreeSurfer-derived variables in
three different regression models. The first model included
volumetric measures of cortical gray matter volume, subcor-
tical gray matter, and hippocampus, adjusted by age, sex, ed-
ucation, and estimated intracranial volume. The second
model included thickness measures of regions of interest
(ROI) within the frontal lobe: lateral orbitofrontal, medial
orbitofrontal, pars opercularis, pars orbitalis, pars triangula-
ris, rostral anterior cingulate, caudal anterior cingulate,
rostral middle frontal, superior frontal, frontal pole, plus a
general measure of cortical thickness of the whole brain;
these measures were adjusted by age, sex, and education.
The third model included subcortical global white matter
volume, global white matter hypointensities volume, and
volumes of white matter ROIs within the frontal lobe: we
used the same ROIs as listed previously for subjacent white
matter volumes; these measures were adjusted by age, sex,
education, and estimated intracranial volume. Left and right
ROIs were averaged.
2.6. Data analysis

Comparisons on sociodemographic, clinical status,
cognitive variables, and MRI measures between groups
were performed with chi square and F tests.

The statistical analysis approach was structured
following the next steps: 1) Frequency of WM/EF impair-
ment was assessed using chi square tests across diagnostic
groups (EHC, MCI, and AD) by contrasting differences in
number of subjects showing impairment on a given test.
The cutoff for impairment was derived using z scores with
mean and standard deviation of the EHC group for each
test. A z score lower than -1 was considered impaired. Mul-
tiple comparisons were adjusted by Bonferroni correction
(alpha of 0.05/12 tests, P5 .004); this corrected level of sta-
tistical significancewas applied for all the analysis described
below. 2) To examine the breadth of WM/EF impairments
within each individual we contrasted subjects in each group
with 0-3 tests impaired and 4 or more tests impaired by chi
square. 3) Depth (i.e., severity) of WM/EF impairments
were assessed using general linear models (GLM) fitted to
Table 1

Sociodemographic and clinical status characteristics for EHC, MCI, and AD

Variables

Groups Statis

EHCN 5 124 MCI N 5 48 AD N 5 57 Test

Age Mean (SD) 73.17 (8.60) 76.68 (10.27) 76.58 (10.31) F 5 3

Gender M/F 49/75 27/21 27/30 c2 5
Education Mean (SD) 16.33 (2.69) 15.94 (2.86) 14.10 (3.34) F 5 1

CDR-SB Mean (SD) 0.77 (0.98) 2.64 (1.07) 4.48 (1.88) F 5 2

MMSE Mean (SD) 28.49 (1.40) 25.96 (2.03) 21.21 (4.28) F 5 1

Abbreviations: EHC, elderly healthy controls; MCI, mild cognitive impairment

M, male; F, female; CDR-SB, Clinical Dementia Rating–Sum of Boxes.
quantify differences between groups on each dependent var-
iable (WM/EF tests) adjusted for post hoc comparisons us-
ing Bonferroni correction as indicated previously; effect
sizes (ESs) were also computed using a correction approach
[39]. 4) To ascertain subdomains of WM and EF impairment
we used a factor analytic approach using data from all sub-
jects. All cognitive measures were subjected to an explor-
atory factor analysis using maximum absolute correlation
as prior communality estimates. Factors were extracted us-
ing the principal component method followed by a VARI-
MAX (orthogonal) rotation. 5) The relationship between
WM/EF with memory and everyday function were assessed
through Spearman correlation coefficients adjusting alpha
level for significance by Bonferroni correction; in these cor-
relations, the factors derived from factorial analysis plus
UPSA functional scale score were used. Finally, 6) stepwise
regression models, based on maximizing R2, were fitted to
analyze the contribution of the variation in cognitive/func-
tional factors that might be attributed to brain morphometry
in the whole sample. Brain morphometry variables were
fitted as independent predictors (See Section 2.5 for list of
predictors) into a series of separate models using each one
of the cognitive/functional factors as dependent variables.

