
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Clinical Biochemistry 100 (2022) 13–21

Available online 9 November 2021
0009-9120/© 2021 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

Individual outcome prediction models for patients with COVID-19 based on 
their first day of admission to the intensive care unit 

Raúl Rigo-Bonnin a,*, Víctor-Daniel Gumucio-Sanguino b, Xose-Luís Pérez-Fernández b, 
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A B S T R A C T   

Background: Currently, good prognosis and management of critically ill patients with COVID-19 are crucial for 
developing disease management guidelines and providing a viable healthcare system. We aimed to propose 
individual outcome prediction models based on binary logistic regression (BLR) and artificial neural network 
(ANN) analyses of data collected in the first 24 h of intensive care unit (ICU) admission for patients with COVID- 
19 infection. We also analysed different variables for ICU patients who survived and those who died. 
Methods: Data from 326 critically ill patients with COVID-19 were collected. Data were captured on laboratory 
variables, demographics, comorbidities, symptoms and hospital stay related information. These data were 
compared with patient outcomes (survivor and non-survivor patients). BLR was assessed using the Wald Forward 
Stepwise method, and the ANN model was constructed using multilayer perceptron architecture. 
Results: The area under the receiver operating characteristic curve of the ANN model was significantly larger than 
the BLR model (0.917 vs 0.810; p < 0.001) for predicting individual outcomes. In addition, ANN model presented 
similar negative predictive value than the BLR model (95.9% vs 94.8%). 
Variables such as age, pH, potassium ion, partial pressure of oxygen, and chloride were present in both models 
and they were significant predictors of death in COVID-19 patients. 
Conclusions: Our study could provide helpful information for other hospitals to develop their own individual 
outcome prediction models based, mainly, on laboratory variables. Furthermore, it offers valuable information 
on which variables could predict a fatal outcome for ICU patients with COVID-19.   

1. Introduction 

The global Coronavirus disease 2019 (COVID-19) pandemic affects 
millions of people and challenges healthcare systems worldwide. Most 
people with COVID-19 have mild or moderate respiratory symptoms and 
do not require hospital admission. However, some patients deteriorate 
rapidly, develop systemic or severe respiratory symptoms and need 

hospitalization, requiring invasive ventilation and admission to the 
intensive care unit (ICU) [1–4]. During the “first wave” of the pandemic, 
the ICUs in many hospitals were forced to implement triage strategies for 
critically ill COVID-19 patients, because of the limited number of beds 
available [5–8]. In several cases lacking effective triage tools, the 
healthcare system required reinforcement measures at national level, 
highlighting the need for helpful risk/mortality prediction models to 
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enable a viable healthcare system [3,9,10]. Nowadays, several models 
have been proposed to predict the risk/mortality among patients with 
COVID-19 [9–13]. Despite this fact, only a limited number of models 
have been explicitly applied to ICU patients with COVID-19 [14,15]. 

In the present study, we aimed to propose individual outcome pre
diction models for COVID-19 patients based on binary logistic regression 
(BLR) and artificial neural networks (ANN) that use laboratory routine 
variables and some clinical data collected within the first day of ICU 
admission. We also compared the two proposed models’ performance 
and analysed laboratory and clinical variables for ICU patients who 
survived and those who dead. 

2. Patients and methods 

2.1. Study population and variables 

A single-centre observational study was conducted in a 750-bed 
tertiary care public hospital for adults in Barcelona, Spain. The Ethics 
Committee approved the study (approval number PR168/20). Informed 
consent was waived due to the study’s observational nature, the 
mandatory isolation measures applied during in-hospital care, and, 
because the data were anonymised for analysis. 

Three hundred and twenty-six patients admitted to the ICU between 
the first year of the pandemic (from March 15, 2020, to March 15, 2021) 
were included in this study. Patients aged 18 years old and above and 
presented severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 
2). Patients belonged to one of the different epidemic waves in Spain 
(first 147 [45.1%], second 28 [8.6%], and third 151 [46.3%]). The first 
wave occurred between March and May 2020, the second wave between 
June and November 2020, whereas the third wave took place from 
December 2020 to March 2021. During the first and second waves, the 
primary COVID-19 variant of concern (VOC) was the “wild-type”, fol
lowed by other variants of interest (VIC) as the EU1 (also so-called 20E 
or B.1.177). In the third wave, the Alpha variant (20I or B.1.1.7) was the 
main one, followed by the Gamma (20 J or P.1) and Beta (20H or 
B.1.351) variants [16–18]. 

All patients were diagnosed by positive real-time polymerase chain 
reaction (RT-PCR) tests. They were either admitted directly to the ICU 
from the emergency department or were derived from specific COVID- 
19 units available in our hospital (conventional or semi-critical 
COVID-19 units, depending on severity). Patients admitted to the ICU 
met at least one of the following criteria: (i) patients with non-invasive 
mechanical ventilation (NIMV) with worsening respiratory conditions; 
(ii) patients developing respiratory failure requiring invasive mechani
cal ventilation (IMV); (iii) patients who had other organ failure 
requiring ICU monitoring. Supplementary material 1 contains additional 
information about the treatment underwent by COVID-19 patients. 

Different patient data were collected on their first day of ICU 
admission. Demographics, clinical history information (comorbidities 
and pharmacological treatments), symptoms onset and admission in
formation, as well as routine laboratory variables were included. These 
data were compared with patient outcomes. 

Demographics included age and gender. Comorbidities (cancer, 
cardiac disease, chronic kidney disease, chronic liver disease, chronic 
obstructive pulmonary disease, diabetes, dyslipidemia, hypertension, 
obesity, and smoking) were considered dichotomous categorical vari
ables (presence or absence). The pharmacological treatments considered 
at hospital admission were antihypertensives, anticoagulants, anti
aggregants, and immunosuppressive/corticosteroids. Symptoms onset 
and admission information refers to the number of days between 
appearance of clinical symptoms and admission to the hospital, the 
number of days between appearance of clinical symptoms and admission 
to the ICU, and the number of days from hospital admission to ICU 
admission. 

