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Abstract Hemostasis and pathological thrombus forma-

tion are dynamic processes that require multiple adhesive

receptor-ligand interactions, with blood platelets at the

heart of such events. Many studies have contributed to shed

light on the importance of von Willebrand factor (VWF)

interaction with its platelet receptors, glycoprotein (GP) Ib-

IX-V and aIIbb3 integrin, in promoting primary platelet

adhesion and aggregation following vessel injury. This

review will recapitulate our current knowledge on the

subject from the rheological aspect to the spatio-temporal

development of thrombus formation. We will also discuss

the signaling events generated by VWF/GPIb-IX-V inter-

action, leading to platelet activation. Additionally, we will

review the growing body of evidence gathered from the

recent development of pathological mouse models sug-

gesting that VWF binding to GPIb-IX-V is a promising

target in arterial and venous pathological thrombosis.

Finally, the pathological aspects of VWF and its impact on

platelets will be addressed.
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Introduction

Platelets produced by the cytoplasmic fragmentation of

megakaryocytes (MKs) are required for human survival

due to their ability to arrest bleeding. After adhering to

vascular lesions, platelets rapidly recruit additional plate-

lets, till blood stops flowing, achieving hemostasis.

Dysregulation of this system has devastating consequences.

Excessive accumulation of platelets at sites of atheroscle-

rotic plaque rupture is one of the key pathogenic events

triggering arterial thrombus formation, leading to acute

myocardial infarction or ischemic stroke. On the other

hand, unstoppable hemorrhage might occur if the hemo-

static system fails to react appropriately upon injury. In the

last decades, the challenge has been and still is, to identify

platelet receptors, signaling pathways and cytoskeleton

reorganization events involved in platelet adhesion, acti-

vation, aggregation and pro-coagulant activity to identify

potential targets for antiplatelet drugs. Traditional research

using biochemical and molecular biology approaches has

paved the way and helped identifying basic mechanisms

involved in platelet adhesion, activation and aggregation.

However, considerable progress has been made in the last

20 years with the availability of new imaging techniques

and the generation of genetically-modified animal models.

These advances have led to a better understanding of the

spatial and temporal relationships between specific platelet

adhesion and activating events and the influence of the

rapidly changing shear environment during thrombus

development. Indeed, in vivo, the dynamics of thrombus

formation and development was open to question. In the

classical model of platelet engagement, mostly derived

from in vitro studies, platelet adhesion on the reactive

subendothelial matrix proteins (von Willebrand factor

(VWF), collagens type I, III and VI) appears to be the
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initiating event for arterial thrombus formation, which

occurs via the specific platelet receptors glycoproteins (GP)

Ib-IX-V or GPVI, dependent on rheological conditions [1].

Under high shear, it was clearly established that the VWF/

GPIb-IX-V interaction is the predominant receptor-ligand

interaction initiating platelet adhesion. For stable adhesion,

the collagen receptors (GPVI and a2b1 integrin) as well as

the fibronectin receptor (a5b1 integrin) are required. In this

model, thrombus formation involves the release of soluble

platelet agonists such as ADP and thromboxane A2 (TXA2)

and the activation of the aIIbb3 integrin, the receptor for

fibrinogen and VWF, allowing platelet–platelet interac-

tions. Finally, stabilization of the thrombus is dependent on

thrombin generation and fibrin polymerization. A revised

model of platelet engagement, emerging from in vivo

studies has revealed subtle differences such as the hetero-

geneity of thrombus formation. Indeed, a stable ‘‘core’’ of

the thrombus is composed of fully activated platelets

undergoing marked morphological changes, whereas the

outer shell of the thrombus is sensitive to rheological

conditions and consists of aggregates of discoid platelets

which are ‘‘weakly’’ activated. The challenge of the last

years has been to target processes associated with the dif-

ferent steps of thrombus formation, propagation and

stabilization offering thrombotic protection with a minor

bleeding risk. The interaction of VWF with GPIb-IX-V is

placed high on the list of platelet targets of clinical interest.

In this review, we will summarize the recent advances on

the molecular mechanisms involved in the interaction of

VWF with GPIb-IX-V and its role on arteriolar but also in

venous thrombosis.

Von Willebrand factor: gene, structure, biosynthesis,

secretion and clearance

The VWF gene and protein

The gene encoding VWF is located on the short-arm of

chromosome 12, encompassing 52 exons dispersed over

179 kb [2]. A non-functional pseudogene corresponding to

exons 23–34 (97 % homology) has been identified on

chromosome 22. Transcription of the VWF gene results in

an 8.9 kb mRNA that is subsequently translated into a pre-

pro-VWF precursor protein of 2,813 amino acids. This

precursor is composed of a signal peptide of 22 amino

acids (aa 1–22; exons 2–3. Indeed, exon 1 is not translated

into a protein), a propeptide of 741 amino acids (previously

referred to as VWF-antigen II; aa 23–763; exons 3–18) and

a mature subunit of 2,050 amino acids (aa 764–2,813;

exons 19–52) [3].

The architecture of the VWF protein distinguishes 4

different domain structures that are arranged in the

following order: D1-D2-D’-D3-A1-A2-A3-D4-C1-C2-C3-

C4-C5-C6-CK (Fig. 1) [4]. Within this structure, the D1-

D2 domains represent the propeptide, while the D’-CK

portion represents the mature VWF subunit.

Post-translational processing of VWF

During and following its translation, a series of events

occur that are pertinent to the structure of the VWF protein.

First, in the endoplasmic reticulum, two pre-VWF subunits

engage into a dimeric structure via disulfide bridge for-

mation between C-terminal CK-domains [5]. Subsequently,

VWF assembles into a multimeric structure via additional

disulfide bridging between N-terminal D’-D3 domains.

This latter process requires the presence of the propeptide,

which not only aligns the D’-D3 regions (‘‘zipper-model’’)

but also catalyzes the formation of the disulfide bonds via

its protein disulfide isomerase-activity [6]. Of note, the

propeptide is separated from the mature subunit via pro-

teolytic processing by furin in the trans-Golgi network [7].

Taken together, multimerization of VWF leads to the

production of differentially sized VWF multimers, varying

from dimers to multimers that contain as many as 60

subunits.

A second important event in the maturing of the VWF

protein is its glycosylation. In total, a pro-VWF subunit

contains 17 N-linked glycans, four within the propeptide

and 13 within the mature subunit [8]. In addition, VWF

contains 10 O-linked glycans, all of which being located in

the mature VWF subunit [9]. Both O- and N-linked glycans

are characterized by a remarkable diversity and [300 N-

linked glycan structures have been determined. The

majority of these glycans is sialylated. Importantly, both N-

and O-linked glycans present on the mature VWF subunit

(but not those on the propeptide) can carry ABO(H) blood

group carbohydrate determinants [10]. On average, 13 %

of the N-linked (1–2 per subunit) and 1 % of the O-linked

(1 per 10 subunits) harbor these blood group determinants

[8, 9].

Storage and secretion of VWF

The production of VWF is restricted to MKs and endo-

thelial cells [11, 12]. In both cell types, VWF is targeted to

storage organelles: a-granules in MKs/platelets and Wei-

bel-Palade bodies (WPBs) in endothelial cells. Whereas the

formation of WPBs is strictly dependent on the presence of

VWF, this is not the case for a-granules, which may

develop in the absence of VWF [13]. The formation of

WPBs is a complex process that requires a specific folding

of the VWF protein. VWF multimers associated with its

propeptide assemble into a helicoidal structure, a step that

allows a 100-fold reduction of its spacial volume [14]. The
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interior of the right-handed helical tubules comprises the

propeptide/D’D3 domains while the remainder of the pro-

tein (A1-CK region) sticks out. Advanced electron-

microscopy imaging has recently been used to reveal that

the A1-CK region folds into a bouquet-like structure, with

the different domains being aligned in a side-by-side

manner [15]. Probably, the A1-CK-spikes determine the

regular spacing between the tubules that characterize the

electron-microscopic images of WPBs [16]. In addition,

the spacing between the tubules also allows the incorpo-

ration of other WPB-residents, proteins such as P-selectin,

interleukin-8, angiopoietin-2, osteoprotegerin and many

more [17]. The presence of co-residential proteins in WPBs

is shared with a-granules, which also consist of multiple

proteins. Moreover, WPBs and a-granules have in common

that not all of the storage organelles have a similar content

[18, 19].