To manage missing data only for cognitive variables, a
within-group multiple imputation was performed in SAS
9.4 (PROC MI) software for missing data [40] (see
Supplementary Data).
3. Results

The sociodemographic and clinical status characteristics
for the three groups are presented in Table 1. The groups did
not differ in gender ratios. There were differences in the
number of years of education between EHC and AD, and
MCI and AD (patients with AD having less years of educa-
tion), but not between EHC and MCI. As expected, both
MCI and AD groups showed higher scores on CDR (sum
of boxes) compared with the EHC group and the AD group
had a higher score compared with the MCI group. The
groups also differed significantly on MMSE score; post
hoc contrasts indicated that all groups differed from one
another. As age and education showed differences between
groups, GLM analyses were adjusted by these two variables;
tics Post hoc tests

df P value EHC vs. MCI EHC vs. AD MCI vs. AD

.84 2, 226 .02 P 5 .07 P 5 .06 P 5 1.00

4.09 2 .13

1.63 2, 222 ,.0001 P 5 .70 P , .0001 P 5 .004

8.05 2, 67 ,.0001 P 5 .003 P , .0001 P , .0001

59.93 2, 226 ,.0001 P , .0001 P , .0001 P , .0001

; AD, Alzheimer’s disease; df, degrees of freedom; SD, standard deviation;
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in addition, gender was also treated as a covariate in the an-
alyses.
3.1. Frequency of WM/EF impairment in MCI and AD
groups

First, the proportion of impaired subjects on a given test
was compared across the groups by chi square. For all tests,
patients with MCI were more frequently impaired than
EHCs and significantly so for all tests except digit span. In
addition, the proportion of impaired MCI and EHC subjects
was significantly smaller than the proportion in AD. These
results are shown in Fig. 1 and Supplementary Table 1 that
includes chi square values.

Second and as can be observed in Fig. 2, the modal MCI
subject demonstrated impairments on average in five tests of
twelve, whereas the modal AD subject demonstrated impair-
ments in seven or nine tests (of ten). The modal EHC sub-
jects did not demonstrate any impaired performances. Chi
Fig. 1. Frequency ofWM/EF impairment inMCI and AD groups. Distribution of z

a subject. P values have been obtained through c2 tests comparing the proportion

ment for level of significance was set at P5 .004. Note that there was a trend to sig

Abbreviations: EHC, elderly healthy controls; MCI, mild cognitive impairment; A
square analyses indicated that this difference in distribution
was highly significant.
3.2. Depth of WM/EF impairment in MCI and AD

The MCI group demonstrated medium to large ES
compared with the EHC group (Table 2 and Supplementary
Fig. 1) in Tower test (ES 5 0.88), TMT-B (ES 5 0.85),
TMT B-A (ES 5 0.78), letter-number manipulation
(ES 5 0.71), and One-back accuracy (ES 5 0.55). Stroop
neutral inhibition and affective inhibition also showed a sig-
nificant impairment in patients with MCI compared with
EHCs (ES of 0.54 and 0.84, respectively). Compared to pa-
tients with AD, patients with MCI showed better perfor-
mance on all executive functions (ES ranging from 0.74 for
One-back accuracy to 1.39 for TMT-A), with the exception
of zero-back accuracy on which MCI and AD were equally
impaired as compared with EHC. Patients with AD showed
significant impairment compared with EHC in all measures
scores between groups for each of the tests. Each dot in the graphs represents

of subjects below and above 21 z score between groups. Bonferroni adjust-

nificance in the comparison of EHC and MCI on digits backward (P5 .009).

D, Alzheimer’s disease; P, P value.



Fig. 2. Frequency of impairments within subjects (breadth of impairment).

Bar graphs represent number of subjects that have between 0 and 12 tests

impaired (0 to 10 the AD group due to lack of data in Stroop neutral and af-

fective tests). A between-groups comparison, taking into account the number

of subjects with 3 or less tests impaired and number of subjects with more than

3 tests impaired, revealed significantly differences between all groups: 14%

EHC, 67% MCI, and 95% had more than 3 tests impaired (EHC vs. MCI

c2 5 47.64, P , .0001; EHC vs. AD c2 5 107.54, P , .0001; MCI vs. AD

c2 5 13.85, P5 .0002). Abbreviations: EHC, elderly healthy controls; MCI,

mild cognitive impairment; AD, Alzheimer’s disease.
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(ES ranging from 0.87 to 2.20). In keeping with these results,
GLMs and least squares means (Table 2) demonstrated sig-
nificant group differences for all measures; post hoc EHC-
MCI differences (Bonferroni corrected) were present for
TMT-B, TMT B-A, Tower test, letter-number manipulation,
and One-back accuracy. See Supplementary Fig. 1 for all vi-
sual comparisons among the three diagnostic groups.
3.3. Subdomains of WM/EF impairment