The laboratory routine variables considered were those biological 
quantities used for the monitoring of COVID-19 patients based on IFCC 

recommendations [19]: plasma concentrations of alanine transaminase 
(ALT), albumin (ALB), aspartate transaminase (AST), bilirubin (BIL), 
calcium (CA), chloride (CL), creatinine (CREA), C-reactive protein 
(CRP), D-dimer (DD), ferritin (FERRI), glucose (GLU), interleukin 6 (IL- 
6), lactate dehydrogenase (LDH), potassium ion (K), procalcitonin 
(PROCAL), prothrombine time (PT), sodium ion (NA), troponin T 
(TROP-T), and urea (UREA); Chronic Kidney Disease Epidemiology 
Collaboration glomerular filtration rate (CKD-EPI); arterial blood partial 
pressure of carbon dioxide (paCO2), arterial blood partial pressure of 
oxygen (paO2); pH in arterial blood (apH), arterial blood oxygen satu
ration (aSatO2), partial pressure of oxygen in arterial blood/fraction of 
inspired oxygen quotient value (paO2/FiO2); blood count of basophils 
(#BAS), eosinophils (#EOS), leucocytes (#LEU), lymphocytes (#LYM), 
monocytes (#MON), neutrophils (#NEU), and platelets (PLT); leuco
cytes relative differential blood count (%BAS, %EOS, %LYM, %MON, 
and %NEU); blood count of erythrocytes (ERY), blood concentration of 
haemoglobin (HGB), haematocrit (HCT), mean cell volume (MCV), 
mean cell haemoglobin (MCH), mean cell haemoglobin concentration 
(MCHC), mean platelet volume (MPV), and red blood cells distribution 
width based on the coefficient of variation (RDW-CV). 

Biochemical, haematological, and haemostasiological quantities 
were measured using Cobas 6000 or Cobas 8000 (Roche Diagnostics, 
Risch-Rotkreuz, Switzerland), Sysmex XN-2000 (Sysmex, Kobe, Japan), 
and ACL TOP 500 (Instrumentation Laboratory, Bedford, MA, USA) 
analyzers, respectively. Values of apH, paCO2, paO2, and aSatO2 have 
been obtained from GEM Premier 5000 gasometers (Instrumentation 
Laboratory). 

Patients admitted to the ICU who survived and were subsequently 
discharged from the hospital, and non-survivor patients who dead dur
ing their hospital stay were considered outcomes. 

2.2. Statistical analysis 

All statistical analysis were performed using the IBM SPSS Statistics 
21.0 software (IBM Corp., Chicago, Ill, USA). 

Descriptive statistics were presented using frequency rates and per
centages for categorical variables, while continuous variables were 
described as the median and interquartile range (IQR). Comparisons 
between groups (survivors vs non-survivors) were assessed using the 
Mann–Whitney U test for continuous variables. Categorical comparisons 
were performed using the χ2 test or Fisher’s exact test, as appropriate. 
Also, each variable associated with the odds of COVID-19-related mor
tality was included. 

We constructed and compared two individual outcome prediction 
models for patients with COVID-19 using data collected within their first 
day of ICU admission. The first model was based on a BLR approach, and 
the second on an ANN analysis. Using the 326 patient’ data, we gener
ated both models on a shared development dataset (training data) and 
tested them on a common validation dataset (testing data). The 
goodness-of-fit of the models was assessed using the Hosmer-Lemeshow 
C statistic [20]. Furthermore, the discrimination capacity of the models 
to separate survivors from non-survivors was analysed by calculating the 
area under the receiver operating characteristic curve (AUROC) and by 
estimating the post-test probability of an individual taking into account 
the sensitivity, specificity, positive predictive value (PPV), and negative 
predictive value (NPV) [21,22]. To assess the post-test probability that a 
patient with COVID-19 who is admitted to ICU dies or not, PPV and NPV 
were calculated applying the Bayes’ theorem [23] considering the 
prevalence of a COVID-19 patient admitted to ICU between March 15, 
2020, and March 15, 2021 (16.2%), as well as the probability of death in 
ICU during the same period mentioned above. 

Also, the AUROCs of the two models were compared based on the 
method described by DeLong et al. [24]. In addition, to verify the correct 
functioning of the models, a prospective study was carried out using 77 
patients admitted to the ICU between April 1, 2021, and August 31, 
2021 (patients belonged to the fourth and fifth waves in Spain). During 
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Table 1 
Descriptive data for all, survivor and non-survivor ICU patients with COVID-19 infection.  

Variable All (n = 326) Reference 
interval * 

Survivors (n =
156) 

Non-Survivors (n =
170) 

p-value OR (95% CI) 

Demographics       
Age; median (IQR) 64 (55–71) – 59 (51–68) 67 (61–72.5)  <0.001 n.a. 
Sex (Male); n (%) 250 (76.7) – 122 (78.2) 128 (75.3)  0.535 0.849 

(0.507–1.423) 
Comorbidities       
Cancer; n (%) 37 (11.3) – 6 (3.8) 31 (18.2)  <0.001 5.576 

(2.258–13.77) 
Cardiac disease; n (%) 52 (16.0) – 20 (12.8) 32 (18.8)  0.221 1.577 

(0.860–2.893) 
Chronic kidney disease; n (%) 45 (13.8) – 6 (3.8) 39 (22.9)  <0.001 7.443 

(3.054–18.14) 
Chronic liver disease; n (%) 28 (8.6) – 12 (7.7) 16 (9.4)  0.580 1.247 

(0.570–2.726) 
Chronic obstructive pulmonary disease; n (%) 53 (16.3) – 21 (13.5) 32 (18.8)  0.190 1.491 