Release of VWF from a-granules requires activation of

the platelets, and no constitutive release from platelets has

been observed. In contrast, VWF is released from endo-

thelial cells in both a constitutive and regulated fashion

[20]. Constitutive release is now believed to originate from

the fusion of single WPBs with the endothelial cell mem-

brane. Indeed, WPBs move around within the endothelial

cells in non-directed trajectories, and such movements

drive single WPBs to the cellular periphery, allowing them

to release their contents into the extracellular space [21].

This process is the predominant source of circulating VWF,

but is insufficient to generate the long endothelial cell-

anchored VWF bundles that serve as an adhesive surface

for platelets. Such VWF strings only form upon endothelial

stimulation provoking a massive release of WPBs [22].

Agonist-induced stimulation of endothelial cells triggers

the formation of VWF-enriched patches, signifying the

fusion of multiple WPBs into secretory pods [23]. Upon

fusion of these pods with the cellular membrane, bundles of

assembled VWF multimers are released into the circula-

tion. This multistep event depends on the action of many

proteins associated with vesicle secretion, including

members of the Rab- and SNARE-protein families [20].

Apart from the classical secretory pathway, an alterna-

tive pathway for the secretion of WPBs has recently been

identified. Torisu and colleagues observed that WPBs are

often in close proximity or even inside autophagosomes

[24]. Further analysis revealed that inhibition of autophagy

resulted in reduced VWF release, both in vitro and in vivo.

These data point to a regulatory role of autophagosomes in

the release of WPBs and additional studies are needed to

understand this process in more detail.

VWF clearance

The average half-life of therapeutical VWF concentrates

prepared from large plasma-pools is approximately 16 h,

and is relatively conserved between patients [25]. In con-

trast, the half-life of endogenous VWF that is released

following desmopressin-treatment is highly individual-

dependent and may vary between 6 and 26 h [26, 27]. The

main reason for this apparent discrepancy relates to the

individual glycosylation patterns, with particular reference

to blood group ABO(H) structures. Individuals with blood

group non-O have a longer VWF half-life after desmo-

pressin-treatment than those with blood group O [28]. This

longer half-life may also explain the approximately 25 %

higher VWF levels in individuals with blood group non-O

[29].

The mechanism by which VWF is removed from the

circulation has attracted increased attention during the

Fig. 1 Schematic representation of the VWF domain architecture and

location of interactive sites. The molecular architecture of VWF is

characterized by a distinct domain structure. The domain organization

recently proposed by Zhou et al. [15] is presented in this figure. In

addition, the location of the interactive sites for various VWF-binding

proteins is indicated [163]. IGFBP7: Insulin growth factor-binding

protein-7; CTGF/CCN2: Connective tissue growth factor
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previous decade, not only because of its potential associ-

ation with the pathogenesis of von Willebrand disease, but

also because VWF is a major determinant of the half-life of

coagulation factor VIII [30]. Via in vitro and in vivo

studies, we now know that VWF is principally eliminated

from the circulation by macrophages in liver and spleen,

without fully excluding a contribution by other cell types.

Involvement of macrophages is perhaps best illustrated by

the increased half-life and increased levels of endogenous

VWF upon chemical depletion of macrophages [31].

The molecular basis of macrophage-mediated clearance

of VWF is only partially uncovered. One receptor that has

potentially been linked to VWF clearance is the asialo-

glycoprotein receptor or Ashwell-receptor. Given that

[90 % of the glycan structures are sialylated, it seems

conceivable that the Ashwell-receptor plays but a minor

role in the basal clearance of VWF. Rather, it participates

in the clearance of hypo-sialylated VWF, which may for

instance occur upon pathogen infection [32]. Two other

receptors that have been linked to VWF clearance are the

sialic acid-binding receptor Siglec-5 and the mannose-

binding lectin CLEC4 M. Cellular expression of both

receptors allows the endocytosis of VWF and their over-

expression in murine liver results in reduced VWF levels in

these mice [33, 34]. However, no direct clearance experi-

ments have been performed that include these receptors,

and therefore their relevance with regard to VWF clearance

remains uncertain. Finally, the scavenger-receptor LRP1

has recently been identified as a receptor for VWF [35].

This was unexpected, since LRP1 was previously identified

as a receptor for factor VIII, while VWF did not bind to

LRP1 and actually inhibited factor VIII-LRP1 interactions

[36]. However, mice with a conditioned LRP1-deficiency

not only have increased factor VIII levels but also

increased VWF levels [35]. In addition, polymorphisms in

the LRP1 gene are associated with VWF plasma levels

[37]. The answer to these apparently contradictory findings

came from experiments revealing that VWF needs to

unfold in response to shear stress to interact with LRP1 [35,

38]. Taken together, several receptors have the potential to

bind and endocytose VWF. However, so far only LRP1 has

been identified to play a role in the basal clearance of

VWF. It is likely that in the near future other potential

receptors contributing to this process will be identified.

VWF and platelet receptors

At sites of vascular injury, platelets are recruited to

exposed subendothelial extracellular matrix components

via specific platelet receptors involved in adhesion and

aggregation. In arterioles, VWF is essential for the capture

of platelets via two receptors: GPIb-IX-V and aIIbb3

integrin and requires flowing blood. Depending on shear

rates, GPIb-IX-V and aIIbb3 are also required for throm-

bus formation. The next parts will be focused on the

receptors and the signaling pathways induced by the

binding of platelets to VWF.

GPIb-IX-V

GPIb-IX-V is exclusively expressed on the platelet mem-

brane. There are approximately, 25,000 copies of this

receptor per platelet. GPIb-IX-V is composed of four dis-

tinct transmembrane proteins. The receptor is composed of

two chains of GPIba (135 kDa), 2 GPIbb (26 kDa), 2

GPIX (20 kDa) and 1 GPV (82 kDa) (2: 2: 2: 1) (Fig. 2).

These proteins are encoded by four different genes located

to chromosomes 17q12(GPIBA), 22q11.2(GPIBB),

3q29(GP5) and 3q21(GP9), respectively. These proteins

belong to the leucine-rich repeat (LRR) family. Each

subunit is a type I transmembrane protein composed of a

large N-terminal extracellular domain containing LRR

domains, a transmembrane (TM) helix and a short cyto-

plasmic tail. The extracellular region of GPIba is

composed of 8 LRR domains, three disulfide bonds, an O-

and an N-glycosylated regions and a negative region con-

taining three sulfated tyrosines. VWF binds to the

extracellular domain of GPIba, within amino-acids 1–282,

a region that contains seven LRR domains and the disul-

fide-looped capping sequences of GPIba. On VWF, the

binding site for GPIba is located in the A1 domain where it

becomes exposed under arterial shear, allowing an inter-

action that is enhanced by increasing shear rates. In static

conditions, no binding between VWF and GPIba is

observed. Besides VWF as a main ligand, GPIba also binds

multiple ligands such as thrombospondin, Factor XII,

Factor XI, thrombin, High Molecular Weight kininogen,

P-selectin and Mac-1. Through its cytoplasmic tail domain

(Phe568-Trp570), GPIba also interacts with the actin-

binding protein filamin A (FLNa), phosphoinositide (PI)

3-kinase and the adapter 14-3-3f. The phosphorylation of

Ser609 of GPIba is required for the interaction with 14-3-

3f. GPIba is non-covalently associated with GPIX and

GPV and is connected via disulfide bonds with GPIbb
involving Cys484 and Cys485 in GPIba and Cys122 in

GPIbb. These disulfide bonds are however not required for

proper assembly of the complex. The final structure is

thought to consist of two (GPIba-GPIbb-GPIX) trimers

connected by one GPV. GPIbb is composed of 181 amino

acids and contains 1 LRR domain only. The cytoplasmic

domain, which contains 30 amino acids, can associate with

calmodulin and 14-3-3f. The phosphorylation of Ser166 of

GPIbb by protein kinase A (PKA) is involved in the

association with 14-3-3f. GPIbb is essential for the

expression of the complex to the membrane. GPIX is
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composed of 160 amino acids and contains a single LRR

sequence in the extracellular domain. The GPIX cyto-

plasmic tail is short with only eight residues, among which

a myristoylated residue (Cys154) and does not seem to

associate with any protein. GPV contains 544 amino acids

and 15 LRR sequences in its extracellular domain. The

intracellular domain of GPV (16 amino acids) binds cal-

modulin and 14-3-3f. Interestingly, GPV seems to be a

negative regulator of platelet activation. Indeed, an

increase of platelet aggregation induced by thrombin was

observed using platelets lacking GPV [39], although

another report failed to detect a similar effect [40]. GPV

has also been reported as a collagen type I receptor [41].