The factor analysis scree test revealed four interpret-
able factors (Fig. 3). Tests showing a factor loading of
0.45 (or greater) were considered to load on a given fac-
tor. All episodic memory measures (logical memory im-
mediate and delayed and Buschke immediate and
delayed) loaded on the first factor (labeled as episodic
memory) with an eigenvalue of 2.92. Measures derived
from TMT test loaded on another factor (cognitive speed)
with an eigenvalue of 2.57. Digits (forward and back-
ward) and letter-number repetition loaded on the third
factor (labeled working memory maintenance) with an
eigenvalue of 2.04. Finally, the Tower test, letter-
number manipulation, and one-back accuracy loaded on
the fourth factor (labeled executive function) with an
eigenvalue of 1.49. A separate factor analysis was per-
formed with only EHC and MCI samples to allow inclu-
sion of Stroop inhibition task measures, resulting in
identification of an additional factor (cognitive control)
wherein these two measures loaded with an eigenvalue
of 1.92. We used these results to derive factor scores
based on test z scores only (i.e., loading weights were
not used) to be used in analyses below. GLMs for
between-group analyses of factor scores are shown in
Supplementary Table 2. All EHC-MCI post hoc contrasts
were highly significant with the exception of the working
memory maintenance factor.
3.4. WM/EF relationships with functional competency
performance

In the MCI group (Supplementary Table 3), functional
competence on the UPSA was significantly correlated with
working memory (r 5 0.38) and cognitive control
(r 5 0.47) factors. In the EHC group executive function
was a significant correlate of functional competence
(r 5 0.33). In AD relationships between WM/EF and func-
tioning were more widespread.

With respect to episodic memory correlations with WM/
EF in the EHC and MCI groups, these were consistently
small and not significant, suggesting that WM/EF is not
driven by memory failures. In AD, WM/EF impairments
were correlated with memory suggestive of a “disease blur-
ring” factor due to more global impairments.

We next sought to determine the amount of variance in
the UPSA that could be predicted by all three WM/EF fac-
tors in a multivariate regression model in the whole group



Table 2

GLMs and least squares means between group performance on WM/EF tests

Variables

EHC (N 5 124)

Mean (SE)

MCI (N 5 48)

Mean (SE)

AD (N 5 57)

Mean (SE) GLM P Post hoc (ES)

Digits forward

Raw correct score

8.77 (0.16) 8.61 (0.26) 7.24 (0.24) F5, 219 5 15.55 ,.0001 EHC vs. MCI P 5 .84 (ES 5 0.09)

EHC vs. AD P , .0001 (ES 5 0.94)

MCI vs. AD P 5 .0005 (ES 5 0.75)

Digits backward

Raw correct score

7.18 (0.19) 6.50 (0.30) 4.34 (0.28) F5, 219 5 19.02 ,.0001 EHC vs. MCI P 5 .14 (ES 5 0.32)

EHC vs. AD P , .0001 (ES 5 1.33)

MCI vs. AD P , .0001 (ES 5 1.02)

Letter-number repetition

Raw correct score

7.11 (0.19) 6.08 (0.30) 4.55 (0.29) F5, 219 5 15.24 ,.0001 EHC vs. MCI P 5 .01 (ES 5 0.49)

EHC vs. AD P , .0001 (ES 5 1.19)

MCI vs. AD P 5 .0009 (ES 5 0.71)

Letter-number manipulation

Raw correct score

5.32 (0.14) 4.23 (0.22) 2.45 (0.21) F5, 219 5 39.82 ,.0001 EHC vs. MCI P 5 .0002 (ES 5 0.70)

EHC vs. AD P , .0001 (ES 5 1.82)

MCI vs. AD P , .0001 (ES 5 1.13)