(0.819–2.715) 
Diabetes; n (%) 93 (28.5) – 46 (29.5) 47 (27.6)  0.713 0.914 

(0.565–1.478) 
Dyslipidemia; n (%) 160 (49.1) – 70 (44.8) 90 (52.9)  0.145 1.382 

(0.894–2.138) 
Hypertension; n (%) 173 (53.1) – 77 (49.4) 96 (56.5)  0.199 1.331 

(0.860–2.060) 
Obesity; n (%) 162 (49.7) – 83 (53.2) 79 (46.5)  0.224 0.764 

(0.494–1.180) 
Smoking; n (%) 24 (7.4) – 8 (5.1) 16 (9.4)  0.230 1.992 

(0.799–4.623) 
Pharmacological treatment currently administered at 

hospital admission       
Antihypertensive drugs; n (%) 147 (45.1) – 64 (41.0) 83 (48.8)  0.158 1.371 

(0.885–2.126) 
Anticoagulant drugs; n (%) 40 (12.3) – 14 (9.0) 26 (15.3)  0.082 1.831 

(0.919–3.651) 
Antiaggregant drugs; n (%) 52 (16.0) – 19 (12.2) 33 (19.4)  0.075 1.737 

(0.942–3.203) 
Immunosuppressive or corticosteroids drugs; n (%) 32 (9.8) – 7 (4.5) 25 (14.7)  0.002 3.670 

(1.539–8.749) 
Symptoms onset and admission       
Number of days from the appearance of clinical symptoms to 

admission to the hospital; median (IQR) 
8 (6–11) – 8 (6–10) 8 (6–12)  0.379 n.a. 

Number of days from the appearance of clinical symptoms to 
admission to the ICU; median (IQR) 

12 (8–16) – 11 (8–14.5) 13 (9–18)  0.008 n.a. 

Number of days from the hospital admission to the ICU; 
median (IQR) 

2 (0–6) – 2 (0–5) 3 (0–7)  0.098 n.a. 

Biological quantities values obtained within the first day 
in ICU       

ALT, U/L; median (IQR) 34 (23–56.3) M: < 41 
F: < 33 

37 (25–59.5) 34 (22–51)  0.123 n.a. 

ALB, g/L; median (IQR) 31.6 (27.4–35.0) 35.0–52.0 32.0 (27.0–35.0) 31.2 (28.0–35.0)  0.848 n.a. 
AST, U/L; median (IQR) 45 (31–64.8) M: < 40 

F: < 32 
45 (31.5–68) 44 (30–59)  0.611 n.a. 

BIL, μmol/L; median (IQR) 9.2 (6.5–13.9) ≤ 18 9.5 (6.7–13.0) 9.0 (6.0–14.8)  0.489 n.a. 
CA, mmol/L; median (IQR) 2.13 (2.03–2.22) M: (2.20–2.54) 

F: (2.15–2.51) 
2.12 (2.03–2.21) 2.14 (2.04–2.22)  0.318 n.a. 

CKD-EPI, mL/min/1.73 m2; median (IQR) 85 (58–101) ≥ 60 92 (68.5–105.5) 80 (52–95.5)  <0.001 n.a. 
CL, mmol/L; median (IQR) 99 (96–102) 98–116 99 (96–102) 100 (96–103)  0.169 n.a. 
CREA, μmol/L; median (IQR) 81 (61–114) M: (59–104) 

F: (45–84) 
74 (58–100) 84 (63.5–121.5)  0.005 n.a. 

CRP, mg/L; median (IQR) 136.1 
(52.8–238.3) 

≤ 5.0 150.0 
(64.7–250.9) 

126.2 (47.3–222.9)  0.232 n.a. 

DD, μg/L; median (IQR) 879 (454–2862) < 250 772 (416–1745) 1014 (485–3866)  0.033 n.a. 
FERRI, μg/L; median (IQR) 1495 (874–2324) M: (30–400) 

F: 
≤50 yo 
(15–150) 
>50 yo 
(30–400) 

1492 
(734–2609) 

1495 (898–2025)  0.381 n.a. 

GLU, mmol/L; median (IQR) 8.20 (6.51–10.7) 4.10–6.10 7.90 (6.46–10.7) 8.30 (6.90–10.6)  0.479 n.a. 
IL-6, ng/L; median (IQR) 91.3 

(19.5–455.2) 
< 7.0 80.8 

(14.6–173.1) 
101.3 (31.3–609.0)  0.140 n.a. 

LDH, U/L; median (IQR) 471.5 
(367.5–610.8) 

M: < 225 
F: < 214 

452 
(353.5–588.5) 

501 (387–624)  0.080 n.a. 

K, mmol/L; median (IQR) 4.13 (3.72–4.48) 3.83–5.10 3.97 (3.64–4.40) 4.27 (3.89–4.57)  0.001 n.a. 
PROCAL, μg/L; median (IQR) 0.26 (0.13–0.68) < 0.50 0.24 (0.12–0.63) 0.30 (0.15–0.74)  0.122 n.a. 
PT, 1; median (IQR) 1.16 (1.08–1.28) 0.80–1.20 1.18 (1.08–1.28) 1.15 (1.08–1.28)  0.763 n.a. 

(continued on next page) 
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the fourth wave (between April and June 2021), the predominant 
COVID-19 VOCs were the same variants described for the third wave, 
whereas, for the fifth wave (from July 2021 to present), the main VOCs 
were the Delta (21A or B.1.617.2) variant followed by the Beta [16–18]. 

