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Abstract

Interferon-induced transmembrane proteins (IFITMs) inhibit infection of diverse enveloped viruses, including the influenza A
virus (IAV) which is thought to enter from late endosomes. Recent evidence suggests that IFITMs block virus hemifusion
(lipid mixing in the absence of viral content release) by altering the properties of cell membranes. Consistent with this
mechanism, excess cholesterol in late endosomes of IFITM-expressing cells has been reported to inhibit IAV entry. Here, we
examined IAV restriction by IFITM3 protein using direct virus-cell fusion assay and single virus imaging in live cells. IFITM3
over-expression did not inhibit lipid mixing, but abrogated the release of viral content into the cytoplasm. Although late
endosomes of IFITM3-expressing cells accumulated cholesterol, other interventions leading to aberrantly high levels of this
lipid did not inhibit virus fusion. These results imply that excess cholesterol in late endosomes is not the mechanism by
which IFITM3 inhibits the transition from hemifusion to full fusion. The IFITM3’s ability to block fusion pore formation at a
post-hemifusion stage shows that this protein stabilizes the cytoplasmic leaflet of endosomal membranes without adversely
affecting the lumenal leaflet. We propose that IFITM3 interferes with pore formation either directly, through partitioning
into the cytoplasmic leaflet of a hemifusion intermediate, or indirectly, by modulating the lipid/protein composition of this
leaflet. Alternatively, IFITM3 may redirect IAV fusion to a non-productive pathway, perhaps by promoting fusion with
intralumenal vesicles within multivesicular bodies/late endosomes.
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Introduction

The recently identified interferon-induced transmembrane

proteins (IFITMs) inhibit infection of diverse enveloped viruses

[1–3]. Ectopic expression of IFITM1, -2 and -3 restricts a growing

number of unrelated viruses, including IAV [1,2,4–7]. IFITM3

has been shown to potently restrict infection by IAV and the

Respiratory Syncytial Virus in vivo [8–10]. In contrast, arenavi-

ruses and some retroviruses, such as murine leukemia virus (MLV),

are resistant to IFITM restriction [2,6]. The IFITMs have been

reported to inhibit HIV-1 entry, albeit less potently than IAV and

apparently in a cell type-dependent manner [11–13].

The mechanism by which IFITMs inhibit infection of diverse

viruses is not fully understood. IFITM2 and -3 are predominantly

found in late endosomes (LE) and lysosomes [13,14], whereas

IFITM1 is also found at the cell periphery [4,15]. Different

membrane topologies of IFITMs have been proposed [16], but

recent data suggests that IFITM3 is a type II transmembrane

protein [17]. Accumulating evidence implies that IFITMs may

interfere with virus-endosome fusion [1,2,5,13,14]. The fact that

IFITMs seem to expand acidic intracellular compartments [13]

indicates that the fusion block is downstream of the low pH trigger.

Effective restriction of viruses that enter from the LE, such as IAV,

Ebola virus (EBOV) and SARS coronavirus seems consistent with

the cellular localization of IFITM2 and -3 proteins. However,

these proteins also restrict Vesicular Stomatitis Virus (VSV) that

appears to fuse with early endosomes [18].

IFITMs have been reported to curtail viral infection by

modifying properties of cellular membranes, such as fluidity and

spontaneous curvature [3,5,14]. These effects could be related, in

part, to the accumulation of cholesterol in LE as a result of

IFITM-mediated disruption of the interaction between the vesicle-

membrane-protein-associated protein A (VAPA) and oxysterol-

binding protein (OSBP) [14]. Since lipids play an important role in

membrane fusion, these findings offer an attractive paradigm for a

broad antiviral defense mechanism that involves altering the lipid

composition of cellular membranes. The recent finding that

amphotericin B, which forms complexes with sterols [19], rescues
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IAV infection in IFITM2- and IFITM3-expressing cells [20] is in

line with the notion that cholesterol may be directly or indirectly

involved in IAV restriction. However, lipid composition-based

models do not readily explain the lack of restriction of

amphotropic MLV and arenaviruses, which enter cells via distinct

endocytic routes [21,22]. These findings indicate that IFITMs may

restrict virus entry from a subset of intracellular compartments. In

order to define the mechanism of IFITM restriction, it is

important to identify the viral entry step(s) targeted by these

proteins, define compartments in which restriction occurs, and

elucidate potential changes in intracellular membranes that may

be responsible for this phenotype.

Here, we examined the mechanism of IFITM3 restriction of

IAV using single particle imaging and a direct virus-cell fusion

assay. Our results show that IFITM3 does not inhibit the lipid

mixing stage of IAV fusion but blocks the release of viral contents

into the cytosol, and that this phenotype does not correlate with

cholesterol accumulation in intracellular compartments. Specifi-

cally, IFITM3 inhibits the conversion of hemifusion to fusion

through a mechanism that does not rely on cholesterol accumu-

lation. Together these findings reveal a previously unappreciated

view of IFITM-mediated restriction and suggest new avenues of

investigation to delineate the mechanism by which these proteins

block infection.

Results

Virus- and cell type-dependent restriction of viral fusion
by IFITM3

We chose to focus on IFITM3 to study the mechanism of IAV

restriction because this protein potently inhibits infection in vitro

and in vivo [8–10]. Since published data suggest that IFITM3 likely

inhibits the viral fusion step, a direct virus-cell fusion assay was

employed to evaluate the extent of restriction in different cell lines

[23]. HIV-1 particles carrying the b-lactamase-Vpr (BlaM-Vpr)

chimera and pseudotyped with the influenza HA and NA proteins

from the H1N1 A/WSN/33 strain (referred to as IAVpp) were

allowed to fuse with cells transduced with an empty vector or with

an IFITM3-expressing vector. The resulting cytosolic BlaM

activity was measured as previously described [24]. Out of several

cell lines tested, A549 and MDCK cells over-expressing IFITM3

were least permissive to IAVpp fusion (Fig. 1A). In agreement with

the previous reports [2,13], we found that IFITM3 over-

expression partially inhibited VSV G glycoprotein-mediated

fusion of pseudoviruses (VSVpp) carrying the BlaM-Vpr chimera

(Fig. 1A). Similar to inhibition of IAVpp fusion, the IFITM3-

mediated restriction of VSVpp was most potent in A549 and

MDCK cells. As expected, fusion of particles pseudotyped with the

Lassa fever virus glycoprotein (LASVpp), which directs virus entry

through an IFITM3-resistant pathway [2,6], was not considerably

affected by IFITM3 over-expression.

We next checked if the strong suppression of virus fusion in A549

and MDCK cells was related to the level of IFITM3 expression.

Immunostaining for IFITM3 in these and CHO cells which

exhibited modest restriction of viral fusion (Fig. 1A) did not reveal a

clear correlation between IFITM3 expression and inhibition of

IAVpp or VSVpp fusion (Fig. 1B). Of note, potent IAV restriction in

A549 and MDCK cells was not related to the usage of HIV-1 core-

based pseudoviruses. Influenza virus-like particles containing the

IAV BlaM-M1 chimera [25] also failed to efficiently fuse with A549-

IFITM3 and MDCK-IFITM3 cells while fusing well with vector-

transduced cells (Fig. 1C). We also found that both vector-

transduced A549 and MDCK cells were highly susceptible to

IAV infection, as determined by virus titration (see Materials and

Methods). These two cell lines were therefore chosen for studies of

IFITM3-mediated restriction described below.