GPIba is shed by metalloproteases such as ADAM17, a

process that releases a soluble GPIba fragment termed

glycocalicin. ADAM17 cleaves within the GPIba-based

peptide (LRGV465LK) through a mechanism that is only

partially understood [42]. GPIba shedding has been shown

to be constitutive but it can be increased by activation of

protein kinases C (PKC) or inhibition of calmodulin [42,

43]. Shedding leads to decreased receptor density, poten-

tially impacting hemostasis or thrombosis: consequently,

the control of shedding could be an alternative to limit

platelet reactivity under prothrombotic conditions. More-

over, the ectodomain fragment of GPIba which is present

in normal plasma, could be a potential marker of

thrombosis.

The critical importance of the interaction of VWF with

GPIb-IX-V for hemostasis was shown in patients with

Bernard Soulier syndrome (BSS) who lacked GPIb-IX-V

[44] or with patients with von Willebrand disease (VWD)

who lacked VWF [45]. In BSS (reviewed in [46] ), the

subunits of GPIb-IX-V are usually present, albeit in lower

quantities and with some rare exceptions even exhibiting

very low levels. GPIBA gene is the most frequently

affected in BSS but defects in GPIBB and GP9 genes also

give rise to BSS. BSS is an autosomal recessive inherited

disease and is characterized by macrothrombocytopenia, a

defect in ristocetin-induced platelet agglutination and a

decrease in platelet adhesion to the subendothelium and in

thrombin-induced platelet aggregation. An exception in

BSS is the Bolzano variant, due to the A125 V mutation,

where platelet GPIb-IX-V is expressed at normal levels but

does not bind VWF [47]. The presence of giant platelets

and of abnormal membrane complexes in BSS seems to be

linked to the absence of the GPIba cytoplasmic tail and the

resulting lack of association with FLNa. Indeed, in a

murine model where the extracellular sequence of GPIba
has been replaced by an isolated extracellular domain of

the a subunit of the human interleukin-4 receptor, while

keeping the GPIba cytoplasmic sequence intact, a partial

rescue of the platelet count and platelet size was observed

[48]. Remarkably, giant platelets and thrombocytopenia

can also be observed in patients lacking FLNa or with a

defect in FLNa content as well as in patients with VWD-

type 2B, characterized by an increased affinity of VWF for

GPIb-IX-V (see section VWF and pathologies) [49–51].

Altogether, these important data strongly suggest that the

VWF/GPIba/FLNa axis is essential for megakaryopoiesis

and proplatelet formation. Further studies are required to

investigate the respective role of VWF, GPIba and FLNa

and the mechanisms involved in megakaryopoiesis. This

Fig. 2 Organization of the

GPIb-IX-V complex. GPIb-IX-

V is composed of 4 distinct

proteins: two trimers consisting

each of GPIba, disulfide-bonded

GPIb, and GPIX, connected to

one chain of GPV. The

intracellular tail domains of

GPIb-IX-V bind different

proteins such as Filamin A,

calmodulin and the adaptor

protein 14-3-3f. 14-3-3f binds

to GPIba, GPIbb and GPV,

through phospho-serines on

GPIba and GPIbb (blue

rectangle). Ser166 of GPIbb is

phosphorylated by PKA. FLNa

binds to Phe568-Trp570 of

GPIba (orange rectangle) and is

required for platelet adhesion at

high shear rates
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VWF/GPIba/FLNa axis also plays an essential role in

maintaining platelet shape by linking the platelet surface to

a sub-membranous network of actin filaments, the platelet

membrane skeleton. In the future, patients with FLNa

mutations (filaminopathy A) will be promising ‘‘models’’

to study the VWF/GPIba/FLNa axis in hemostasis and

thrombosis and to explore new actors involved in the sig-

naling pathways induced by VWF/GPIba interaction.

aIIbb3 integrin

aIIbb3 integrin is the second major platelet receptor for

VWF. aIIbb3 is the most abundant surface-expressed

integrin (40,000–80,000 copies per platelet) with another

pool located in internal membranes and which can be

exposed after platelet activation. It is also the most abun-

dant receptor in platelets. aIIb and b3 subunits are 148 and

95 kDa proteins, respectively. Binding of VWF to aIIbb3

involves the RGD sequence in the carboxyl-terminal region

of VWF (residues 2,507–2,509) and requires prior activa-

tion of the integrin. Besides VWF, aIIbb3 integrin binds

several other ligands containing an RGD-like sequence:

fibrinogen, fibrin, fibronectin and thrombospondin. The

important role of aIIbb3 integrin was demonstrated by the

study of patients suffering from the genetic disease

Glanzmann thrombasthenia in which platelets lack this

integrin and by the study of mice lacking aIIbb3 [52, 53].

The engagement of aIIbb3 integrin with fibrinogen and

VWF occurs after initial platelet adhesion mediated by

VWF/GPIb interaction and is involved in platelet firm

adhesion to the subendothelium and in thrombus formation,

all these events being dependent on shear.

VWF/GPIb-IX-V interaction and platelet signaling

VWF binding to GPIb-IX-V induces platelet activation,

converting the major integrin aIIbb3 from a low affinity to

a high affinity receptor capable of engaging the C4 domain

of VWF. This last step is essential for stable adhesion and

for subsequent cytoskeletal reorganization leading to

platelet spreading on VWF. The VWF/GPIb-IX-V inter-

action is also regulated by proteins such as 14-3-3f and

FLNa which, as already mentioned, are directly associated

with GPIb-IX-V (Fig. 2). How VWF/GPIb-IX interaction

contributes to platelet activation is still controversial. The

difficulties encountered with characterizing the signaling

induced by VWF/GPIb-IX interaction arise from the

observation that different signaling pathways are activated

depending on the levels of shear, either physiological or

pathological. Moreover, the variety of models that have

been used (1) agglutination/aggregation in the presence of

ristocetin or botrocetin or (2) Chinese hamster ovary cells

(CHO) transfected with GPIb-IX and integrin aIIbb3 or (3)

adhesion in blood flow at different shears under VWF

further, added to confusion.

Regulation of VWF-GPIb-IX-V interaction

14-3-3f is a homodimeric protein which binds to phospho-

Ser of GPIba and GPIbb. Three binding sites for 14-3-3f
have been identified: the first is defined by phosphorylated

Ser609 at the C-terminus of GPIba, the second by Ser587

and Ser590 in the cytoplasmic tail of GPIba [54] and the

third by Ser166 of GPIbb phosphorylated by PKA [55].

Dephosphorylation of GPIbb (Ser166) induces activation of

VWF-GPIb-IX interaction whereas dephosphorylation of

GPIba (Ser609) or blockade of 14-3-3f/GPIba interaction

inhibits VWF binding and VWF-mediated platelet adhe-

sion under flow conditions [56]. Du et al. [57] suggested

that dephosphorylation of GPIbb induces dissociation of

14-3-3f from GPIbb therefore allowing 14-3-3f dimer to

interact with two sites in GPIba to form the ‘‘active state’’

of GPIb-IX/14-3-3f. Altogether these results suggest that

14-3-3f/GPIba interaction could be a potential target for

antithrombotic drug development.