2.3. Binary logistic regression model 

A multivariable BLR analysis was performed to identify independent 
predictors that established a multivariable prediction model. The closely 
correlated variables (e.g., CKD-EPI, which include CREA, age and 
gender) were excluded before analysis to avoid multicollinearity. So, 
based on p-value results obtained in the univariate analysis, variables as 
CKD-EPI, #BAS, %EOS, #LYM, %MON, #NEU, MPV, HCT, HGB, MCV, 

and MCH were excluded. The Wald Forward Stepwise method was used 
to select the predictive variables considering a cut-off of 0.5, a maximum 
number of iterations of 20, and with stepwise probabilities of p < 0.05 
(for entries) and p < 0.10 (for removals). Patient data were first 
randomly divided into a training dataset of 70% of the cases (n = 234) 
and a test dataset of 30% of the cases (n = 92) to construct the BLR 
model. This data distribution was performed to mimic those distribu
tions obtained by the ANN model. 

2.4. Artificial neural network model 

The ANN was built using multilayer perceptron architecture. The 
network comprised an input layer including 75 neuron units based on 

Table 1 (continued ) 

Variable All (n = 326) Reference 
interval * 

Survivors (n =
156) 

Non-Survivors (n =
170) 

p-value OR (95% CI) 

NA, mmol/L; median (IQR) 138 (135–141) 135–147 137 (135–140.5) 138 (135–141)  0.583 n.a. 
TROP-T, ng/L; median (IQR) 14.7 (9.4–28.2) < 14.0 13.2 (9.0–25.1) 17.0 (11.1–40.5)  0.019 n.a. 
UREA, mmo/L; median (IQR) 7.9 (5.2–11.5) M: (3.6–8.6) 

F: (3.3–8.0) 
7.1 (4.8–9.6) 8.7 (6.4–13.8)  <0.001 n.a. 

paCO2, mmHg; median (IQR) 46.0 (40.0–56.5) M: (35.0–48.0) 
F: (32.0–45.0) 

42.0 (38.0–50.0) 51.0 (42.0–61.0)  <0.001 n.a. 

paO2, mmHg; median (IQR) 96.5 
(76.0–125.0) 

83.0–108.0 102.0 
(85.0–131.5) 

89.0 (74.0–111.5)  0.003 n.a. 

apH, 1; median (IQR) 7.35 (7.29–7.43) 7.35–7.45 7.39 (7.31–7.45) 7.33 (7.26–7.38)  <0.001 n.a. 
aSatO2, %; median (IQR) 97.1 (94.5–98.7) 95.0–98.0 97.8 (96.2–99.0) 96.5 (93.6–98.1)  <0.001 n.a. 
paO2/FiO2, mmHg; median (IQR) 117 (86–166)  136 (103–180) 100 (76–150)  <0.001 n.a. 
#BAS, ⋅109 ent./L; median (IQR) 0.01 (0.01–0.03) 0.01–0.09 0.02 (0.01–0.03) 0.01 (0.00–0.02)  0.302 n.a. 
%BAS, %; median (IQR) 0.20 (0.08–0.30) 0.20–1.30 0.20 (0.10–0.30) 0.10 (0.00–0.20)  0.049 n.a. 
#EOS, ⋅109 ent./L; median (IQR) 0.00 (0.00–0.01) 0.03–0.39 0.00 (0.00–0.01) 0.00 (0.00–0.01)  0.402 n.a. 
%EOS, %; median (IQR) 0.00 (0.00–0.20) 0.40–6.60 0.00 (0.00–0.20) 0.00 (0.00–0.20)  0.495 n.a. 
LEU, ⋅109 ent./L; median (IQR) 9.75 (6.80–14.3) 3.90–9.50 9.05 (6.95–12.6) 10.1 (6.75–16.6)  0.165 n.a. 
#LYM, ⋅109 ent./L; median (IQR) 0.64 (0.38–0.96) 1.30–3.40 0.69 (0.50–1.02) 0.59 (0.36–0.90)  0.056 n.a. 
%LYM, %; median (IQR) 6.6 (3.6–10.3) 21.0–50.0 7.5 (4.4–10.8) 5.5 (3.3–9.8)  0.014 n.a. 
#MON, ⋅109 ent./L; median (IQR) 0.37 (0.23–0.66) 0.31–0.92 0.35 (0.23–0.61) 0.40 (0.24–0.69)  0.470 n.a. 
%MON, %; median (IQR) 4.0 (2.5–6.2) 5.1–11.2 4.0 (2.8–5.9) 4.0 (2.4–6.4)  0.943 n.a. 
#NEU, ⋅109 ent./L; median (IQR) 8.41 (5.72–12.7) 1.50–5.70 8.13 (5.75–11.5) 9.07 (5.70–14.0)  0.179 n.a. 
%NEU, %; median (IQR) 88.1 (82.9–92.6) 37.0–68.0 86.8 (82.2–91.6) 88.7 (83.4–93.7)  0.084 n.a. 
PLT, ⋅109 ent./L; median (IQR) 232 (173–303) M: (149–303) 

F: (153–368) 
237 (180–300.5) 229 (169.5–305)  0.510 n.a. 

MPV, fL; median (IQR) 10.7 (10.1–11.5) 9.7–13.2 10.7 (10.1–11.5) 10.7 (10.1–11.6)  0.684 n.a. 
ERY, ⋅1012 ent./L; median (IQR) 4.42 (4.00–4.90) M: (4.3–5.6) 

F: (3.9–5.1) 
4.46 (4.14–4.93) 4.31 (3.83–4.90)  0.123 n.a. 

HGB, g/L; median (IQR) 132 (119–145) M: (130–165) 
F: (120–147) 

134 (122–146.5) 130 (114.5–144)  0.107 n.a. 

HCT, %; median (IQR) 39.8 (36.0–43.0) M: (40–50) 
F: (36–45) 

40.0 (37.0–43.6) 39.5 (35.0–43.0)  0.207 n.a. 