TMT-A

seconds

34.92 (2.95) 44.53 (4.60) 90.01 (4.35) F5, 219 5 27.18 ,.0001 EHC vs. MCI P 5 .19 (ES 5 0.29)

EHC vs. AD P , .0001 (ES 5 1.67)

MCI vs. AD P , .0001 (ES 5 1.39)

TMT-B

seconds

83.73 (5.00) 130.90 (7.80) 206.69 (7.37) F5, 219 5 49.04 ,.0001 EHC vs. MCI P , .0001 (ES 5 0.85)

EHC vs. AD P , .0001 (ES 5 2.20)

MCI vs. AD P , .0001 (ES 5 1.37)

TMT B-A

seconds

49.41 (4.40) 87.26 (6.87) 140.82 (6.48) F5, 219 5 36.56 ,.0001 EHC vs. MCI P , .0001 (ES 5 0.78)

EHC vs. AD P , .0001 (ES 5 1.85)

MCI vs. AD P , .0001 (ES 5 1.10)

Zero-back accuracy 97.58 (0.89) 92.50 (1.39) 88.91 (1.32) F5, 219 5 8.70 ,.0001 EHC vs. MCI P 5 .007 (ES 5 0.52)

EHC vs. AD P , .0001 (ES 5 0.87)

MCI vs. AD P 5 .15 (ES 5 0.36)

One-back accuracy 61.86 (2.09) 49.35 (3.27) 32.18 (3.08) F5, 219 5 19.53 ,.0001 EHC vs. MCI P 5 .004 (ES 5 0.55)

EHC vs. AD P , .0001 (ES 5 1.27)

MCI vs. AD P 5 .0005 (ES 5 0.74)

Tower test 17.45 (0.51) 12.48 (0.80) 8.24 (0.76) F5, 219 5 24.62 ,.0001 EHC vs. MCI P , .0001 (ES 5 0.88)

EHC vs. AD P , .0001 (ES 5 1.61)

MCI vs. AD P 5 .0005 (ES 5 0.74)

Stroop neutral

T score

37.34 (0.60) 33.73 (0.97) - F5, 162 5 23.97 ,.0001 ES 5 0.54

Stroop affective

T score

39.23 (0.65) 33.14 (1.04) - F5, 162 5 23.97 ,.0001 ES 5 0.84
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of participants. In this model, the executive, cognitive speed,
and working memory factors were entered in prespecified
order. The full model was highly significant
(F6,218 5 46.82, P , .0001). Moreover, all WM/EF entered
significantly. The R2 was 0.42 (P , .0001) for the executive
factor; 0.09 (P , .0001) for cognitive speed; and 0.01
(P 5 .02) for working memory. Demographics (age, sex,
and education) were forced to enter and their combined
R2 5 0.04.

3.5. Association between WM/EF and brain morphometry

Significant associations in the regression models between
WM/EF domains and FreeSurfer morphometric measures
are displayed in Fig. 4.

3.5.1. Gray matter
Cognitive speed was predicted by cortical gray matter

volume with an R2 of 0.18 (F5, 108 5 8.03, P , .0001). In
the cortical thickness model, cognitive speed was also pre-
dicted by superior frontal thickness (F4, 109 5 4.77,
P5 .001; R2 5 0.07), as well as medial temporal lobe mea-
sures (the latter data not shown). Executive function was pre-
dicted by cortical gray matter volume (F5, 108 5 6.48,
P , .0001; R2 5 0.12). In the cortical thickness model, ex-
ecutive function was predicted by rostral middle frontal
thickness (F5, 108 5 4.37, P 5 .001; R2 5 0.03); pars trian-
gularis thickness served as a “suppressor” variable as
when it was included it strengthened (i.e., “unsuppressed”)
the relationship between middle frontal cortical thickness
and the executive factor. Finally, episodic memory was pre-
dicted by hippocampal volume (R2 5 0.10), plus middle
temporal and parahippocampus thickness (R2 5 0.03 and
R2 5 0.07, respectively).
3.5.2. White matter
Cognitive speed was predicted by white matter hypoin-

tensity volume with an R2 of 0.14 (F5, 108 5 6.78,
P, .0001). Executive function was predicted by white mat-
ter hypointensity volume (R2 5 0.08) and caudal anterior
cingulate white matter volume (R2 5 0.05) in a significant
model (F6, 107 5 5.41, P , .0001).