FLNa, another protein associated with GPIba, is also

essential for platelet functions induced by VWF. FLNa can

be phosphorylated at Ser2152 by PKA, possibly protecting

FLNa from proteolysis. The role of FLNa has been well-

established in mice lacking FLNa or in mice expressing a

mutant form of GPIba that does not associate with FLNa

[58]. This last model showed that FLNa/GPIba interaction

is absolutely required for platelet adhesion at high patho-

logical shear rates. Furthermore, the study of patients with

FLNa mutations (filaminopathy A) also contributed greatly

to our knowledge of FLNa function. Though we did con-

firm that FLNa is required for platelet adhesion on VWF at

high shear rates in these patients, we also showed that

patients with a missense mutation of FLNa exhibit platelets

with a gain-of-adhesion on VWF at pathological and

physiological shear rates. These results suggest that FLNa

alterations may lead to either thrombosis or hemorrhage.

Further studies are required to explore these mechanisms

using different models: patient’s platelets but also mutated

FLNa in transfected cells.

Platelet signaling required for aIIbb3 activation

GPIb-IX-induced platelet activation is a result of the acti-

vation of several intracellular molecules including Src

family, Rac1, PI3-kinase/Akt, cGMP-dependent protein

kinase and MAP kinases. This platelet activation is

amplified by the secretion of ADP and by TXA2 formation.

There is an increasing body of evidence to suggest that

lipid rafts provide platforms for the signal transduction
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pathways related to GPIb-IX-V. Among the signaling

pathway cascade involved in aIIbb3 activation, SFK Lyn

and Src have been reported to associate with GPIb-IX after

VWF/GPIb-IX activation and to form a complex with PI3-

kinase (Fig. 3). The recruitment and activation of Lyn

require the p85 subunit of PI3-kinase, which is associated

with GPIba [59]. Lyn is involved in PI3-kinase activation,

TXA2 formation and secretion during platelet aggregation

but also in GPIb-IX mediated integrin-dependent platelet

stable adhesion in blood flow independently of TXA2 and

ADP. In this case, the activation of aIIbb3 integrin is

mediated via the cGMP signaling pathway [60].

Downstream of Lyn, PI3-kinase (which phosphorylates

various forms of phosphoinositides in the D3 position of

the inositol ring) forms a complex with GPIba and 14-3-3f.

The respective associations of 14-3-3f and PI3-kinase to

GPIba are independent one from another [61]. PI3-kinase

activation is required for aIIbb3 activation, Ca2? release

and thrombus formation in conditions of shear [62]. These

results were consolidated later in a murine model where

deficiency in PI3-kinase effectors, Akt1 and Akt2 led to

impaired GPIb-IX-induced platelet aggregation and stable

adhesion under flow [63]. Recently, Rac1 was shown to be

involved in GPIb-dependent stable adhesion to VWF under

shear stress and its position within the signaling cascade

was determined using pharmacological inhibitors and

platelet-specific Rac1-/- mice [64]. Indeed, this study

clearly showed that Rac1 lies upstream of the PI3-kinase/

Akt pathway and downstream of Lyn leading the authors to

propose the Lyn/Rac1/PI3-kinase/Akt pathway as mediat-

ing VWF-induced activation of aIIbb3 integrin.

The signaling pathway downstream of PI3-kinase/Akt is

still controversial. The team of Du proposed that PI3-

kinase/Akt can induce nitric oxide (NO) synthesis, leading

to the stimulation of cGMP synthesis [65]. cGMP could

then activate PKG, a molecular player involved in platelet

secretion required for stabilization of aggregates and in

activation of the MAP kinases p38 and ERK [66, 67].

However, other groups have come to contradict these

results [68, 69] pointing to a need for further investigations

of the NO/cGMP/PKG pathway. Interestingly, we recently

participated in a study about a patient with a defect in the

a1 subunit of soluble guanylate cyclase (sGC), another

member of the NO pathway (NO-sGC-cGMP). We were

able to demonstrate that sCG is required for adhesion on

VWF in conditions of physiological shear stress confirming

the involvement of this pathway in VWF/GPIb induced

aIIbb3 activation [70].

In parallel to the PI3-kinase pathway, another pathway

involving Ca2? is also an important actor in aIIbb3 acti-

vation. During platelet adhesion, two waves of Ca2? have

been observed. The first wave of Ca2? released from

intracellular stores, occuring during platelet translocation,

is GPIb-IX-dependent, PI3-kinase-independent and it

allows the local activation of aIIbb3 integrin [71]. This

signaling pathway triggered by GPIb involves unknown

Src kinase and phospholipase C (PLC) c2. As for the

second sustained wave of Ca2?, it is involved in stable

Fig. 3 Platelet signaling

induced by GPIb-IX-V and

required for aIIbb3 activation.

GPIb-IX-V-induced platelet

activation is the result of the

activation of several molecules.

Whereas the involvement of Src

family, Rac1, PI3kinase/Akt

and the activation of PLCc1

which leads to Ca2? release is

well established, the signaling

pathway involving NO and the

activation of PKG is still

controversial. The subsequent

activation of the small G protein

Rap1 which allows the

recruitment of talin to b3, is

essential for aIIbb3 activation
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adhesion and is dependent on aIIbb3 integrin and PI3-

kinase [71, 72].

Secondary mediators involved in VWF/GPIb-IX-V

signaling

ADP and TXA2 are also important secondary mediators.

TXA2 synthesis can be either dependent or independent of

aIIbb3 activation but the bulk of this synthesis appears to

require aIIbb3 activation [73]. TXA2 synthesis is also

dependent on the LIM kinase which mediates the activation

of PLA2 during platelet adhesion [74]. In this case, TXA2

synthesis serves as a secondary amplification signaling

pathway important in occlusive arterial thrombosis for-

mation but not in the activation of aIIbb3 integrin. In

contrast, ADP via its receptor P2Y1 is required for aIIbb3

activation and platelet adhesion to subendothelial matrix

VWF and through its P2Y12 receptor, for sustained

thrombus formation as shown in experiments performed in

blood flow [75].

Finally, two receptors with an immunoreceptor tyrosine-

based activation motif (ITAM), the Fc receptor c chain

(FcRc) and the Fcc receptor IIA (FccRIIA) have been

shown to be associated with GPIb-IX-V [76, 77]. The

interaction of VWF with GPIb-IX-V has been reported to

lead to tyrosine phosphorylation of 2 ITAM domains of

FcRc and FccRIIA. However, the importance of these

receptors is still debated. Indeed, in platelets treated with

anti-FccRIIA antibodies or in FcRc-chain deficient plate-

lets, a normal Ca2? mobilization or only slightly reduced

Ca2? oscillation and aIIbb3 activation were observed [78].

Taken together these studies suggest that ITAM receptors

are not involved in early activation of aIIbb3 integrin

induced by GPIb-IX-V but they may amplify platelet

secretion induced by GPIb-IX-V.

VWF in adhesion and aggregation: in vitro models

Considerable progress has been made within the last dec-

ades in our understanding of the adhesion mechanisms

utilized by platelets to adhere to sites of vascular injury.

These advances have been achieved in part through

improved imaging techniques that enable real-time

assessment of platelet thrombus formation ‘‘in vitro’’.

There is now strong evidence that platelets utilize a mul-

tistep adhesion mechanism, involving GPIb-IX-V, GPVI

and integrin aIIbb3 to mediate stable adhesion and

form aggregates at site of vascular injury. GPIb-IX-V plays

a key role in the process of platelet recruitment to the site

of vascular injury through specific engagement of the A1

domain of immobilized VWF. This adhesive interaction

supports initial platelet tethering and translocation that is

insufficient to support firm adhesion. The contribution of

new technologies was important to examine the mechanism

of translocation on VWF. Indeed, platelets undergo shear-

specific morphological changes that may serve to regulate

translocation dynamics under flow [79]. Under low shear

rates (600 s-1), shape change involves extension of

membrane tethers and/or filopodia. With increasing shear

rates (2,000–5,000 s-1), platelets become spheric with

numerous surface projections and finally in pathological

conditions (10,000–20,000 s-1), platelets retract filopodia

increasing the rolling velocity. This series of morphologi-

cal changes involves reorganization of the actin and

microtubule cytoskeleton and a signaling pathway depen-

dent on GPIb-IX-V involving Src kinases and Ca2? flux

[80]. Firm platelet adhesion represents the second step and

involves the collagen receptors a2b1 and GPVI, the

fibronectin receptor a2b1 and aIIbb3 which is the major

receptor for VWF and fibrinogen and which is central in

the generation of the stable platelet thrombus. The adhesive

substrates immobilized on the membrane surface then

recruit additional platelets, resulting in aggregation and

thrombus formation. These events occur in flowing blood

at shear rates exceeding 1,000 s-1 in the human circula-

tion. Importantly, this paradigm does not apply under blood

flow conditions comparable to those existing in stenotic

coronary arteries where shear rates can increase until

20,000–40,000 s-1 for example in a coronary artery with a

90 % lumen reduction or just upstream of the stenosis.