IFITM-based restriction has been studied using a cell-cell fusion

model, as well as by forcing viral fusion with the plasma

membrane by lowering the pH [5,20]. Since fusion with the

plasma membrane is more amenable to mechanistic studies than

endocytic entry, we asked whether IFITM3 can restrict forced

IAV fusion. Exposure to acidic buffer induced IAVpp fusion with

A549-Vector cells pretreated with Bafilomycin A1 (BafA1), which

blocked low pH-dependent entry from endosomes (Fig. 1D). The

extent of forced fusion was lower compared to the conventional

entry route. By contrast, forced IAVpp fusion with A549-IFITM3

cells was ,3-fold more efficient than endocytic fusion with cells

not treated with low pH or BafA1, showing that IFITM3 does not

restrict IAVpp fusion at the cell surface. Interestingly, IFITM1

suppressed IAVpp-plasma membrane fusion at low pH (Fig. 1D),

in agreement with the Jaagsiekte sheep retrovirus (JSRV) and IAV

fusion data [5,20]. The inability of IFITM3 to block IAV fusion

with the plasma membrane is consistent with its lower abundance

at the cell surface [13,14,20] and shows that the mechanism of

restriction must be studied in intracellular compartments.

IFITM3 does not inhibit lipid mixing between IAV and
acidic endosomes

Preponderance of evidence implies that hemifusion is a

universal intermediate (reviewed in [26,27]) that precedes the

formation of a fusion pore. Having shown that IFITM3 over-

expression inhibits viral fusion (Fig. 1A, C), we asked whether this

protein also blocks the upstream hemifusion step. This was

accomplished by labeling the A/PR/8/34 virus membrane with a

self-quenching concentration of vybrant DiD (vDiD), using a

modification of the previously published protocol [28]. Incorpo-

ration of self-quenching quantities of a lipophilic dye enables the

visualization of single lipid mixing events based on the marked

increase in fluorescence upon dye redistribution to an endosomal

membrane (see for example [28,29]).

Significantly, to control for fluctuations in the vDiD fluores-

cence caused by deviation from a focal plane, the viral surface

proteins were labeled with the amine-reactive AlexaFluor-488

(AF488) dye. The relatively steady AF488 signal before and after

hemifusion is allowed correcting for the vDiD intensity fluctuations

due to moving in and out of focus. The vDiD/AF488 co-labeling

Author Summary

Interferon-induced transmembrane proteins (IFITMs) block
infection of many enveloped viruses, including the
influenza A virus (IAV) that enters from late endosomes.
IFITMs are thought to prevent virus hemifusion (merger of
contacting leaflets without formation of a fusion pore) by
altering the properties of cell membranes. Here we
performed single IAV imaging and found that IFITM3 did
not interfere with hemifusion, but prevented complete
fusion. Also, contrary to a current view that excess
cholesterol in late endosomes of IFITM3-expressing cells
inhibits IAV entry, we show that cholesterol-laden endo-
somes are permissive for virus fusion. The ability of IFITM3
to block the formation of fusion pores implies that this
protein stabilizes the cytoplasmic leaflet of endosomal
membranes, either directly or indirectly, through altering
its physical properties. IFITM3 may also redirect IAV to a
non-productive pathway by promoting fusion with in-
tralumenal vesicles of late endosomes instead of their
limiting membrane.
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protocol only modestly (,2-fold) reduced IAV infectivity com-

pared to the mock-labeled viruses (Fig. S1A). Immunofluorescence

staining of AF488-labeled virions with anti-HA antibodies

revealed an excellent co-localization of the two signals (Fig. S1B,

C), thus supporting the notion that AF488/vDiD-labeled particles

are bona fide virions.

Figure 1. IFITM-mediated restriction of virus-endosome fusion in different cell types. (A) IFITM3-mediated inhibition of viral fusion with
different cell types. BlaM-Vpr carrying pseudoviruses (IAVpp, VSVpp and LASVpp, MOI = 1) were bound to IFITM3- or vector-transduced A549, MDCK,
CV1, HeLaH1 or CHO cells in the cold. Fusion was allowed to proceed for 90 min at 37uC and was measured by the BlaM assay, as described in
Materials and Methods. ND, not determined. Data are means and SEM from 2 independent triplicate experiments. (B) IFITM3 expression patterns in
A549, MDCK and CHO cells transduced with an empty vector (left) or IFITM3 (right). Cells were fixed, permeabilized and immunostained for IFITM3
(red), as described in Materials and Methods. The nuclear stain, Hoechst-3342, is shown in blue. (C) IFITM3 restricts fusion of influenza virus-like
particles containing b-lactamase reporter protein fused to the influenza matrix protein-1 (BlaM1). Experiments were carried out as described above.
Data are means and SEM from 2 independent triplicate experiments. (D) Exposure to low pH overcomes the IFITM3-mediated block of IAVpp fusion.
To force pseudovirus fusion at the plasma membrane, A549 cells transduced with IFITM1, IFITM3 or an empty vector were pretreated with 50 nM
BafA1 for 30 min at 37uC or left untreated. IAVpp/BlaM-Vpr pseudoviruses (MOI = 1) were bound to cells of in the cold and exposed to either a pre-
warmed pH 5.0 MES-citrate buffer or neutral buffer for 10 min at 37uC and further incubated in growth medium (with or without BafA1) for 90 min at
37uC. Data are means and SEM from 2 independent triplicate experiments. ***, P,0.001 by two-tailed t-test.
doi:10.1371/journal.ppat.1004048.g001
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Labeled viruses were allowed to enter A549-Vector cells, and

the resulting lipid mixing activity was examined by single particle

tracking. A fraction of virions exhibited a marked increase in the

vDiD signal (Fig. 2A, B). Redistribution of vDiD was mediated by

low pH-dependent conformational changes in the IAV HA

glycoprotein, as evidenced by potent inhibition of lipid mixing

by anti-HA antibodies (Fig. 2C) and by NH4Cl (Fig. 3A). Without

simultaneous monitoring of the viral content release into the

cytoplasm, vDiD dequenching does not discriminate between

hemifusion (operationally defined as lipid mixing without content

transfer [30]) and full fusion. To avoid over-interpreting

dequenching events, we will refer to these events as lipid mixing

or hemifusion. A similar vDiD dequenching pattern was observed

in MDCK cells transduced with an empty vector (data not shown).

Analysis of lipid mixing showed that 2.260.4% and 5.660.6% of

cell-bound particles released vDiD in A549 and MDCK cells,

respectively (Fig. 3A). By comparison, a much greater fraction of

virions (38.360.6%) hemifused with CHO cells (data not shown),

in agreement with the previously reported data [28].

Importantly, IAV lipid mixing was readily detected in IFITM3+

A549 and MDCK cells (Figs. 2D–G and 3A). Not only was lipid

mixing not inhibited in A549-IFITM3 cells, but a .3-fold greater

fraction of particles released vDiD in these cells compared to

control cells (Fig. 3A, P,0.001). By comparison, IFITM3 over-

expression in MDCK cells did not significantly promote vDiD

dequenching (Fig. 3A). Thus, contrary to the cell-cell fusion results

[5], IFITM3 does not inhibit and can even promote IAV lipid

mixing, consistent with the block of virus entry at a post-

hemifusion stage. Accordingly, the addition of oleic acid, which

augments hemifusion by altering spontaneous membrane curva-

ture, did not rescue IAVpp or VSVpp fusion with A549-IFITM3

cells (Fig. S2). This is in agreement with the recent infectivity

results [20], but in contrast with the rescue of fusion between

JSRV Env- and IFITM-expressing cells by this fatty acid [5].