MCV, fL; median (IQR) 89.8 (86.5–92.5) 84–97 89.2 (86.2–92) 90 (87–93)  0.198 n.a. 
MCH, pg; median (IQR) 30 (28.8–31) 27–32 30 (29–31) 30 (28.7–31)  0.745 n.a. 
MCHC, g/L; median (IQR) 333 (324–342) 314–349 335.5 

(328–343.5) 
332 (322.5–338.5)  0.010 n.a. 

RDW-CV, %; median (IQR) 13.4 (12.9–14.4) 12–14 13.3 (12.7–14.1) 13.6 (13.1–14.7)  0.003 n.a. 

*Reference intervals established in our hospital. 
OR, odds-ratio; ICU, intensive care unit; IQR, interquartilic range; n.a., not applicable; M, male; F, female; ALT, catalytic concentration of alanine transaminase in 
plasma; ALB, mass concentration of albumin in plasma; AST, catalytic concentration of aspartate transaminase in plasma; BIL, substance concentration of bilirubin in 
plasma; CA, substance concentration of calcium(II) in plasma; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration glomerular filtration rate; CL, substance 
concentration of chloride in plasma; CREA, substance concentration of creatinine; CRP, mass concentration of C-reactive protein in plasma; DD, mass concentration of 
D-dimer in plasma; FERRI, mass concentration of ferritin in plasma; GLU, substance concentration of glucose in plasma; IL-6, mass concentration of interleukin 6 in 
plasma; LDH, catalytic concentration of lactate dehydrogenase in plasma obtained within the first admission day; K, substance concentration of potassium ion in 
plasma; PROCAL, mass concentration of procalcitonin in plasma; PT, relative time of prothrombine in plasma; NA, substance concentration of sodium ion in plasma; 
TROP-T, mass concentration of troponin T in plasma; UREA, substance concentration of urea in plasma; paCO2, partial pressure of carbon dioxide in arterial blood; 
paO2, partial pressure of oxygen in arterial blood; apH, pH in arterial blood; aSatO2, substance fraction of oxygen in arterial blood, paO2/FiO2, partial pressure of 
oxygen in arterial blood/fraction of inspired oxygen quotient value; #BAS, number concentration of basophiles in blood; %BAS, number fraction of basophiles in the 
leucocytes of the blood; #EOS, number concentration of eosinophils in blood; %EOS, number fraction of eosinophils in the leucocytes of the blood; LEU, number 
concentration of leucocytes in blood; #LYM, number concentration of lymphocytes in blood; %LYM, number fraction of lymphocytes in the leucocytes of the blood; 
#MON, number concentration of monocytes in blood obtained; %MON, number fraction of monocytes in the leucocytes of the blood; #NEU, number concentration of 
neutrophils in blood; %NEU, number fraction of neutrophils in the leucocytes of the blood; PLT, number concentration of platelets in blood; MPV, entitic volum of 
platelets in blood (mean platelet volume); ERY, number concentration of erythrocytes in blood; HGB, mass concentration of haemoglobin in blood; HCT, volume 
fraction of erythrocytes in blood (haematocrit); MCV, entitic volum of erythrocytes in blood (mean corpuscular volume); MCH, entitic mass of haemoglobin contained 
in the erythrocytes of the blood (mean corpuscular haemoglobin); MCHC, mass concentrarion of haemoglobin contained in the erythrocytes of the blood (mean 
corpuscular haemoglobin concentration); relative distribution width of the erythrocytic volume in the erythrocytes of the blood (red blood cell distribution width). 
Numbers in bold indicate a p-value < 0.05. 
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standardised variables (15 dichotomic factors and 47 covariates), one 
hidden layer with six neuron units, and an output layer with two neuron 
units (the outcomes). The dichotomic factors included gender and 
clinical history information, while the laboratory variables, symptoms, 
and admission variables were considered covariates. We used the hy
perbolic tangent activation function for the hidden layer and the Soft
max activation with the Cross-entropy error functions for the output 
layer. The gradient descent based-method was used for optimising the 
ANN loss function. The ANN model was validated using a ten-fold cross- 
validation method using the training/test sample ratio of 7:3 (234:92 
patient data). 

3. Results 

3.1. Descriptive data 

The baseline characteristics of the 326 patients are depicted in 
Table 1. The results of the univariate analysis showed that patients with 
older age, cancer, chronic kidney disease, immunosuppressive/cortico
steroids treatment at hospital admission and a higher number of days 
from the appearance of clinical symptoms to admission to the ICU were 
associated with death in ICU patients (p < 0.01). Regarding laboratory 
variables, higher values of CREA, DD, K, TROP-T, UREA, paCO2, and 
RDW-CV, as well as lower values of CKD-EPI, paO2, apH, aSatO2, paO2/ 
FiO2, %BAS, %LYM, and MCHC were also associated with greater 
mortality risk (p < 0.05). 

3.2. Binary logistic regression model 

For the BLR model, multivariate analysis using stepwise variable 
selection based on the Wald Forward method showed that variables such 
as age, hypertension, chronic kidney disease, K, CL, apO2, and apH, were 
independent predictors of death in ICU patients with COVID-19 (p <
0.001) (see Table 2). 

The multivariate logistic regression equation obtained to estimate 
the percentage probability of death (Pdeath(%)) and probability of sur
vival (Psurvival(%)) for COVID-19 patients based on their first day of ICU 
admission was: 

Pdeath(%) =
1

1 + e(− 76.481− 0.112⋅x1+1.050⋅x2 − 2.537⋅x3 − 0.945⋅x4+0.116⋅x5+0.020⋅x6+9.986⋅x7)
⋅100  

Psurvival(%) = 100 − Pdeath(%)

where x1 is the age (in years); x2, the dichotomic hypertension value 
(0 if the patients do not present hypertension, and 1 if they do); x3, the 
dichotomic chronic kidney disease value (0 if the patients do not have 
chronic kidney disease, and 1 if they have it); and x4, x5, x6, x7, the K, CL, 
paO2, and pH values obtained from the patients during the first day of 
their ICU admission. 