Ruggeri et al. [81] were the first to report surprising data

under such extreme hemodynamic conditions where

platelet aggregates can form, exclusively mediated by

VWF/GPIb-IX-V interaction without any contribution of

activation or aIIbb3-dependent platelet aggregation. These

spectacular new findings showed that VWF/GPIb-IX-V

interaction may be a key determinant of platelet accumu-

lation in stenotic arteries leading to acute thrombotic

occlusion.

VWF and thrombus formation: in vivo models

Within the last two decades, mouse engineering has

become a powerful tool to explore the mechanisms

underlying hemorrhagic and thrombotic disorders. More-

over, the development of various murine experimental

thrombosis models, both in arteries and in veins, allowed

direct visualization of platelet adhesion and platelet—

platelet interaction in real-time. Subsequent quantification

of thrombus growth, thrombus stability and formation of

emboli provided important new information about the

importance of the various molecular players in the kinetics

of events leading to the formation of a stable platelet

thrombus. While the roles of GPIb-IX-V and VWF in
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thrombus formation was already well-established in flow

chambers studies in conditions of high shear rates, mice

deficient for VWF and GPIb-IX-V were essential to pre-

cisely determine the contribution of VWF in

atherothrombosis and in venous thrombosis in vivo.

VWF and arterial thrombosis

Mice lacking VWF were the first genetically engineered

mice evaluated using an in vivo thrombosis model per-

formed in mesenteric arterioles and visualized through

intravital microscopy [13, 82]. Following a ferric-chloride-

induced injury of these arterioles, VWF-/- mice exhibited

delayed platelet adhesion and reduced thrombus formation.

The persistence of an open channel within the thrombus or

between thrombus and vascular wall in a large majority of

vessels was another characteristic of this model and sug-

gested that VWF plays an essential role in platelet

cohesion. Later another model of laser-induced vascular

injury in the cremaster muscle microcirculation confirmed

these first observations. The absence of VWF did not affect

platelet activation, but platelet aggregation and thrombus

formation were attenuated [83]. The fact that in mice a

defect in VWF leads to a delay in and not to an absence of

platelet adhesion and thrombus formation, strongly sug-

gests that other ligands can mediate high shear adhesion

in vivo. In addition VWF deficiency in mice appears less

severe than a lack of GPIba [84], suggesting that these

alternative adhesive molecules are ligands for GPIba.

Thrombospondin represents a potential candidate as it was

shown to mediate GPIba-dependent platelet adhesion

under flow conditions in vitro [85]. Thus, it appears that

GPIba contributes to arterial thrombosis by adhesion

mechanisms dependent and independent of VWF. Further

studies will be required to explore other candidates

potentially involved in platelet adhesion. Finally, the

transgenic mouse model expressing the chimeric protein

composed of the human IL-4 receptor linked to the cyto-

plasmic tail of GPIba clearly showed that GPIba is

absolutely required for recruitment of platelets in thrombi

while aIIbb3 integrin activation is not [84]. This in vivo

observation was reminiscent of the GPIba-dependent but

activation-independent thrombus formation in vitro under

very high shear rates. With regard to GPIba, all in vivo

thrombosis models, whether the injury was deep or

superficial (as differentially obtained using the laser beam

model), were consistent with VWF/GPIba interaction

being essential for thrombus formation [86]. In conclusion,

GPIba is essential to the process of arterial thrombosis

regardless of the severity of the experimental lesions.

The understanding of the pathophysiological mecha-

nisms of thrombus formation is essential for the design of

therapeutic strategies. Atherothrombosis encompasses

ischemic stroke which is the second leading cause of death

worldwide with 80 % of strokes caused by arterial occlu-

sion of cerebral arteries. Recent work described a role for

VWF in ischemic stroke [87, 88]. Indeed, mouse models

have shown that the absence of VWF protects mice from

brain ischemia. A more precise molecular analysis dem-

onstrated that binding of VWF to both GPIba and collagen

are mandatory steps in stroke development, as opposed to

VWF binding to aIIbb3. The signaling pathway dependent

on GPIba involves phospholipase D1. These observations

clearly show that VWF is a critical actor in ischemic stroke

and that blocking the VWF/GPIba axis might be a prom-

ising strategy in stroke treatment. In fact, ALX-0081, a

nanobody against the A1 domain of VWF that blocks VWF

binding to GPIba, has recently been shown to prevent

middle cerebral artery (MCA) thrombosis in guinea pigs

and to induce reperfusion when given immediately after

complete occlusion, without provoking intracerebral

bleeding [89]. These promising data confirm that VWF/

GPIba interaction is essential for platelet adhesion but also

for initial thrombus formation in stroke and showed that as

opposed to an aIIbb3 inhibitor (tirofiban), VWF/GPIba
blockade does not lead to hemorrhage. This remarkable

observation showed for the first time that a cerebral

thrombus can be dissolved by a platelet antagonist. In

another recent study, Le Behot et al. [90] confirmed that

VWF/GPIba blockade restored vessel patency after

occlusive thrombosis in an MCA model in mice. The

authors elegantly showed that an anti-VWF treatment was

able to specifically disaggregate the external layer of

occlusive thrombi, corresponding to platelet aggregates

formed under high shear rates independently of aIIbb3

integrin activation. These results clearly show that each

part of the occlusive thrombi is sensitive to specific

thrombolytic agents. To conclude this aspect, inhibitors of

VWF/GPIba interaction currently under preclinical and

clinical investigations constitute promising candidates for

the treatment of stroke [91].

VWF and venous thrombosis

While the importance of VWF/GPIba interaction in arterial

thrombosis is well-established and accepted, the role of this

interaction in venous thrombosis has long remained unclear

with conflicting conclusions from various in vitro models.

In the clinical setting, elevated levels of VWF and FVIII

have been reported associated with an increased risk of

venous thrombosis; however, this effect was due to

increased FVIII levels. The contribution of animal models

was therefore very important to clarify the exact role of

VWF. The first experiments to tackle this issue, a

mechanical injury in the hamster femoral vein or a pho-

tochemically-induced injury in the mouse jugular vein,
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relied on the use of inhibitors of VWF and GPIba. The

results showed that the occlusion time was significantly

prolonged and that the effect of VWF/GPIba was depen-

dent on the ERK2 pathway [92, 93]. Next, transgenic mice

lacking the GPIba extracellular domain were studied and

showed delayed adhesion in ferric chloride-injured veins

but eventually all injured veins occluded. In contrast, in

VWF-/- mice, platelet adhesion and thrombus formation

were impaired and frequent embolization was observed, the

latter being corrected by the infusion of FVIII [94]. This

lack of venules occlusion in VWF-/- mice contrasting

with the venules occlusion in mice expressing truncated

GPIba strongly suggests that VWF receptors other than

GPIba, probably aIIbb3, are involved in thrombus growth

in veins [95]. This important work clearly demonstrates

that VWF but also FVIII are essential for the formation of

stable occlusive thrombi. This is supported by studies

showing that higher levels of plasma VWF due to a single

nucleotide polymorphism (rs1063856) in exon eight of

VWF are associated with an increase in venous thrombosis

risk [96]. Later on, more physiologically relevant models

of deep vein thrombosis (DVT) proved essential to further

understand the role of platelets and VWF/GPIba interac-

tion in DVT. Indeed, thrombosis in deep veins is not

initiated by a major vessel injury. The challenge was

therefore to mimic DVT pathogenesis, i.e. avoiding dis-

ruption of the endothelial lining, by using a flow restriction

model. VWF-deficient mice were clearly protected from

thrombosis induced by complete stasis or partial stenosis

flow restriction in the inferior vena cava [97]. In these

models, VWF appears to play a critical role in thrombus

initiation in the presence of residual blood flow through a

mechanism distinct from FVIII-dependent coagulation.