The higher frequency of vDiD dequenching in A549-IFITM3

cells could be caused by the increased endosome acidity compared

to control cells [13]. However, the distribution of waiting times to

the onset of lipid mixing was independent of IFITM3 expression

or the type of target cells (A549 vs. MDCK, Fig. 3B, P = 0.37). The

fact that the kinetic curves do not reach plateau indicates that IAV

entry into A549 and MDCK cells is not completed within the first

hour. Our results thus demonstrate that IFITM3 restricts the IAV

fusion at a post-hemifusion step, most likely at the point of fusion

pore opening, as evidenced by the dramatic decrease of the BlaM

signal in A549 and MDCK cells expressing this protein (Fig. 1A).

Lipid redistribution between IAV and endosomes is
relatively slow and independent of IFITM3 expression

Under our conditions, vDiD dequenching was typically

completed within a few minutes for both control and IFITM3+

cells (Fig. 2). This dequenching rate is much slower than sudden

increases in fluorescence of the IAV membrane markers described

previously [28,31]. While a portion of vDiD dequenching could be

completed within seconds (Fig. S3), these fast events were not

common. Slow dequenching was also typical with the vDiD/

AF488-labeled X31 virus, as well as with the X31 virus labeled

with a 15-fold excess of DiD, using the published protocol for

single virus imaging [28] (data not shown).

Slow vDiD dequenching during the first hour of virus-cell co-

incubation did not appear to result from IAV degradation in LE/

lysosomes, since the surface-exposed AF488 label persisted long

after vDiD dequenching was completed and because anti-HA

antibodies blocked vDiD dequenching (Fig. 2). In addition, we did

not detect any correlation between the lag before the onset of lipid

mixing and the vDiD dequenching slope (Fig. S4A). This result

reinforces the notion that late lipid mixing events are mediated by

HA and not by virus degradation. Control experiments, in which

samples were not exposed to laser light during the first 30 min at

37uC, did not reveal fast dequenching events reaching completion

in less than 1 min (data not shown). This control argues against

phototoxicity-related attenuation of virus fusogenicity as the cause

for sluggish lipid redistribution.

Since free vDiD diffusion between a virus and a small endosome

should be completed in less than a second [32,33], an initial

membrane connection between IAV and an endosome must

severely impair lipid movement. To assess whether early fusion

intermediates in control and IFITM3+ cells restrict vDiD diffusion

to the same extent, we examined the rate of vDiD dequenching.

Single particle analysis revealed that, in A549 cells, the average

vDiD dequenching profile (Fig. 3C) was independent of IFITM3

expression, as were the initial slopes of vDiD dequenching (Fig.

S4B, P.0.5). These results indicate that IFITM3 over-expression

does not affect the properties of fusion intermediates responsible

for vDiD redistribution, such as the size and/or architecture of a

hemifusion site (e.g., [34,35]). We then asked whether the rate of

vDiD dequenching varied depending on the cell type. The average

rate of vDiD fluorescence increase in MDCK cells was ,2-fold

greater than in A549 cells (Figs. 3C and S4B, P,0.02). This

demonstrates our ability to detect changes in the rate of vDiD

transfer and shows that lipid transfer lasts several minutes

irrespective of the cell type.

We also examined the final extent of vDiD dequenching, which

is proportional to the surface area of a target membrane over

which it redistributes. This parameter was not significantly affected

by IFITM3 expression in A549 cells or by the cell type (MDCK vs.

A549 cells, Fig. 3D). Together, similar kinetics and extents of viral

lipid dilution in control and IFITM3+ cells suggest that neither the

size/architecture of early fusion intermediates nor the surface area

of target endosomes is considerably affected by IFITM3 expres-

sion.

To investigate the relationship between lipid mixing and

productive IAV infection, we compared the fraction of cells

‘‘receiving’’ at least one vDiD dequenching event in live cell

imaging experiments to the fraction of cells that got infected under

the same conditions. The only difference was that virus imaging

was not continued beyond 1 h after initiation of fusion, whereas

infection proceeded overnight. We found that one or more vDiD

dequenching events occurred in 15% of A549 cells while 44% of

cells got infected (Fig. S5). Under the same conditions, 20% of

MDCK cells ‘‘hosted’’ one or more dequenching events and 36%

were infected. The greater fraction of infected cells compared to

those permissive to hemifusion is likely due to the shorter time

widow for single virus imaging, which is likely to miss late vDiD

dequencing events (Fig. 3B). The lower apparent fraction of cells

supporting vDiD dequenching could also be caused by the

presence of viruses that did not incorporate self-quenching

amounts of vDiD. Importantly, the comparable efficiencies of

lipid mixing and infection, indicate that the former events likely

culminate in productive infection.

IFITM3 inhibits the formation of small fusion pores
To determine whether IFITM3 impairs the IAV’s ability to

form small fusion pores, we attempted to load the virus with a

content marker by soaking in a concentrated solution of

sulforhodamine B, as described in [36]. However, only a small

fraction of AF488-labeled particles stained with sulforhodamine,

and the retained dye was lost in live cell experiments under

conditions that blocked IAV fusion (data not shown). We therefore

IFITM3 Blocks Influenza A Virus Fusion Pore
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resorted to using HIV pseudoviruses bearing A/WSN/33 HA and

NA glycoproteins and co-labeled with the capsid marker, YFP-

Vpr, and the content marker, Gag-iCherry [24,37]. Upon virus

maturation, the ‘‘internal’’ mCherry is proteolytically cleaved off

the HIV-1 Gag-iCherry and released through a fusion pore, as

manifested by the loss of the red signal (Fig. 4 and [37]). The YFP-

Vpr signal, which remained associated with the viral core after

fusion, provided a reference signal for single particle tracking.

Under our conditions ,1% of double-labeled pseudoviruses

entering A549-Vector cells lost their content marker, while

approximately 2% fused with MDCK-Vector cells. In sharp

contrast, the mCherry release in IFITM3+ A549 and MDCK cells

or in vector-transduced cells in the presence of NH4Cl could not

be detected (Fig. 4E, P,0.001). Thus, IFITM3 does not adversely

affect IAV hemifusion but severely inhibits viral content release

into the cytoplasm. Together these findings suggest that the

mechanism of IFITM3-mediated restriction arises from the

entrapment of viruses at a hemifusion intermediate prior to fusion

pore formation.

Cholesterol accumulation in endosomes does not inhibit
viral fusion

A recent study has shown that, through disrupting the

interaction between VAPA and OSBP, IFITM3 causes cholesterol

accumulation in LE [14]. Based on this finding, the authors

proposed that high levels of endosomal cholesterol may inhibit

IAV fusion and/or the release of nucleocapsid. Staining with

filipin revealed that IFITM3+ A549 cells exhibited increased levels

Figure 2. Lipid mixing between single IAV particles and endosomes in control and IFITM3-expressing cells. (A–E) IAV particles co-
labeled with AF488 (green) and vDiD (red) were pre-bound to A549-Vector or A549-IFITM3 cells in the cold and incubated at 37uC for 1 h. Particles
exchanging vDiD with endosomes (arrows in A and D) exhibited marked increase in red signal. (A, B) Images of vDiD dequenching (extended
projections) and particle fluorescence intensities obtained by tracking virions in A549 cells. A schematic illustration of IAV hemifusion with an
endosome (gray), which leads to vDiD dequenching, is overlaid on the graph. I1 and I2 are fluorescence intensities immediately before dequenching
and at the peak of dequenching, respectively. (C) IAV lipid mixing activity in A549-Vector cells is blocked in the presence of anti-HA antibody. AF488-
and vDiD-labeled IAV were pre-incubated with 20 mg/ml of polyclonal anti-IAV antibody (Millipore, Billerica, MA) for 1 h at room temperature. Viruses
were then bound to A549-Vector cells in the cold by spinoculation, and entry was initiated with warm imaging buffer supplemented with 20 mg/ml of
the antibody. Images were collected from 12 fields and the average fraction of AF488 particles with the vDiD signal above the threshold level was
determined and normalized to control conditions without the antibody. ***, P,0.001. (D, E) Representative images and analysis of lipid mixing in
A549-IFITM3 cells. (F, G) Representative images and analysis of lipid mixing in MDCK-IFITM3 cells. The ratio of vDiD and AF488 signals (blue line)
shows robust increase in the red signal in spite of variations in the green channel caused by axial displacement of the virus. Thick lines were obtained
by smoothing raw fluorescence intensity data (thin lines). Cell contours are shown by dashed lines in A and D. See also corresponding movies S1, S2
and S3.
doi:10.1371/journal.ppat.1004048.g002

IFITM3 Blocks Influenza A Virus Fusion Pore

PLOS Pathogens | www.plospathogens.org 5 April 2014 | Volume 10 | Issue 4 | e1004048



of intracellular cholesterol (Fig. 5A). However, the filipin signal

was still primarily associated with the plasma membrane and the

total cellular cholesterol was not elevated in IFITM3+ cells (Fig.