After the seventh iteration using the Wald Forward Stepwise method, 
the − 2 log(likelihood), the Cox&Snell’s coefficient of determination 
(r2), and the Nagelkerke r2 values obtained were 132.81, 0.382, and 
0.503, respectively. The Hosmer and Lemeshow C goodness-of-fit sta
tistic was not significant (α = 0.05; p = 0.499). 

For the training data group, the AUROC, sensitivity, specificity, PPV, 
and NPV data were 0.810 (95% CI, 0.762–0.858), 78.9%, 74.3%, 37.2%, 
and 94.8%, respectively (see Fig. 1). For the testing data group, these 
values were 0.789 (95% CI, 0.739–0.839), 77.4%, 75.7%, 38.1%, and 
94.5%. A comparison of the AUROCs showed no statistically significant 
differences between the two groups (p = 0.542). 

3.3. Artificial neural network model 

The Hosmer and Lemeshow C goodness-of-fit statistic for the ANN 
model was not significant (α = 0.05; p = 0.843). 

For the training data group, the AUROC, sensitivity, specificity, PPV 
and NPV were 0.917 (95% CI, 0.873–0.961), 80.4%, 89.8%, 60.4%, and 
95.9%, respectively (See Fig. 1). Further, for the testing data group, 
sensitivity, specificity, PPV, and NPV were 84.2%, 87.6%, 56.8%, and 
96.6%. 

The variance importance matrix plot of variables for ANN is shown in 
Fig. 2. The variables “number of days between appearance of clinical 
symptoms and admission to the hospital”, DD, aSatO2, and pH were 
ranked first, while variables as chronic pulmonary disease, gender, and 
the “take of antihypertensive and antiaggregant drugs at hospital 
admission” were the last. 

3.4. Comparison between models 

The AUROC of the ANN model was significantly larger than the BLR 
model (0.917 vs 0.810; p < 0.001) for predicting individual outcome in 
COVID-19 patients using data collected within the first day of ICU 
admission. Furthermore, the post-test probability showed that PPV was 
higher for the ANN model than for the BLR model (60.4% vs 37.2%) but 
similar for the NPV (95.9% vs 94.8%). 

3.5. Prospective study 

Using the 77 patients admitted to the ICU between April 1, 2021, and 
August 31, 2021, and applying the BLR model, the sensitivity, speci
ficity, PPV, and NPV obtained were 64.0%, 66.7%, 27.1%, and 90.5%, 
respectively. Furthermore, considering the ANN model, these values 
were 76.0%, 81.5%, 44.2%, and 94.6%. 

4. Discussion 

The present study provides valuable information on which variables 
from the first day of ICU admission can predict a fatal outcome in ICU 
patients with COVID-19, and BLR and ANN models to predict the mor
tality or survival of these patients. 

In our univariate analysis of COVID-19 patients who were admitted 
to the ICU and subsequently died, some of our results were consistent 
with the literature, and some were not. For instance, Zhao et al. [15] 

Table 2 
Results of multivariate binary logistic regression analysis obtained for ICU pa
tients with COVID-19 infection using the Wald Forward Stepwise method.  

Variable β SE Wald- 
value 

p- 
Value 

OR (eβ) (95% CI) 

Age  0.112  0.026  18.449  <0.001 1.118 
(1.063–1.177) 

Hypertension  − 1.050  0.470  4.985  0.026 0.350 
(0.139–0.880) 

Chronic renal 
disease  

2.537  1.100  5.315  0.021 12.64 
(1.463–109.2) 

K  0.945  0.422  5.008  0.025 2.572 
(1.124–5.883) 

CL  − 0.116  0.045  6.480  0.011 0.891 
(0.815–0.974) 

apO2  − 0.020  0.008  6.385  0.012 0.981 
(0.966–0.996) 

apH  − 9.986  2.311  18.665  <0.001 1.2⋅10-4 

(0.23⋅10-5 −

0.004) 
β0  76.481  18.520  17.054  <0.001 – 

β, multivariable logistic regression constants; SE; standard error; OR (eβ), 
multivariate odds-ratio; ICU, intensive care unit; K, substance concentration of 
potassium ion in plasma obtained within the first ICU admission day; CL, sub
stance concentration of chloride in plasma obtained within the first ICU 
admission day; paO2, partial pressure of oxygen in arterial blood obtained within 
the first ICU admission day; apH, pH in arterial blood obtained within the first 
ICU admission day; β0, univariate logistic regression constant. 
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have also shown that advanced age, chronic kidney disease, higher DD 
and TROP-T values, and lower %LYM and aSatO2 values were associated 
with higher mortality risk. Additionally, in line with our findings, Chen 
et al. [25] and Berenger et al. [26] observed that patients with cancer 
and with higher levels of CREA, UREA, and DD values; and lower %LYM 
values presented statistically significant mortality. Furthermore, Aksel 
et al. [27] also showed that variables such as hypertension, diabetes, 
smoking, and chronic obstructive pulmonary disease were not associ
ated with greater mortality risk. Our study found that CRP, ALT, ALB, 
LEU, and PLT values were not associated with mortality, which differs 
from previously published data [15,25–27]. We consider that these 
discrepancies could be explained by both the basal characteristics of the 
population admitted to the ICU and the fact that data were recollected 
mainly during the first pandemic wave. Also, the discrepancies could be 
explained by the fact that patients were admitted to ICU from different 
units, i.e., they came directly from the emergency department or were 
already admitted to the hospital and came from other minor severity 
units (conventional or semi-critical units). 