Another link between DVT and VWF also emerged with

the discovery of NETs or ‘‘neutrophil extracellular traps’’

[98]. NETs which originate from neutrophils, consist of

DNA, citrullinated histones and neutrophil granule con-

stituents. They are implicated in antimicrobial defense and

are formed upon vascular injury. NETs contribute to

thrombus formation through interaction with platelets and

are able to support platelet activation and aggregation

suggesting that they can serve as substrates for platelet

adhesion. The hypothesis is that adhesive proteins such as

VWF could mediate this adhesion. As a support for this

hypothesis is a recent work showing that in a model of

DVT induced by flow restriction, NETs colocalized with

VWF allowing platelet recruitment [99]. Altogether these

new findings clearly show that VWF is a component crit-

ical in venous thrombosis and that VWF is a potential

target for venous thrombosis treatment.

VWF Regulation: effect on platelet activation

b2-GPI a natural inhibitor of VWF

The majority of patients with the anti-phospholipid syn-

drome are characterized by the presence of autoantibodies

against the phospholipid-binding protein b2-glycoprotein I

(b2-GPI) as well as by the occurrence of thrombotic events,

both venous and arterial. Several mechanisms have been

described that explain the correlation between the presence

of autoantibodies against b2-GPI and these thrombotic

complications, one of which is actually related to VWF. The

use of a nanobody specific for VWF in its platelet-binding

conformation (‘‘active VWF’’) showed that the levels of

active VWF were significantly increased in patients

exhibiting anti-b2-GPI antibodies associated with throm-

botic events [100]. Further analysis revealed that b2-GPI

selectively recognizes active VWF, and that the formation

of b2-GPI/active VWF complexes prevents VWF from

interacting with platelets. Thus, b2-GPI seems to act as a

natural inhibitor of active VWF, preventing premature

VWF-platelet interactions. The presence of autoantibodies

specific for b2-GPI suppresses this b2-GPI inhibitory effect,

a good explanation for the high levels of circulating active

VWF and in turn for the increased thrombotic risk of these

patients. The physiological relevance of b2-GPI as a regu-

lator of VWF activity became apparent in a study involving

a large cohort of aged men with myocardial infarction

[101]. In this study, the authors investigated whether vari-

ations in plasma levels of b2-GPI influenced the risk of

myocardial infarction. They found a dose-dependent pro-

tective effect of increased b2-GPI plasma levels on

myocardial infarction in this population. Increased b2-GPI/

VWF ratio correlated with a two to three fold reduced risk

of myocardial infarction in elderly men. In vivo experiments

are needed to understand the (patho) physiological role of

b2-GPI in hemostasis, and to answer a number of unsettled

questions. What is the role of b2-GPI in physiological

conditions when VWF is not in its active conformation? Is

there any risk of thrombosis in the absence of b2-GPI? Mice

lacking b2-GPI do not spontaneously develop thrombosis

[102]. Only two unrelated Japanese families with b2-GPI

deficiencies have been reported. Neither the patients

homozygous for the mutation, nor the heterozygous siblings

displayed any thrombotic complications. Though several of

their ancestors died of stroke [103], the link with the b2-GPI

defect is far from clear, because of concurrent high inci-

dence of hyperlipidemia and diabetes in one family, and

because in the other family, the only member reported dead

from stroke was 90 years old.
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Regulation of VWF by ADAMTS-13

Thrombotic thrombocytopenic purpura (TTP) is a rare human

disease characterized by thrombocytopenia, accumulation of

VWF-rich thrombi in the microvasculature, anemia and organ

dysfunction. TTP results from a congenital or acquired defi-

ciency in the metalloprotease ADAMTS-13 (A Disintegrin

and Metalloprotease with ThromboSpondin type 1 repeat)

[104]. Plasma ADAMTS-13 is synthesized and released from

hepatic stellate cells and endothelial cells. Its role consists in

cleaving VWF multimers within the A2 domain between

residues Tyr1605-Met1606. As a consequence of ADAMTS-13

deficiency, ultra-large (UL) VWF multimers accumulate in

the circulation and because of their high biological reactivity,

they can spontaneously interact with platelets and trigger

intravascular platelet clumps. ADAMTS-13 also cleaves

VWF as soon as it is released from endothelial cells, resulting

in the shedding of UL-VWF from the endothelial cell surface

and in fragmentation of VWF strings [105]. ADAMTS-13

cleavage efficacy is positively regulated by the interaction of

VWF with GPIba under static conditions [106]. Moreover,

under fluid shear stress, platelet-VWF complexes increase the

proteolytic cleavage of VWF by ADAMTS-13 [107]. These

results suggest that the interaction between GPIba and the

VWF A1 domain affects A2 domain accessibility by AD-

AMTS-13. There appears to exist many levels of regulation of

ADAMTS-activity. One example thereof is thrombospondin

(TSP-1), which is released from granules following platelet

activation triggered by platelet adhesion. TSP-1 shares

homology with ADAMTS-13 and like the latter can bind to the

A3 domain of VWF. The consequence is that TSP-1 interferes

with ADAMTS-13 for binding to UL-VWF multimers

therefore inhibiting VWF cleavage and favoring platelet

recruitment and thrombus formation [108]. In physiological

conditions, plasma ADAMTS-13 is thus essential through its

antithrombotic role [109, 110]. Clinical studies have indeed

demonstrated that reduced ADAMTS-13 activity and

increased VWF levels are risk factors for the development of

myocardial infarction and ischemic stroke [111, 112].

Recently, Casari et al. [113] developed an original mouse

model of TTP expressing a mutant VWF resistant to prote-

olysis. This model should prove interesting in the study of the

role of continuous platelet aggregation in the context of

thrombosis. Furthermore, this model based on the interaction

of VWF with GPIba will be useful to study molecular events

associated with the transition from low to high platelet

activation.

Pathologies of VWF and platelet functions

The fundamental role of VWF in hemostasis is illustrated

by the bleeding tendency of patients suffering from von

Willebrand disease (VWD). This bleeding disorder is

classified into three major types which reflect the clinical

heterogeneity of this disease. VWD-type 1 is characterized

by a partial quantitative deficiency of VWF and represents

the most common form of VWD (70–80 %). Large popu-

lation studies showed that there is a gradient of increasing

influence of pathogenic VWF mutations [114–117]. Clini-

cal bleeding history, reduction of plasma VWF and often

family history characterize VWD-type 1. In contrast to

VWD-type 1, VWD-type 3 is due to a severe quantitative

deficiency in VWF with a major reduction in FVIII and

represents less than 1 % of VWD cases. VWD-type 2 is

characterized by a qualitative deficiency in VWF and

accounts for approximately 20 % of all cases of VWD.

VWD-type 2 is sub-divided into 4 variants: 2A, 2B, 2 M

and 2 N. VWD-type 2 N mutations result in decreased

FVIII binding to VWF. VWF mutations in VWD-types 2A

and 2 M result in reduced platelet binding capability. In

contrast, VWD-type 2B corresponds to enhanced VWF-

platelet binding capability. In this review, we will address

various aspects of the regulation of VWF and its impact on

platelet activation will also be approached.

VWF mutations resulting in reduced platelet binding

capability

Mutations in VWD-types 2A and 2 M lead to reduced

VWF/platelet interaction. In VWD-type 2A, high molecu-

lar weight (HMW) VWF multimers are lost. More than 70

different mutations have been described, located in the A1

or A2 domains of VWF. A1 domain mutations resulting in

VWD-type 2A affect the normal protein structure, inter-

fering with biosynthesis, multimer assembly, storage and

release [118]. Other VWD-type 2A mutations, located in

the A2 domain, enhance VWF susceptibility to ADAMTS-

13-mediated proteolysis [119]. The bleeding symptoms are

clearly explained by defective ristocetin-induced platelet

aggregation in an aggregometer [120]. To explore the

mechanisms underlying the bleeding phenotype, Sugimoto

et al. [121] analyzed thrombus formation using blood from

patients with VWD-type 2A on a collagen matrix under

flow conditions. They were able to show that thrombus

formation was impaired at high shear rates and the defect

became more prominent with increasing shear rates,

reflecting the lack of HMWs of VWF.