S6). In addition, the overall intensity of intracellular cholesterol

poorly correlated with the level of IFITM3 expression (Fig. 5C).

By comparison, pretreatment of A549-Vector cells with

U18666A, which inhibits transport of LDL-derived cholesterol

from LE/lysosomes (reviewed in [38]), resulted in a dramatic shift

in the filipin staining pattern from the plasma membrane to

endosomes (Fig. 5B). Aberrant accumulation of cholesterol in LE is

also known to occur in cells lacking the functional NPC1

cholesterol transporter [39]. We therefore knocked down NPC1

expression in A549 cells using shRNA (shNPC1, Fig. 5D) and

examined the resulting cholesterol distribution (Fig. 5B). Reduced

NPC1 expression correlated with excess cholesterol in intracellular

compartments, which was also much more pronounced than

endosomal filipin staining in A549-IFITM3 cells.

We next asked whether the cholesterol accumulation induced

by U18666A pretreatment or by down regulation of NPC1 can

phenocopy the IFITM3-mediated restriction of viral fusion.

Neither IAV lipid mixing (vDiD dequenching) nor fusion (BlaM

signal) was inhibited by silencing NPC1 in A549 cells (Fig. 5E, F).

VSVpp also fused with shNPC1-transduced cells as efficiently as

with control cells (Fig. 5E). These results show that excess

cholesterol does not inhibit viral fusion or hemifusion. In control

experiments, silencing the NPC1 expression potently suppressed

fusion of Ebola GP-pseudotyped particles (EBOVpp, Fig. 5E),

which use NPC1 as a receptor [40,41]. Similar to the NPC1

knockdown phenotype, pretreatment of A549 cells with 10 mM

U18666A, which caused cholesterol buildup in endosomes

(Fig. 5B), did not inhibit fusion of IAVpp or VSVpp (Fig. 5G).

As will be shown below for MDCK cells, higher doses of U18666A

can inhibit viral fusion (Fig. 5G), but this effect is due to elevation

of endosomal pH as opposed to cholesterol accumulation in

endosomes.

To generalize the effects of excess cholesterol in A549 cells, we

tested whether endosomal cholesterol can inhibit viral fusion in

MDCK cells. As in A549 cells, IFITM3 over-expression in MDCK

cells caused moderate accumulation of cholesterol in endosomes

(Fig. 6A), while pre-treatment with U18666A caused a much more

dramatic buildup of intracellular cholesterol (Fig. 6B). However,

unlike A549 cells, IAVpp and VSVpp fusion was significantly

inhibited in U18666A-treated MDCK cells (Fig. 6C). Since prolonged

exposure to U18666A has been reported to raise endosomal pH [42],

we sought to determine if insufficiently acidic pH could prevent IAV

hemifusion/fusion with pretreated MDCK cells.

The pH in IAV-carrying endosomes was measured using virions

co-labeled with the pH-insensitive AF488 (green) and CypHer5E

Figure 3. Analyses of the extent and kinetics of single IAV lipid mixing events. (A) The fraction of AF488-labeled particles undergoing lipid
mixing in A549 transduced with an empty vector or IFITM3 and in MDCK cells. Control experiments in A549 cells were carried out in the presence of
NH4Cl. Error bars are SEM from 11 independent experiments. ***, P,0.001. (B) The distribution of waiting times for onset of IAV lipid mixing in A549
and MDCK cells transduced with IFITM3 or an empty vector. The time intervals from shifting to 37uC to the onset of vDiD dequenching were
determined, as described in Materials and Methods, and plotted as normalized fraction of events as a function of time. Pairwise comparison of all
curves yields P.0.2. (C) Ensemble averages of initial vDiD dequenching profiles. The dequenching traces were aligned at the onset of hemifusion and
averaged for each time point. Error bars are SEM. (D) The extent of vDiD dequenching was calculated based on I2/I1 ratio, as illustrated in Fig. 2B.
doi:10.1371/journal.ppat.1004048.g003
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(red), which fluoresces brighter at acidic pH [28] (Fig. S7A). Cells

were incubated with viruses for 45 min, and the red/green signal

ratio from individual particles was measured (Fig. S7B). The

average pH in virus-containing endosomes of MDCK-IFITM3

cells was slightly less acidic than in control cells: 5.3860.03

(n = 498) vs. 4.9860.04 (n = 242), respectively (Fig. 6D and F, P,

0.001). Interestingly, as shown in Figure 6E, endosomal pH in

U18666A-treated MDCK cells was markedly shifted to neutral

values (6.4460.05, n = 160, P,0.001). Since the pH threshold for

triggering A/PR/8/34 fusion is reported to be around 5.6 [43],

elevation of endosomal pH in U18666A-treated MDCK cells is

the likely cause of inhibition of viral fusion. Together our results

Figure 4. IFITM3 blocks fusion pore formation between single influenza viruses and endosomes. Pseudoviruses bearing WSN HA and NA
glycoproteins were co-labeled with HIV-1 Gag-iCherry (viral content marker, red) and YFP-Vpr (viral core marker, green). Viruses were pre-bound in
the cold to A549-Vector cells (A, B) or MDCK-Vector cells (C, D) and their entry was initiated by raising the temperature. (A, C) Images of IAVpp are
extended projections of 3 Z-stacks illustrating the loss of the mCherry signal (arrow) upon virus-endosome fusion. A schematic illustration between
image panels A and C illustrates fusion between the YFP-Vpr (green) and Gag-iCherry (red) labeled IAVpp and an endosome (gray). (B, D) Mean
mCherry and YFP fluorescence intensities obtained by tracking the particles shown in panels A and C. (E) Normalized efficiencies of IAVpp fusion
(content release) with A549 and MDCK cells transduced with an empty vector or with IFITM3. The middle bar shows the lack of mCherry release in
A549-Vector cells in the presence of NH4Cl. ***, P,0.001. See movies S4 and S5.
doi:10.1371/journal.ppat.1004048.g004
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imply that U18666A most likely attenuates IAV fusion with

MDCK cells by raising endosomal pH and not through inducing

cholesterol accumulation.