The novelty of our study is that we have jointly included variables 
such as the primary acid-base equilibrium related-quantities (apH, 
paCO2, paO2, and aSatO2), renal related-quantities (CREA, CKD-EPI, K 
and UREA), PROCAL and TROP-T, a complete blood count including red 
blood cell indices (MCV, MCHC, RDW-CV), as well as dyslipidemia, 

pharmacological treatments at hospital admission, symptoms onset and 
admission related information. All these variables were associated with 
higher mortality risk or present values close to the statistical 
significance. 

Regarding prediction models, at present, different BLR and ANN 
models have been studied together on a standard dataset applied to 
COVID-19 patients [12,14,15,28,29]. However, to our knowledge, no 
studies have been published predicting mortality/survival of COVID-19 
patients based on their first day of ICU admission and considering all the 
variables shown in Table 1. Thus, it should be noted that we have not 
compared our results obtained using BLR and ANN models with data 
previously published in the literature due to a lack of homogeneity of 
data between studies and to avoid misinterpretation:  

• The variables considered to construct the BLR and ANN models and 
the collection time of patient data are different between studies.  

• Different BLR methods and ANN architectures are applied in other 
studies (e.g., forward and backward strategies in the case of BLR), the 
multilayer perceptron, radial basis function, and the number of 
layers for the different neurons units, among others, for the ANN).  

• The measuring systems used to determine the biological quantities 
(laboratory variables) are also different between studies, and they 

Fig. 1. Comparison of area under the receiver operating characteristic curves among the binary logistic regression and artificial neural network models to separate 
survival and non-survival COVID-19 patients within their first day in the ICU admission. AUROC = Area under the receiver operating characteristic curve. 
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Fig. 2. Variance importance matrix plot of variables collected in the first 24 h of intensive care unit for artificial neural network in patients with COVID-19. ALB, 
mass concentration of albumin in plasma; BIL, substance concentration of bilirubin in plasma; CA, substance concentration of calcium(II) in plasma; CKD-EPI, 
Chronic Kidney Disease Epidemiology Collaboration glomerular filtration rate; CL, substance concentration of chloride in plasma; CREA, substance concentration 
of creatinine; CRP, mass concentration of C-reactive protein in plasma; Days_ adm_hos_ICU, number of days from hospital admission to ICU admission; Day
s_sym_adm_hos, number of days between appearance of clinical symptoms and admission to the hospital; Days_sym_adm_ICU, number of days between appearance of 
clinical symptoms and admission to the ICU; DD, mass concentration of D-dimer in plasma; FERRI, mass concentration of ferritin in plasma; GLU, substance con
centration of glucose in plasma; LDH, catalytic concentration of lactate dehydrogenase in plasma obtained within the first admission day; K, substance concentration 
of potassium ion in plasma; PT, relative time of prothrombine in plasma; NA, substance concentration of sodium ion in plasma; TROP-T, mass concentration of 
troponin T in plasma; UREA, substance concentration of urea in plasma; paCO2, partial pressure of carbon dioxide in arterial blood; paO2, partial pressure of oxygen 
in arterial blood; apH, pH in arterial blood; aSatO2, substance fraction of oxygen in arterial blood, paO2/FiO2, partial pressure of oxygen in arterial blood/fraction of 
inspired oxygen quotient value; #BAS, number concentration of basophiles in blood; %BAS, number fraction of basophiles in the leucocytes of the blood; #EOS, 
number concentration of eosinophils in blood; %EOS, number fraction of eosinophils in the leucocytes of the blood; LEU, number concentration of leucocytes in 
blood; #LYM, number concentration of lymphocytes in blood; %LYM, number fraction of lymphocytes in the leucocytes of the blood; #MON, number concentration 
of monocytes in blood obtained; %MON, number fraction of monocytes in the leucocytes of the blood; #NEU, number concentration of neutrophils in blood; %NEU, 
number fraction of neutrophils in the leucocytes of the blood; PLT, number concentration of platelets in blood; MPV, entitic volum of platelets in blood (mean platelet 
volume); ERY, number concentration of erythrocytes in blood; HGB, mass concentration of haemoglobin in blood; HCT, volume fraction of erythrocytes in blood 
(haematocrit); MCV, entitic volum of erythrocytes in blood (mean corpuscular volume); MCH, entitic mass of haemoglobin contained in the erythrocytes of the blood 
(mean corpuscular haemoglobin); MCHC, mass concentrarion of haemoglobin contained in the erythrocytes of the blood (mean corpuscular haemoglobin concen
tration); relative distibution width of the erythrocytic volume in the erythrocytes of the blood (red blood cell distribution width). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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will provide non-comparable results, mainly for those that use 
immunoassay techniques. 

For all these reasons, we believe that comparing our results with 
those published in the literature might be more confusing than helpful. 

In our multivariate BLR analysis, age, hypertension, chronic kidney 
disease, K, CL, apO2, and apH were independent predictors of death in 
ICU patients with COVID-19. Also, this model presented acceptable 
discrimination capacity to separate survivors from non-survivors 
(AUROC = 0.810 and NPV = 94.8%). Its usefulness was verified from 
prospective data (NPV = 90.5%). Further, in our ANN model, we ob
tained significantly higher performance than the BLR model for pre
diction of survivor patients in terms of AUROC (0.917 vs 0.810) but 
similar in terms of NPV (95.9% vs 94.8%). In addition, the results of 
verification of the ANN model from prospective data also showed its 
usefulness (NPV = 94.6%). 

Our study found that younger patients, with higher pH, apO2, CL 
values, and lower K values were significantly more likely to have a 
favourable outcome. All these variables were present in both models 
with greater significance, i.e., they were independent predictors of 
survival in the BLR model and had high relative importance in the ANN 
model. 