VWD-type 2 M is characterized by a loss-of-function

but in contrast to type 2A, HMWs are present with a nor-

mal multimer distribution. The VWF binding capacity of

platelets is reduced due to modifications in the A1 domain

structure and configuration [122]. Most of the point

mutations are located in the A1 domain where they directly

affect VWF/GPIba interaction [123, 124]. Several reports

have shown that VWD-type 2 M can also result from
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mutations affecting VWF binding to collagen. Such

mutations can be located either in the A1 or A3 domain

[123, 125–127]. Binding of VWF to fibrillar collagens

(type I and III) is primarily mediated by the A3 domain but

which under specific circumstances, can be substituted for

by the A1 domain [128]. In contrast, the A1 domain is the

most prominent domain involved in VWF binding to

microfibrillar collagen type VI [129]. Recent evidence

shows that VWD-type 2 M is associated with a bleeding

phenotype milder than most other types of VWD [130]. In

conclusion, VWD-type 2 M represents a spectrum of

functional defects, including altered platelet binding,

altered collagen binding or both. More studies are needed

to explain the impact of a defect in collagen binding on the

clinical bleeding phenotype. In VWD subtypes 2A and 2 M

as well as in the 2 N subtype, no platelet defect has ever

been reported.

VWF mutations resulting in enhanced platelet binding

capability

VWD-type 2B (5–8 % of all VWD) is characterized by a

gain-of-platelet function and surprisingly enough by a

bleeding phenotype. The bleeding phenotype in VWD-type

2B is often explained by 1) the unavailability of GPIba due

to constitutively bound VWF 2B mutant 2) the absence of

HMW-VWF multimers, the most functionally effective

forms of VWF and 3) the moderate-to-severe thrombocy-

topenia observed in these patients (Fig. 4). VWD-type 2B

mutations induce a gain-of-function characterized by an

increased affinity for platelet glycoprotein GPIba [131]

leading to enhanced ristocetin-induced platelet agglutina-

tion and to spontaneous platelet agglutination in vitro and

in vivo. These mutations are located in exon 28 coding for

the A1 domain of the VWF gene. More than 20 mutations

have been listed. VWD-type 2B is also characterized by the

disappearance of HMW VWF in plasma despite a normal

synthesis. Although the basic bleeding phenotype of VWD-

type 2B can be accounted for by the constitutive binding of

mutant VWF 2B to platelets, the platelet defects described

in various reports appear puzzling and require further

attention. For example, ultrastructural morphological

abnormalities of platelets, including giant platelets, are

common in VWD-type 2B [132–135]. Another character-

istic of VWD-type 2B is the thrombocytopenia the origin,

variability and fluctuation of which remain unclear. In a

large study enrolling 67 VWD-type 2B patients, it was

clearly shown that the variable degree of thrombocytopenia

is mutation-dependent and that the bleeding tendency is

directly correlated with platelet counts [136]. Different

hypotheses, not mutually exclusive, could explain throm-

bocytopenia in VWD-type 2B. The first is that

thrombocytopenia may originate from impaired platelet

production. In normal circumstances, the VWF/GPIb

interaction has a positive influence on proplatelet formation

from MKs in culture, as shown by Nurden et al. [137].

However, the presence of VWF carrying a VWD-type 2B

mutation has deleterious effects on MKs exhibiting limited

extension of pseudopodia and structure abnormalities in

platelets with few large proplatelets. However, impaired

megakaryopoiesis alone may not completely explain

thrombocytopenia. The second possibility is that throm-

bocytopenia may be explained by the presence of

circulating VWF/platelet aggregates (secondary to sponta-

neous platelet binding of mutant VWF), undergoing

clearance from plasma. This hypothesis is supported by the

observation that VWF is present at the platelet surface in

VWD-type 2B patients [132] and by our own experimental

in vivo results. Our group has indeed generated a mouse

model of VWD-type 2B (based on hydrodynamic injection

of a p.V1316M VWF-expressing plasmid) which repro-

duces the clinical phenotype of human patients with a

severe bleeding phenotype, thrombocytopenia, circulating

aggregates and giant platelets [138]. We found that VWF

was detectable at the surface of platelets only in mice

injected with the p.V1316M/VWF-expressing plasmid, and

not in control mice injected with the wild type VWF-

expressing plasmid [139]. Using this model, we were able

to show that VWF/platelet aggregates are removed by liver

and spleen macrophages and that as a consequence, VWF-

type 2B platelets had a circulatory half-life shorter than

wild type platelets, therefore contributing to the lower

platelet count [139]. It should be noted that this process is

independent of VWF multimer size, meaning that HMW

Fig. 4 VWD-type 2B and bleeding phenotype. VWD-type 2B and its

bleeding phenotype result from a combination of pathological

mechanisms involving absence of large VWF multimers, thrombo-

cytopathy and thrombocytopenia
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multimers are not the only VWF species absorbed onto

platelets. The lack of HMW multimers in VWD-type 2B is

caused by an increased susceptibility of mutant VWF to

ADAMTS-13 [138].

A third potential mechanism for thrombocytopenia in

VWF-type 2B is platelet apoptosis. Indeed, VWF-GPIba
interaction has been reported to induce formation of

apoptotic platelets via a pathway involving caspase 3 and

the proapoptotic proteins Bak and Bax [140]. In addition,

cold-storage of platelets followed by rewarming, triggers

apoptosis through 14-3-3f association with GPIba and

dissociation from the proapoptotic protein Bad allowing its

activation [141]. However, our preliminary experiments on

our mouse model for VWF-type 2B and on platelets from a

VWD-type 2B patient exhibiting a severe thrombocytope-

nia did not show any apoptosis (Berrou et al., unpublished

data). We thus cannot conclude as to apoptosis being

involved in thrombocytopenia, at least in the patient stud-

ied, but additional studies are needed to explore this issue

in more details. In conclusion, the current view for the

bleeding phenotype in VWD-type 2B explained on one

hand by the absence of the highly hemostatic HMW VWF

multimers and on the other hand by thrombocytopenia

remains valid. Our work has contributed to the explanation

at least partially of the mechanisms behind these two

observations: increased ADAMTS-13 proteolysis for the

lack of HMW multimers and enhanced phagocytosis of

mutant VWF-bound platelets by macrophages for the

thrombocytopenia.

However, another question is raised by VWD-type 2B:

could the inappropriate constitutive binding of VWF to

platelets alter platelet function and hence contribute to the

bleeding phenotype? Indeed, the low platelet count alone

does not convincingly explain the bleeding tendency. A

recent study showed that mice with platelet counts as low

as 10 % of controls displayed normal hemostasis. Even

considering the limitations of the mouse model in hemos-

tasis, this suggests that thrombocytopenia is probably not

the only cause of the bleeding phenotype observed in

VWD-type 2B [142]. The observation of giant platelets in

some VWD-type 2B patients is the first hint of platelet

dysfunction in VWD. A more direct functional impact of

mutant VWF 2B on platelets has been partially addressed

in the past. The first study describing a defect in platelet

functions in VWD-type 2B comes from a patient exhibiting

the so-called Montreal Platelet Syndrome [143] which

25 years later was shown to correspond to VWD-type 2B

with the p.V1316M mutation [144]. Montreal Platelet

Syndrome is characterized by mucocutaneous bleeding,

thrombocytopenia with large platelets, spontaneous platelet

aggregates in plasma and by an unexpected defect in

platelet aggregation induced by thrombin [144]. Two other

observations reported VWD-type 2B patients with reduced

platelet aggregation and secretion correlating with

impaired granule content [134] as well as a heterogeneous

defect in thrombus growth using perfusion assays on col-

lagen matrix [121]. Using three different models, platelets

from mice expressing the VWF/p.V1316M mutation, a

patient harboring the same mutation and control platelets in

the presence of recombinant VWF/p.V1316M, we clearly

found that platelet aggregation, platelet secretion, and

integrin aIIbb3 activation were impaired, whatever the

agonist [145]. Altered platelet functions correlated with

impaired thrombus formation. Ca2? mobilization which is

required for aIIbb3 activation was normal. In contrast, the

activation of the small G protein Rap1, which is required

for talin recruitment by integrin aIIbb3 and its subsequent

activation, was impaired [145]. Our conclusion is that

VWF/p.V1316M acts on the activation pathway of Rap1

but downstream of Ca2? mobilization. Rap1 activity is

controlled both by the guanidine nucleotide exchange

factor (GEF) CalDAG-GEF1 that stimulates the release of

GDP and the binding of GTP to Rap1, as well as by the

GTPase-activating proteins that stimulate the intrinsic

Rap1 GTPase activity (Fig. 5) [146, 147]. Recently, Cal-

DAG-GEF1 was shown to be negatively regulated by PKA,

an inhibitor of platelet activation [148]. Furthermore,

Rap1Gap2, the only known GAP of Rap1 in platelets [149]

was also shown to be regulated by PKA and PKG [150]. It

is thus possible that VWD-type 2B VWF binding to GPIb

elicits activation of PKA or PKG which would then block

the Rap1-aIIbb3 pathway. However, further studies are

required to test this hypothesis.