We also took advantage of the available CHO cell line that does

not express NPC1 [44] to further ascertain the role of endosomal

cholesterol in IAV fusion. These cells (designated CHO-NPC12)

Figure 5. IFITM3 restriction of IAV fusion with A549 cells is not related to cholesterol accumulation in endosomes. (A) Sub-cellular
distributions of cholesterol and IFITM3 in A549-Vector and A549-IFITM3 cells. Cholesterol and IFITM3 staining was done using filipin and anti-IFITM3
antibody, respectively. Images show confocal slices through the middle section of cells. (B) Filipin staining of A549 cells transduced with shRNA
against NPC1 (upper panel) and of cells pretreated with 10 mM U18666A for 18 h (lower panel). (C) Intracellular filipin and IFITM3 signals are poorly
correlated. Individual regions of interests within 91 cells were drawn to exclude plasma membrane fluorescence, followed by background subtraction
and summation of fluorescence intensity within each region of interest. (D) Western blotting analysis of NPC1 expression in A549 cells transduced
with scrambled shRNA (A549.shScr) or with shRNA specific to NPC1 (A549.shNPC1). Tubulin was used as a loading control. (E) IAVpp, VSVpp and
EBOVpp fusion with A549.shScr and A549.shNPC1 cells measured by the BlaM assay. Data are means and SEM from 2 triplicate experiments (IAVpp
and VSVpp) and 1 triplicate experiment (EBOVpp). (F) Single IAV lipid mixing activity in A549.shScr and A549.shNPC1 cells. Cells were allowed to bind
AF488- and vDiD-labeled IAV in the cold and incubated at 37uC for 1 h. The number of vDiD dequenching events was normalized to the total number
of cell-bound particles from two experiments (n.690 particles) for each cell line. Error bars are standard deviations. (G) Dose-dependence of
U18666A effect on viral fusion. A549 cells were pre-incubated for 18 h with indicated concentrations of U18666A or DMSO (control). BlaM-Vpr-
carrying pseudoviruses (MOI = 1) were allowed to fuse with cells for 90 min at 37uC in the presence of U18666A or DMSO. Data are means and SEM
from 2 triplicate experiments. **, P = 0.005.
doi:10.1371/journal.ppat.1004048.g005
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exhibited exaggerated endosomal cholesterol staining, in sharp

contrast to a peripheral staining pattern in parental CHO cells

(Fig. 7A). In spite of the high endosomal cholesterol content in

CHO-NPC12 cells and of the elevated level of total cholesterol

(Fig. S6), IAVpp fused with these cells as efficiently as with

parental cells (Fig. 7C). The NPC1-null cells also supported IAV

lipid mixing, albeit at somewhat reduced level compared to control

(Figs. 7D and S8). Pretreatment of CHO cells with U18666A also

trapped cholesterol in endosomes and raised the total cholesterol

content (Figs. 7B and S6), but only modestly diminished the extent

of IAVpp or VSVpp fusion (Fig. 7E). Interestingly, in contrast to

the decreased endosome acidity in MDCK cells, endosomes in

U18666A-treated CHO cells were more acidic than in control

cells (Fig. S9). In control experiments, both the lack of NPC1

expression and U18666A pretreatment blocked EBOVpp fusion

(Fig. 7C, E), consistent with its reliance on NPC1 receptor and

high sensitivity to disruptions of cholesterol transport [45].

Together, our results show that the cholesterol accumulation

achieved through two different interventions – U18666A pretreat-

ment and NPC1 silencing – does not phenocopy IFITM3-

mediated restriction of viral fusion. This implies that (i) elevated

levels of endosomal cholesterol do not generally confer resistance

to viral fusion, and (ii) the mechanism by which IFITM3 blocks

transition from hemifusion to full fusion is not through the

mislocalization of cholesterol.

Discussion

The IFITMs restrict the cellular entry of multiple pathogenic

enveloped viruses. Recent studies lead to a model that IFITMs

inhibit virus-host hemifusion [5] and that the membrane-

rigidifying properties of cholesterol may contribute to antiviral

actions [14]. In contrast to these studies, our results now

demonstrate that IFITM3 prevents the release of viral genomes

into the cytosol by inhibiting viral entry after hemifusion but prior

to fusion pore formation (Fig. 8). Moreover, we found that

IFITM3 can promote hemifusion in some cells, perhaps secondary

to its acidifying the endosomal pathway. IFITM3 therefore does

not negatively regulate the properties of contacting leaflets

involved in hemifusion, but stabilizes the cytoplasmic leaflet of

the endosomal membrane, thereby disfavoring the formation of

fusion pores [35]. In one potential scenario IFITM3 is located

directly at the site of arrested hemifusion, perhaps ‘‘toughening’’

the endosomal membrane to create a barrier to viral entry

(Pathway 1). A considerable colocalization of IFITM3 with

internalized IAV ([3] and Fig. S10) is consistent with Pathway

1’s direct mechanism of inhibition. Alternatively, IFITM3 might

arrest hemifusion through an indirect mechanism, perhaps

involving modulation of lipid and/or protein composition of the

cytoplasmic leaflet (Pathway 2). Recent findings that changes in

global membrane properties interfere with productive entry would

appear to support an indirect mechanism [5,14].

Lipids, such as unsaturated fatty acids and cholesterol that

confer negative spontaneous curvature to membranes can promote

hemifusion (a net negative curvature structure) and disfavor a

fusion pore (a net positive curvature intermediate), as has been

previously shown for oleic acid [35]. Although this prediction is

consistent with efficient lipid mixing in endosomes of IFITM3+

cells observed in our imaging experiments, several studies [20,46–

48] and our own results do not support cholesterol accumulation

as playing a role in fusion inhibition. We found that cholesterol-

laden endosomes in cells pretreated with U18666A or expressing

undetectable/low levels of NPC1 supported efficient viral fusion. It

is thus possible that IFITM3 interferes with cellular functions of

VAPA other than the interaction with OSBP, such as regulation of

SNAREs and modulation of lateral mobility of membrane proteins

(reviewed in [49]).

IFITM3 appears to induce the formation multivesicular bodies

and increase the number of ILVs [13,14]. One can therefore

envision that IFITM3 may inhibit infection by redirecting viruses

to a non-productive pathway, perhaps involving fusion with ILVs

instead of the limiting membrane of LE (Fig. 8, Pathway 3). If, as

suggested in [14], IFITM3 disallows back fusion of ILVs with the

limiting membrane, then virus-ILV fusion products will likely be

degraded. Indeed, back fusion has been implicated in the VSV

core release into the cytosol following the virus-ILV fusion [50]. It

should be stressed that this ‘‘fusion decoy’’ model does not explain

the ability of IFITM1 to interfere with fusion at the cell surface ([5]

and Fig. 1D). It is also not clear why the Old World arenaviruses,

which have been reported to enter from MVBs [51], are not

restricted by IFITMs.

The indistinguishable extents of vDiD dequenching in control

and IFITM3+ cells (Fig. 3D) indicate that target endosomes have

similar sizes. While this appears to argue against redirection of

IAV fusion to small ILVs, the lack of a post-hemifusion decay of

vDiD fluorescence in A549 and MDCK cells (Figs. 2 and S3) is

consistent with IAV fusion with abundant ILVs in endosomes of

IFITM3+ cells. This is because a lipophilic dye in the limiting

membrane of an endosome should be quickly removed through

membrane trafficking [24,31,52]. Because post-dequenching

decay was not observed irrespective of the level of IFITM3

expression, it is possible that IAV may infect several cell lines by

fusing with small intralumenal vesicles followed by the nucleocap-

sid release through back fusion (Fig. 8, dashed black arrows). This

pathway could explain the similar extents and rates of vDiD

dequenching in control and IFITM3-expressing cells, which are

indicative of similar lipid intermediates and of the size of a target

membrane, respectively.