Fig. 3. Subdomains of WM/EF impairment. Rotated factor pattern of all cognitive measures extracted by VARIMAX rotation. Four factors were retained:

episodic memory, cognitive speed, working memory, and executive function. Tests with a factor loading of 0.45 (or greater) were considered to load on a given

factor.
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4. Discussion

To the best of our knowledge, this is the most comprehen-
sive study of WM/EF to date in MCI. It is also the largest
non-ADNI study on WM/EF in MCI and it offers comple-
mentary findings that usefully extend and refine the heavily
mined ADNI database. Tasks included 1) assays of simple
WM storage that engages the phonological loop (digits for-
ward and letter-number repetition); 2) more complex mea-
sures involving simultaneous storage and manipulation of
information involving such processes as multiple
Fig. 4. Association betweenWM/EF and brain morphometry. Scatterplots showing

factors derived from factor analysis. Volume variables are in the form of mm3, thick

predicted z scores (from significant regression models). Blue dots and line represen

AD. Values on cognitive speed (seconds to complete TMT-A and TMT-B tasks) ha

(A) Scatterplot of global gray matter volume as a significant predictor of cognitive

significant predictor of cognitive speed (t 5 3.04, P 5 .003). (C) Scatterplot of gr

P, .0001). (D) Scatterplot of rostral middle frontal thickness as a significant predic

hypointensities as a significant predictor of cognitive speed (t524.54, P, .0001

executive function (t 5 24.10, P 5 .005). (G) Scatterplot of caudal anterior cin

(t 5 2.54, P 5 .01).
sequencing of items, fully mentalized planning, and updat-
ing of information (digits backward, letter-number manipu-
lation, N back task, Tower of London, and Stroop test); and
3) set shifting in the context of speed demands and organized
visual search (TMT-A and TMT-B). Severity of impairment
in the latter two types of task was in the medium and large
range, respectively, inMCI by z score analyses and these dif-
ferences were highly significant when contrasted with the
EHC group. Moreover, the modal MCI subject demonstrated
impairment on five measures, while the modal EHC
regression lines from significant brain morphometric predictors of cognitive

ness variables are in the form of cm, and cognitive factors are in the form of

t EHC group; green dots and line represent MCI; red dots and line represent

ve been inverted to represent higher positive score with better performance.

speed (t5 5.13, P, .0001). (B) Scatterplot of superior frontal thickness as a

ay matter volume as a significant predictor of executive function (t 5 4.10,

tor of executive function (t5 3.04, P, .003). (E) Scatterplot of white matter

). (F) Scatterplot of white matter hypointensities as a significant predictor of

gulate white matter volume as a significant predictor of executive function
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demonstrated no impairments. This is one of the few studies
to include such a variety of WM/EF tests within the same
MCI sample.

The factor structure of the sample suggested three pri-
mary subdomains of WM/EF. Trail making tests (TMT A,
B, and B-A) loaded on a single factor. As these tests are
timed, when impaired in MCI and AD, they indicate slowed
speed of processing. These tests also demand controlled vi-
sual search that in turn might modulate speed. What we have
termed the executive subdomain comprised verbal and
nonverbal tests that appear to reflect demands for processes
that involve information manipulation of information main-
tained in storage, including multiple resequencing (of letters
and numbers), updating (One-back), and mentalized plan-
ning and hypothesis testing (Tower test). A third factor
involved short-term maintenance of information with
reduced demand for manipulation. It may reflect the so-
called phonological working memory loop and was found
to be relatively preserved in MCI. The presence of another
non-WM/EF factor comprised episodic memory tasks was
not unexpected and provides a referent for the validity of
our findings.

Another study examined executive function in MCI and
identified two factors [41]: one consisted of tests that
involved generating novel responses and problem solving
and the other involved speed of processing and inhibition.
In the ADNI database, Park and Manly [42] identified a
speed/executive TMT factor and a digit span factors. Neither
of these studies examined associations of factors to brain
morphometry nor to functional competence, nor did they
include the broad range of tests that we used.