Furthermore, considering that we had two different models with an 
adequate capacity of discrimination [30], another issue that we would 
like to discuss is which of the models would be more useful in daily 
clinical practice. Although both models present similar NPV, the ANN 
model should preferably be used instead of the BLR model, because it 
presents higher performance for predicting survivor patients (in terms of 
AUC) and non-survivor patients (in terms of PPV). Nonetheless, the re
sults obtained from ANN models are more difficult to interpret than 
those obtained from the BLR model and require friendly computer 
support to facilitate the clinician’s task. Thus, in absence of this com
puter support, a possible solution could be to employ the ANN prediction 
model using information-sharing procedures that clinicians are already 
accustomed to. For example, the results could be included in the labo
ratory reports as another biological quantity result. An alternative 
would be to use the BLR model, which clinicians could introduce into 
commonly used software (e.g., an Excel spreadsheet). 

In addition to the generic limitations cited above related to the lack 
of data homogeneity between studies, our study has other specific 
limitations:  

1. It has been performed using a “small” number of cases, challenging 
the statistical power for the BLR model and compromising adequate 
ANN learning.  

2. This is an observational study that used data derived from a single 
centre. So, our findings may not be generalisable to all healthcare 
institutions worldwide, especially considering the high COVID-19 
variability between different countries and populations.  

3. A more significant number of patients should have been used in the 
prospective study in such a way that the robustness would have been 
unequivocally guaranteed.  

4. Additional studies are required to determine how clinicians may 
respond to risk predictions and whether these predictions can affect 
patient outcomes equivocally guaranteed.  

5. Considering that data were collected as part of usual care and in a 
“period of chaos”, not all meaningful laboratory data could be 
collected for most patients. So, consequently, they were not consid
ered and included in the models (e.g., the catalytic concentration of 
creatine kinase, γ-glutamyl transferase, alkaline phosphatase in 
plasma; a vitamin profile based on the measurement of the substance 
concentration of pyridoxal 5’-phosphate, ascorbate, calcidiol, 
cobalamin, folate, retinol, and thiamine diphosphate in blood or 
plasma; urinary sediment related-quantities, among others). 

Despite all these limitations, we consider that we have obtained 

promising results that allowed us to meet one of our objectives, i.e., the 
development of a helpful tool to predict individual outcome for COVID- 
19 patients based on, mainly, laboratory variables obtained during the 
first day of ICU admission. Also, considering the results obtained and the 
verifications assessed, the models could be used in the future, because 
they seem to be independent of waves of the pandemic or the COVID-19 
variants. This fact could be helpful to implement triage policies for 
critically ill COVID-19 patients with a limited number of beds available. 

Finally, considering all the reasons mentioned above, every health
care institution should develop their own prediction models using all the 
data they could collect and update their models periodically. An alter
native could be to create models containing data collected from various 
institutions. 

5. Conclusions 

Accurate individual outcome predictions for COVID-19 patients 
based on their first day of ICU admission were obtained using BLR and 
ANN models. Our study could provide helpful information for other 
healthcare institutions on how to develop their prediction models. In 
addition, our study provides valuable information as to which clinical 
and analytical variables obtained on the first day of ICU admission could 
predict individual outcome for ICU patients with COVID-19. In our 
opinion, this fact would allow optimize patient’s triage in a saturated 
health system due to the Covid-19 pandemic. 
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mortality for moderate to severely ill patients with Covid-19, Am. J. Emerg. Med. 
45 (2021) 290–296, https://doi.org/10.1016/j.ajem.2020.08.076. 

[28] D. Assaf, Y. Gutman, Y. Neuman, G. Segal, et al., Utilization of Machine-learning 
models to accurately predict the risk for critical COVID-19, Intern, Emerg. Med. 15 
(8) (2020) 1435–1443, https://doi.org/10.1007/s11739-020-02475-0. 

[29] A.K. Das, S. Mishra, S. Gopalan, Predicting COVID-19 community mortality risk 
using machine learning and development of an online prognostic tool, PeerJ 8 
(2020), https://doi.org/10.7717/peerj.10083. 

[30] A. Worster, R.D. Bledsoe, P. Cleve, C.M. Fernandes, S. Upadhye, K. Eva, 
Reassessing the methods of medical record review studies in emergency medicine 
research, Ann. Emerg. Med. 45 (4) (2005) 448–451, https://doi.org/10.1016/j. 
annemergmed.2004.11.021. 

R. Rigo-Bonnin et al.                                                                                                                                                                                                                           

https://doi.org/10.1016/j.accpm.2020.05.008
https://doi.org/10.1136/bmj.m3268
https://doi.org/10.1136/bmj.m3268
https://doi.org/10.1186/s13613-020-00702-7
https://doi.org/10.1016/j.chest.2020.03.063
https://doi.org/10.1016/j.chest.2020.03.063
https://doi.org/10.1016/S0140-6736(20)30566-3
https://doi.org/10.1016/S0140-6736(20)30566-3
https://doi.org/10.1097/CCM.0000000000004411
https://doi.org/10.1097/CCM.0000000000004411
https://doi.org/10.1097/CCM.0000000000004549
https://doi.org/10.1016/j.chest.2020.03.032
https://doi.org/10.1016/j.amsu.2020.09.044
https://doi.org/10.1371/journal.pone.0236618
https://doi.org/10.12688/wellcomeopenres.16661.1
https://doi.org/10.12688/wellcomeopenres.16661.1
https://doi.org/10.1093/oxfordjournals.aje.a113284
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1038/nmeth.3335
http://refhub.elsevier.com/S0009-9120(21)00300-3/h0120
http://refhub.elsevier.com/S0009-9120(21)00300-3/h0120
http://refhub.elsevier.com/S0009-9120(21)00300-3/h0120
https://doi.org/10.1136/bmj.m1091
https://doi.org/10.1016/j.cmi.2020.07.024
https://doi.org/10.1016/j.ajem.2020.08.076
https://doi.org/10.1007/s11739-020-02475-0
https://doi.org/10.7717/peerj.10083
https://doi.org/10.1016/j.annemergmed.2004.11.021
https://doi.org/10.1016/j.annemergmed.2004.11.021