As discussed above, slow vDiD dequenching observed by single

IAV imaging can be rationalized in the context of fusion with the

limiting membrane of endosomes (Pathways 1 and 2), as well as in

the context of fusion with ILVs (Pathway 3). Slow dilution of this

dye in Pathway 3 could occur through multiple rounds of IAV

fusion with small ILVs, whereas Pathways 1 and 2 would predict

restricted lipid diffusion through early fusion intermediates formed

at the limiting membrane. Although the latter notion is in

agreement with the reported restriction of lipid movement through

hemifusion sites and small fusion pores [34,35,53,54], these

intermediates are usually short-lived under physiological condi-

tions and tend to resolve into larger structures that do not impair

lipid movement [28,32,35]. Clearly, more detailed studies of virus-

endosome hemifusion and fusion are needed to understand the

nature of slow lipid redistribution between IAV and endosomes.

The IFITMs may now arguably be one of the most broadly

acting and clinically relevant restriction factor families [1,3]. While

both IFITM3’s membrane-associated topology and its localization

to the site of viral attenuation suggest it acts to restrict viral entry

via a direct mechanism, additional work remains to be done to fully

elucidate its actions. Nonetheless, as the primary effector of IFN’s

anti-IAV actions, IFITM3 represents a previously unappreciated

class of restriction factor that prevents viral entry by stabilizing a

hemifusion intermediate, likely comprised of an invading virus

fatally tethered to the interior of the endosome’s limiting

membrane. Future single virus experiments combining the

detection of both viral lipid and content release events (see for

example [52]) should provide further insights into IAV entry

pathways and the mechanism of IFITM3-mediated restriction.

Indeed, such efforts may also bring to light unknown viral
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countermeasures, which are perhaps employed by the IFITM-

resistant New and Old World arenaviruses.

Materials and Methods

Cell lines, plasmids and reagents
HEK 293T/17 cells and human lung epithelial A549 cells were

obtained from ATCC (Manassas, VA) and grown as previously

described [55]. Wild-type CHO cells and CHO-NPC12 cells, a

gift from Dr. L. Liscum (Tufts University) [44], were grown in

Alpha-MEM (Quality Biological Inc, Gaithersburg, MD) supple-

mented with 10% FBS and penicillin-streptomycin. The A549,

MDCK, HeLaH1 and CHO cells stably expressing IFITM3 or

IFITM1 were obtained by transducing with VSV-G-pseudotyped

viruses encoding wild-type IFITM3 and IFITM1 or with the

vector pQCXIP (Clontech) and selecting with puromycin, as

described previously [2].

The pR8DEnv, BlaM-Vpr, pcRev, HIV-1 Gag-iCherryDEnv

and pMDG VSV G expression vectors were described previously

[37,55]. The YFP-Vpr was a gift from Dr. T. Hope (Northwestern

University). The pCAGGS vectors encoding influenza H1N1

WSN HA and NA were provided by Donna Tscerne and Peter

Palese, and the pCAGGS BlaM1 (WSN) plasmid was a gift from

Dr. A. Garcia-Sastre (Mount Sinai). Vectors expressing phCMV-

GPc Lassa and pcDNA3.1-Ebola GP (Zaire) were gifts from Dr.

F.-L. Cosset (Université de Lyon, France) [56] and Dr. L. Rong

(University of Illinois) [57], respectively.

U18666A was from Tocris Bioscience (Bristol, UK). Poly-L-

lysine, filipin, sulphorhodamine B Bafilomycin A1 and the

Cholesterol Kit were from Sigma-Aldrich. AlexaFluor-488

amine-reactive carboxylic acid, vybrant-DiD (vDiD, 1,19-diocta-

decyl-3,3,39,39-tetramethylindodicarbocyanine,4-chlorobenzene-

sulfonate salt), Hoechst-33342 and Live Cell Imaging buffer were

purchased from Life Technologies (Grand Island, NY). CypHer5E

Mono NHS Ester was from GE Healthcare (Pittsburgh, PA).

Antibodies used were rabbit anti-IFITM3 (to N-terminus) from

Abgent (San Diego, CA), mouse anti-IAV-NP and goat anti-IAV-

polyclonal antibodies from Millipore (Billerica, MA), rat anti-

mouse-IgG-FITC from eBioscience (San Diego, CA), and goat

anti-rabbit-Cy5 from Jackson Immunoresearch (West Grove, PA).

Pseudovirus production, labeling and characterization
Pseudovirus production and titration were described previously

[58]. Pseudoviruses were produced by transfecting HEK293T/17

cells using JetPRIME transfection reagent (Polyplus-transfection

SA, NY). For LASV and EBOV pseudoviruses, 5 mg of the

phCMV-GPc Lassa or 5 mg of the pcDNA3.1-Ebola GP was

included in the transfection mixture. Fluorescently labeled

influenza pseudoviruses were produced using 1 mg of pR8DEnv,

2 mg of HIV-1 Gag-iCherryDEnv [37], 2 mg of YFP-Vpr, 1 mg of

pcRev, and 2 mg of each WSN HA- and NA-expressing vectors.

Ebola GP pseudoviruses were concentrated 106, using Lenti-XTM

Concentrator (Clontech, Mountain View, CA). To generate

influenza BlaM1 VLPs, HEK293T cells were transfected with

pCAGGS-BlaM1 (5 mg) and 2.5 mg of each pCAGGS-WSN HA

and pCAGGS-WSN NA. After 12 h, the transfection reagent was

removed, and cells were further cultivated in phenol red-free

growth medium.

The influenza virus surface proteins and the lipid membrane

were labeled with AF488 and vDiD, respectively. A hundred mg of

influenza virus from the purified H1N1 A/PR/8/34 stock (2 mg/

ml, Charles River, CT) was diluted in 95 ml of sodium bicarbonate

buffer (pH 9.0) supplemented with 50 mM AF488. The mixture

was incubated for 30 min at room temperature, after which time,

5 ml of vDiD (from 1 mM stock in DMSO) was added followed by

an additional incubation for 90 min in the dark at room

temperature with mild agitation. The labeled viruses were purified

through a NAP-5 gel filtration column (GE Healthcare) in

145 mM NaCl solution buffered with 50 mM HEPES, pH 7.4.

Approximately 50% of AF488-labeled particles incorporated

detectable amounts of vDiD with minimal contamination by free

dye aggregates.

The infectious IAV titer was determined in MDCK or A549

cells after incubation with serially diluted inoculum for 15 h at

37uC. Cells were fixed, permeabilized, blocked and incubated with

rabbit R2376 anti-WSN HA antibody (a gift from Dr. D.

Steinhauer, Emory University) for 2 h at room temperature. Cells

were then washed and incubated with secondary Cy5-conjugated

goat anti-rabbit antibodies (Jackson ImmunoResearch, PA) in

10% FBS-containing buffer supplemented with 10 mg/ml

Hoechst-33342 for 1 h. The number of infected cells per image

field was determined by fluorescence microscopy and normalized

to the total number of cells (stained nuclei). The infectious titer

(IU/ml) was calculated by taking into account the ratio of the area

of well and the image area and correcting for dilution and volume

of viral inoculum.

Virus-cell fusion assay
The b-lactamase (BlaM) assay for virus-cell fusion was carried out

as described previously ([24] and Methods S1). Briefly, pseudoviruses

bearing b-lactamase-Vpr chimera (BlaM-Vpr) were bound to target

cells by centrifugation at 4uC for 30 min at 15506g. Unbound

viruses were removed by washing, and fusion was initiated by shifting

to 37uC for 90 min, after which time cells were placed on ice and

loaded with the CCF4-AM substrate (Life Technologies). The

cytoplasmic BlaM activity (ratio of blue to green fluorescence) was

measured after an overnight incubation at 12uC, using the Synergy

HT fluorescence microplate reader (Bio-Tek, Germany).