Impressively, the WM/EF measures were generally
robust predictors of a validated performance-based measure
of functional competence (the UPSA) in MCI and AD. In
MCI, both working memory and cognitive control factors
correlated significantly with the UPSA, while in AD speed
of processing/visual search, executive function, and episodic
memory, all had significant correlations with the UPSA. In
the whole sample, the three WM/EF subdomains accounted
for nearly 60% of the variance in functional competency as-
sessed by the UPSA. This suggests that WM/EF processes
are engaged by real-world scenarios, and if they are compro-
mised, real world function will likely demonstrate compro-
mises.

With respect to the relationships between the identified
WM/EF factors and brain morphometry, we found that
global cortical thickness was a significant predictor for
working memory maintenance, cognitive speed and visual
search, and executive function. In keeping with what is
known about dedicated circuitry, we found that superior pre-
frontal cortex, a region that includes the supplemental and
frontal eye fields, was a predictor of speed, perhaps related
to dynamic visual search. Indeed, it is now generally appre-
ciated that directed efficient visual search drives TMT speed
(or lack thereof), not psychomotor speed per se [43]. Supe-
rior frontal cortex is also thought to be an important node
in the dorsal attention network and supports selection of vi-
sual information and shifting between visual stimuli [44].

Our finding that the middle frontal gyrus was associated
with the executive factor is consistent with multiple models
of executive control and problem-solving [45]. In these
models, executive tasks that demand more than simple stor-
age are supported by dorsal-lateral prefrontal cortex. To
reinforce the validity of our approach, we found that episodic
memory performance was predicted by hippocampal vol-
ume. The associations between WM/EF factors and cortical
measures that we found may be placed in this context of
prior findings in that more specific prefrontal morphometric
reductions and more global gray matter reductions both play
roles in impairment [46,47]. We acknowledge that our
sample does not have biological confirmation of AD
pathology. However our design included a meticulous
procedure to dissect clinical, cognitive, and functional
profiles for each participant in consensus meetings with
neurologists, neuropsychologists, and psychiatrists.

Our findings suggest that white matter abnormalities may
also contribute to WM/EF impairments. In particular, white
matter volume reductions and signal abnormalities have
been associated with frontal executive function and process-
ing speed compromises in aging and AD [48,49]. Moreover,
mixed brain pathologies are frequently present in MCI and
AD cases and have usually been found to be additive to AD
histopathology in contributing to the clinical phenotype
[50].We found that white matter volume reductions subjacent
to the anterior cingulate were associated with reductions in
executive function. These may reflect white matter shrinkage
that interrupts connectivity or loss of projection fibers from
that area of cortex. Perhaps more strikingly, we found that
white matter hypointensity volume reductions were associ-
ated with attenuations in executive function and speed as
have others [48,51]. Such imaging findings are usually
thought to be part of spectrum of small vessel disease and
have been identified using other imaging techniques (i.e.,
FLAIR and T2) and at postmortem. In T1-weighted imaging,
T1-weighted hypointensities tend to follow a periventricular
and deep white matter distribution [52].

In summary, we found that WM/EF impairments are far
from rare, that they are based on specific compromises to
frontal cerebral circuitry, and that these WM/EF impair-
ments are associated with loss of everyday functional abili-
ties. The results that we report thus suggest that circuitry-
based WM/EF impairments even at this potentially prodro-
mal stage of AD have clinically deleterious consequences.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using traditional sources (e.g., PubMed) and
meeting abstracts and presentations. While working
memory (WM) and executive function (EF) impair-
ments have not been widely studied in mild cognitive
impairment (MCI), there have been several recent
studies that highlight the importance of frontal/exec-
utive functions in the presentation of the disorder.
These relevant citations are appropriately cited.

2. Interpretation: In MCI, WM/EF impairments are far
from rare, are based on specific compromises to fron-
tal cortex circuitry, and are associated with loss of
everyday functional abilities. Thus, even at this
potentially prodromal stage of AD, WM/EF impair-
ments have clinically deleterious consequences.

3. Future directions: The manuscript provides a new
framework to incorporate WM and EF dysfunction
into the clinical characterization of MCI. This work
will help to better understand compromises in
everyday functional competence and the underlying
frontal lobe substrate.
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