Fig. 5 VWD-type 2B and activation of the small G protein Rap1.

Platelet aggregation, secretion and aIIbb3 activation induced by

various agonists are impaired in the presence of VWF/p.V1316M.

Ca2? mobilization required for aIIbb3 activation is normal, whereas,

the activation of Rap1 required for talin recruitment is impaired. Rap1

activity is controlled by the guanidine nucleotide exchange

Of von Willebrand factor and platelets 319

123



Clearly, the VWD-type 2B mutation p.V1316M is

associated with a severe thrombocytopathy which very

likely contributes to the bleeding tendency in VWD-type

2B. Several questions still remain without answers. The

signaling pathway induced by VWF/p.V1316M is

unknown and requires more detailed investigation. Pre-

liminary data show that in control platelets recombinant

VWF/p.V1316M induces a specific signaling pathway

involving activation of phosphatases (Berrou et al.,

unpublished results). Further studies will be required to

investigate the role of these phosphatases in the VWD-type

2B-associated thrombopathy. The other possibility is that

intrinsic signaling defects in VWF-type 2B platelets are a

consequence of altered platelet biogenesis by megakaryo-

cytes. This hypothesis is supported by the fact that VWF-

type 2B platelets but not control platelets (in the presence

of recombinant VWF/pV1316M), exhibited defective Ca2?

influx, which is likely to affect platelet activation. Other

questions may be: are structural changes of mutated VWF

and/or GPIb-IX-V required or not for their spontaneous

interaction? Is the severe bleeding tendency exclusively

due to the thrombocytopathy or not? Do mutations other

than V1316M exhibit the same platelet functional inhibi-

tion? Finally, Jerry Ware raised the issue of potential

implications for anti-thrombotic targeting of VWF/GPIb-

IX axis [151]. Indeed, could type 2B mimetics bind to

normal platelets and inhibit aIIbb3 activation, thereby

initiating a new strategy for antithrombotic therapy?

Obviously this will require thorough future investigations.

Finally, this study suggests that for a better evaluation of

the bleeding tendency associated with VWD-type 2B,

investigations of platelet functions must be considered in

the clinical assessment of the disease.

Platelet mutations resulting in enhanced binding

of VWF

Platelet-type von Willebrand disease (Pt-VWD) also called

pseudo-von Willebrand disease, is a gain-of-functions

condition similar to VWD-type 2B characterized by

spontaneous binding of plasma VWF to platelets and

increased platelet agglutination with low amounts of ris-

tocetin. Pt-VWD is caused by GPIBA mutations with

autosomal dominant inheritance and is associated with a

moderate thrombocytopenia [152, 153]. The mutations in

the extracellular domain of GPIba lead to increased affinity

of VWF for GPIb-IX-V and to an increased bleeding risk

[154, 155]. This phenotype appears to be significantly less

frequent than VWD-type 2B. Only 4 GPIba mutations have

been described so far [154–157]. A mouse model

expressing a mutant human subunit GPIba (GPIba/

PG233 V) associated with Pt-VWD displays several diag-

nostic attributes of Pt-VWD, including the ability of

platelets to agglutinate at low doses of ristocetin and a

bleeding phenotype [158]. In vivo, a complete abrogation

of experimentally-induced thrombosis of the carotid artery

in a mouse model of Pt-VWD was observed [159]. Inter-

estingly and like in VWD-type 2B, impaired platelet

functions induced by various agonists such as ADP and

thrombin were also observed in Pt-VWF [159]. This con-

firms that abnormal signaling induced by inappropriate

VWF/GPIb interaction and/or abnormal platelet biogenesis

by megakaryocytes can lead to impaired platelet functions

in VWF-type 2B and in Pt-VWF [145]. The abnormal

signaling in Pt-VWD remains to be identified.

In conclusion, the gain-of-platelet functions observed in

VWD-type 2B and Pt-VWF clearly lead to abnormal sig-

naling leading to thrombocytopathy. Identification of the

signaling pathways involved may lead to a new anti-

thrombotic strategy.

Conclusions and perspectives

In the last three decades, the classical role of VWF in

hemostasis has largely been studied. Within the last years,

a substantial amount of data supporting the role of VWF in

thrombosis has emerged. The development of genetically

engineered mice has confirmed the crucial role of VWF in

arterial thrombosis but also in venous thrombosis. More-

over, the development of specific murine experimental

models of pathological thrombosis that mimic human

vascular disease (DVT, stroke) was a great advance in the

understanding of the mechanisms and in designing new

therapeutic strategies. The inhibitors of VWF/GPIba
interaction which are currently under preclinical and clin-

ical investigations appear as promising candidates for the

treatment of stroke while keeping the bleeding risk low

[91]. Another future alternative strategy to decrease

thrombus without undermining hemostasis is the targeting

of the signaling pathways involved in platelet activation.

Preclinical studies have demonstrated that pharmacological

inhibitors of the PI3-kinase b involved in GPIb-IX-V sig-

naling are effective at preventing thrombotic occlusion of

arteries and suggest that these inhibitors may cause less

bleeding than conventional approaches [160]. The chal-

lenge of the next years will be to establish future strategies

for a safe combination of anti-thrombotic therapies.

In parallel to the development of new models of

thrombosis, many aspects of the molecular biology of

VWF remain to be explored. Recent investigations have

revealed that mutated VWF in VWD-type 2B is able to

prevent platelet aggregation and consequently to induce a

thrombocytopathy, explaining in part the bleeding ten-

dency observed in these patients. The identification of the

signaling pathways induced by mutated VWF is open and
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constitutes an important new goal which may lead to a new

anti-thrombotic strategy. This new challenge requires the

investigation of different mutated VWF to assess their

effect on platelet aggregation as well as the signaling

pathways involved in relation with the clinical situation.

These new investigations must now be considered in the

clinical assessment of the disease and should be clinically

useful for predicting the severity of bleeding in patients

with VWD-type 2B.

Another important point yet to be resolved is that the

signaling pathways associated with thrombocytopathies

involving the VWF-GPIba axis are not fully characterized.

Giant platelets observed in Bernard Soulier syndrome,

VWD-type 2B and recently in filaminopathy A strongly

suggest that the VWF/GPIba/FLNa axis is essential to

maintain platelet shape and for proplatelet formation. Recent

evidence showed that VWF/GPIba interaction is able to

induce a pro-apoptotic signaling pathway in platelets.

Although very attractive to explain thrombocytopenia in

VWD-type 2B, this hypothesis was unfortunately not con-

firmed by our preliminary experiments on VWD-type 2B

platelets but more patients need to be tested. The complexity

of this hypothesis is that apoptotic platelets can be rapidly

eliminated from the circulation, thus preventing their

detection, raising the question of the feasibility of the iden-

tification of such an apoptotic pathway. The other possibility

is that in VWD-type 2B, apoptosis occurs not in platelets, but

in MKs which regulate proplatelet formation. Further work

will be required to elucidate the signaling pathways associ-

ated with thrombocytopathies in VWD-type 2B.

Finally, in the circulation, recent discoveries showed

that besides factor VIII, other proteins (osteoprotegerin,

angiopoietin, ADAMTS-13) are associated with VWF in

the circulation. One of the new challenges in the next years

will be to examine whether these associations may affect

the interaction between VWF and its platelet ligands GPIb-

IX-V and integrin aIIbb3.
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