Sub-cellular distribution of IAV, IFITM3 and cholesterol
IAV was pre-bound to A549-IFITM3 cells in the cold, followed

by incubation at 37uC for 90 min and immunostaining with

mouse anti-IAV-NP (Millipore, Billerica, MA) (when applicable)

and rabbit anti-IFITM3 antibody (N-terminus, Abgent, San

Diego, CA), as described in [13]. Rat anti-mouse-IgG-FITC

(eBioscience, San Diego, CA) and goat anti-rabbit-Cy5 antibodies

were used for secondary staining. Cellular distribution of

cholesterol was examined by incubation with 0.25 mg/ml filipin

Figure 6. IFITM3-mediated restriction of IAV fusion is not related to cholesterol accumulation in endosomes of MDCK cells. (A) Sub-
cellular distributions of cholesterol (filipin staining) and IFITM3 (antibody staining) in MDCK-Vector and MDCK-IFITM3 cells. Images show confocal
sections through the middle of cells. (B) Filipin staining of MDCK cells pretreated with 20 mM U18666A for 18 h or mock-treated cells. (C) Dose-
dependence of U18666A effect on viral fusion. MDCK-Vector cells were pretreated for 18 h with indicated concentrations of U18666A or DMSO
(control). BlaM-Vpr-carrying pseudoviruses (MOI = 1) were allowed to fuse with cells for 90 min at 37uC in the presence of U18666A or DMSO. Data are
means and SEM from 2 triplicate experiments. (D–F) pH distributions in IAV-carrying endosomes of MDCK cells measured using AF488- and
CypHer5E-labeled viruses. Viruses were pre-bound to cells in the cold and incubated at 37uC for 45 min before acquiring images. Calculated pH
values are shown for MDCK cells without (D) and with pretreatment with 20 mM U18666A for 18 h (E), as well as for MDCK-IFITM3 cells (F). Data are
from 10 image fields each.
doi:10.1371/journal.ppat.1004048.g006
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added during the incubation with secondary antibodies. Images

were collected on a LSM 780 laser scanning microscope (Carl

Zeiss, Germany) using a 636oil immersion objective. All staining

methods involved fixation with 2% paraformaldehyde, permeabi-

lization with 0.25% Triton-X100, blocking in with 10% FBS and

dilution in phosphate buffered saline (with calcium and magne-

sium), and sequential incubation with primary and secondary

antibodies for 2 h and 1 h, respectively.

NPC1 knockdown and western blotting
To silence the NPC1 gene, A549 cells were transduced with five

shRNAs encoded by pLK0.1 lentiviral vector (Sigma) and selected

with puromycin. The samples for Western blotting were processed

as described in [24]. The NPC1 protein band was detected with

rabbit anti-NPC1 (Abcam, Cambridge, MA) and horseradish

peroxidase-conjugated Protein G (Bio-Rad, Hercules, CA), using a

chemiluminescence reagent from GE Healthcare.

Single virus imaging and image analysis
Cells grown on glass-bottom Petri dishes (MatTek, MA) were

chilled on ice and washed with cold Hank’s balanced salt solution

(HBSS). Predetermined amount of viral suspension (MOI,0.01)

was added to the cells and spinoculated at 4uC for 20 min. The

cells were then washed twice with cold HBSS and placed on the

Figure 7. Cholesterol accumulation in endosomes of CHO cells does not inhibit viral fusion. (A) Filipin staining of untreated and
U18666A-treated (40 mM) CHO cells and of CHO-NPC12 cells devoid of NPC1. (B) Filipin staining of CHO-Vector and CHO-IFITM3 cells. Images in
panels A and B show confocal sections through the middle of cells. (B) Confocal images of CHO-Vector and CHO-IFITM3 cells stained with filipin. (C)
IAVpp (MOI = 2), VSVpp (MOI = 1) or EBOVpp (MOI = 2) were pre-bound to CHO or CHO-NPC12 cells in the cold, incubated at 37uC for 90 min, and the
resulting fusion activity was measured by the BlaM assay. Results are plotted as the relative extents of fusion CHO-NPC12 cells after normalizing to
fusion with CHO cells. Control experiments were carried out in 70 mM NH4Cl. Data are means and SEM from 3 triplicate experiments. (D) The
frequency of lipid mixing in CHO (n = 576) and CHO-NPC12 cells (n = 1241). Pre-treatment with 0.2 mM BafA1 for 30 min followed by initiation with
imaging buffer containing BafA1and 70 mM NH4Cl inhibited the fusion activity: only 4 out of 1532 particles underwent lipid mixing. Error bars are
standard deviations from at least 4 experiments. (E) Pretreatment of CHO cells with U18666A (40 mM, 8 h) modestly diminishes IAVpp or VSVpp fusion
and abrogates EBOVpp fusion, as measured by the BlaM assay. Data are means and SEM from 2 triplicate experiments. ***, P,0.001; **, P,0.02.
doi:10.1371/journal.ppat.1004048.g007
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stage of an LSM 780 confocal microscope. Virus entry was

initiated by adding 2.5 ml of pre-warmed imaging buffer and

imaged at 37uC using a C-Apo 406/1.2NA water-immersion

objective. Three Z-stacks separated by ,2 mm were acquired

every 7–8 s through the MultiTime macro (Carl Zeiss). To block

IAV hemifusion and fusion, experiments where performed in

HBSS supplemented with 50 mM HEPES/70 mM NH4Cl

(pH 7.6) or containing 200 nM of BafA1. The time lapse images

were first visually inspected to identify vDiD dequenching or loss

of mCherry events. The number of relevant events in each

experiment was independently determined by two trained

individuals. Particle trajectories and their mean/total fluorescence

intensities were obtained using Volocity (PerkinElmer, MA). The

onset of lipid mixing and the initial slope of vDiD dequenching

were determined by fitting to a pair of straight lines (Fig. S11).

Endosomal pH measurements
IAV particles were co-labeled with the AF488 dye (pH-

insensitive) and CypHer5E, which fluoresces brighter at acidic

pH. The ratios of the CypHer5E and AF488 signals were

converted to pH values using a calibration curve obtained by

exposing coverslip-immobilized viruses to citrate-phosphate buff-

ers of different acidity (Fig. S7). Images were collected from 3

different fields, and sum of single-particle fluorescence was

calculated. The mean ratios of CypHer5E to AF488 signals as a

function of pH were used for the calibration curve. Cells were

inoculated with labeled viruses for 45 min at 37uC, as described

above. Images were collected from at least 10 different fields, and

single particle-based ratio of fluorescence signals was calculated.

Outliers with a near-background CypHer5E signal were rejected

to reduce the uncertainty in pH measurements.

Statistical analyses
Statistical significance was assessed using the pairwise t-test or

rank sum test. Single-particle fusion events in control and IFITM3

expressing cells were compared by the z-test.

Supporting Information

Figure S1 Characterization of AlexaFluor488 and vDiD
co-labeled IAV. (A) vDiD and AF488 co-labeling does not

Figure 8. Models for IFITM3-mediated restriction of IAV infection. Purple arrows illustrate possible mechanisms of the IAV restriction by
IFITM3: direct (Pathway 1) and indirect (Pathway 2) inhibition of transition from hemifusion to full fusion at the limiting membrane of an endosomes,
as well as non-productive IAV fusion with ILVs in the absence of back fusion (Pathway 3). Partial dilution/dequenching of viral vDiD upon hemifusion/
fusion is shown by lighter red color and full dequenching is shown by light red glow. Alternative endosomal localizations of IFITM3 (limiting
membrane vs. ILVs) are shown. Dashed black arrow illustrates possible IAV fusion pathway in cells expressing low, endogenous levels of IFITM3.
doi:10.1371/journal.ppat.1004048.g008
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strongly affect IAV infectivity. Mock-labeling of viral particles was

carried out by subjecting 100 mg of H1N1 A/PR/8/34 virus

preparation to the same solvents/buffer, incubation periods and

purification protocol as that for labeling, but in the absence of

AF488 and vDiD dyes. Infectious titer was estimated, as described

in Materials and Methods. Error bars are standard deviations

(n = 10). (B, C) Immunostaining of AF488-labeled H1N1 A/PR/

8/34 virions (B) and of ASLV Env-pseudotyped retroviral particles

(C, negative control) with anti-HA antibody (red).

(PDF)

Figure S2 Effect of oleic acid (OA) on IAVpp fusion with
A549 and A549-IFITM3 cells. BlaM-Vpr carrying pseudo-

viruses (MOI = 1) were bound to cells in the cold. Unbound virus

was washed out, and the samples were treated with either 100 mM

OA, 70 mM NH4Cl or left untreated. Fusion was allowed to

proceed by shifting to 37uC for 90 min. Data are means and SEM

for 2 triplicate experiments. NS, not significant.

(PDF)

Figure S3 Examples of fast vDiD dequenching events in
A549 and MDCK cells. Relatively quick vDiD (red) dequench-

ing events obtained by single particle tracking are shown for A549,

A549-IFITM3, MDCK and MDCK-IFITM3 cells. The AF488

signal is shown in green and the ratio of vDiD and AF488 signals is

shown in blue. Arrows mark sudden increases in the vDiD signal.

a.u., arbitrary units.

(PDF)

Figure S4 Correlation between the lag time before lipid
mixing and the rate of vDiD dequenching (A) and the
initial rates of vDiD dequenching (B). (A) The time of

commencement of hemifusion (TH) and the initial rate of

dequenching was determined as described in Materials and

Methods. These parameters are uncorrelated (R2,0.19 for all).

(B) The initial rates of vDiD dequenching were determined for

A549-Vector, A549-IFITM3, MDCK and CHO cells. Error bars

are SEM from .20 tracks. *, P,0.02.

(PDF)

Figure S5 Relationship between IAV lipid mixing activ-
ity and infection. The fraction of A549 cells where at least one

lipid mixing event was observed within 1 h at 37uC, and the

fraction of cells that became infected within 15 h at 37uC were

estimated as described in Methods S1. Infectivity data were

collected from 5 image fields each, with .30 cells per field.

Particle-to infectivity ratio was calculated from the fraction of

infected cells and the average number of virions bound to cells.

Live cell imaging experiments (n = 10 for A549 and n = 6 for

MDCK cells) yielded the number of cells receiving at least

hemifusion event.

(PDF)

Figure S6 Subcellular distribution of cholesterol and
levels of total and free cellular cholesterol. (A) Total

cellular filipin was estimated by calculating the filipin fluorescence

intensity over the entire image field (after subtracting the

background signal) and normalizing by the number of cells per

field. Data are means and standard deviations for 4 and 6 fields for

A549 and A549-IFITM3 cells (131 and 184 cells), respectively. (B,

C) Total and free cellular cholesterol (in mg/106 cells) were

measured by a fluorimetric enzymatic assay using the Cholesterol

Kit from Sigma-Aldrich. Data are means and standard deviations

from 2 measurements performed with duplicate samples. ***, P,

0.001; *, P,0.03.

(PDF)

Figure S7 Calibration of labeled IAV as a pH-sensor.
AF488- and CypHer5E- labeled IAV particles were attached to poly-

L-lysine coated coverslips, and the ratio of two fluorescence signals

was measured in citrate-phosphate buffers of different acidity. (A) Top

and bottom panels are images of labeled IAV at neutral pH and low

pH, respectively. (B) The total signal for each dye was determined

after thresholding and the CypHer5E/AF488 ratio at different pH

are plotted. Error bars are standard deviations for 3 different imaged

fields for each pH value. The line indicates a first order polynomial fit

to the data, which served as a pH calibration curve.

(PDF)

Figure S8 An example of single IAV lipid mixing event in
CHO cells. (A) Image panels show entry of an AF488 (green) and

vDiD (red) labeled virus into a CHO cell that culminates in vDiD

dequenching (arrow). (B) Fluorescence intensity profiles of AF488

and vDiD obtained by tracking the virion shown in panel A.

(PDF)

Figure S9 pH distribution in IAV carrying endosomes of
CHO cells. Shown are the distributions of endosomal pH in

CHO cells pretreated with 40 mM of U18666A for 12 h or left

untreated. Cells were incubated with AF488/Cypher5E-labeled

IAV, and endosomal pH was measured as described in Materials

and Methods. U18666A increased endosomal acidity (P,0.001).

(PDF)

Figure S10 Incoming IAV tends to colocalize with
IFITM3-positive endosomes. A549-IFITM3 cells were al-

lowed to internalize IAV for 90 min at 37uC and immunostained

for the IAV-NP using mouse antibody (Millipore, Billerica, MA)

and for IFITM3. The enlarged boxed area is shown on the right.

IAV and IFITM3 puncta were identified by thresholding and

object identification. The extent of colocalization was estimated by

counting IAV puncta, which exhibited a volumetric overlap of at

least 50% with IFITM3 puncta, and normalizing over all IAV

puncta. The number in the right corner is the mean %

colocalization and standard deviation for 7 image fields.

(PDF)

Figure S11 A line-fitting approach to determining the
onset and the initial rate of vDiD dequenching in single
IAV fusion experiments. Fitting the vDiD dequenching traces

with two straight lines yields the time of hemifusion (TH) and the

initial slope of dequenching.

(PDF)

Methods S1 Description of additional methods em-
ployed in this study.
(DOCX)

Movie S1 Lipid mixing between single vDiD-labeled
IAV and an endosome in A549 cells. IAV co-labeled with

AF488 (green) and vDiD (red) was incubated with A549 cells at

37uC. The lipid mixing event (hemifusion) is manifested in marked

increase of vDiD fluorescence. The numbers in the upper right

corner show time after raising the temperature (min:sec:msec).

Scale bar is 10 mm. For details, see Fig. 2A, B.

(AVI)

Movie S2 Lipid mixing between single vDiD-labeled
IAV and an endosome in A549-IFITM3 cell. IAV co-labeled

with AF488 (green) and vDiD (red) was incubated with cells at

37uC. The lipid mixing event (hemifusion) is manifested in marked

increase of vDiD fluorescence. The numbers in the upper right

corner show time after raising the temperature (min:sec:msec). For

details, see Fig. 2D, E.

(AVI)
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Movie S3 Lipid mixing upon entry of single vDiD-
labeled IAV into an MDCK-IFITM3 cell. IAV co-labeled

with AF488 (green) and vDiD (red) was incubated with cells at

37uC. Lipid mixing (hemifusion) is seen as marked increase in the

vDiD signal. The numbers in the upper right corner show time

after raising the temperature (min:sec:msec). For details, see

Fig. 2F, G.

(AVI)

Movie S4 IAVpp fusion with an endosome in A549 cell.
A single IAV pseudovirus co-labeled with YFP-Vpr (green) and

Gag-iCherry (red) releases its content marker (iCherry) after

entering the cell. The numbers in the upper right corner show time

after raising the temperature (min:sec:msec). For details, see

Fig. 4A, B.

(AVI)

Movie S5 IAVpp fusion with an MDCK cell. A single IAV

pseudovirus co-labeled with YFP-Vpr (green) and Gag-iCherry

(red) releases its content marker (iCherry) after entering the cell.

The numbers in the upper right corner show time after raising the

temperature (min:sec:msec). For details, see Fig. 4C, D.

(AVI)
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