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Abstract

Honeybees (Apis mellifera) are constantly subjected to many biotic stressors including

parasites. This study examined honeybees infected with Nosema ceranae (N. ceranae). N.

=ceranae infection increases the bees energy requirements and may contribute to their

decreased survival. RNA-seq was used to investigate gene expression at days 5, 10 and 15

Post Infection (P.I) with N. ceranae. The expression levels of genes, isoforms, alternative

transcription start sites (TSS) and differential promoter usage revealed a complex pattern

of transcriptional and post-transcriptional gene regulation suggesting that bees use a range

of tactics to cope with the stress of N. ceranae infection. N. ceranae infection may cause

reduced immune function in the bees by: (i)disturbing the host amino acids metabolism (ii)

down-regulating expression of antimicrobial peptides (iii) down-regulation of cuticle coatings

and (iv) down-regulation of odorant binding proteins.

Introduction

Honeybees (Apis mellifera), are critical for agricultural ecosystems, but are exposed to many

biotic stressors including bacteria, viruses and fungi. Nosema ceranae (N. ceranae) is a micro-

sporidian parasite which is one of the most common parasites of the honeybee. It infects the

midgut [1] and has many adverse effects which reduce the health of individual honeybees [2–

4] and of the colony [5–10]. N. ceranae infection is associated with several fitness related prob-

lems including deterioration of the gut epithelial cells [11,12], immune suppression [13] and

energetic stress [14,15].Honeybees have developed many defense mechanisms to deal with par-

asite infection which include an antimicrobial secretion layer on the gut, and cellular and
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humoral immune mechanisms [16]. The honeybee humoral response has been shown to

involve four antimicrobial peptides, abaecin, apidaecin, defensin and hymenoptaecin [17–20].

A draft A. mellifera genome sequence was published in 2004 [21] and an improved version

of the genome sequencewas published in 2014 [22]. This sequence is valuable for the interpre-

tation of RNA-seq data to study gene expression. RNA-seq may be used [23] to characterize

the whole transcriptome including transcription start sites (TSS), splicing variants and differ-

ential promoter usage [24].

The molecular response of the honey bee to infection by N. ceranae has been investigated

using RNA-seq, but the focus to date has been on cells of the midgut [25]. Digital gene expres-

sion has also been used to study the neurogenomic response to N. ceranae in the bee brain

[26].The honey-bee nervous system, trachea and intestine interact to maintain the physiologi-

cal homeostasis following damage resulting from infection; e.g. intestinal stem cells replace

damaged intestinal epithelial cells [27]. Interestingly, the message for intestinal regeneration

come not only from the damaged epithelial cells, but also from adjacent (trachea, muscles) and

distant tissues, and the brain (reviewed in [28]).

In this study, RNA-seq was used to investigate gene expression, splice variants, TSSs and

differential promoter usage in honeybees infected with N. ceranae at days 5, 10 and 15 P.I. The

new version of the bee genome (Amel_4.5_scaffolds.fa) was used to annotate the genes. The

study addressed the global transcriptome response of the bee to N. ceranae infection, not the

response of specific tissues, and identified many transcripts and pathways involved in the

interaction between the honeybee and the parasite.

Material and methods

N. ceranae spore preparation

N. ceranae spores were obtained according to Aufauvre et al. 2011 [25]. Briefly, forager bees

were sampled at the hive entrance. The abdomens of 30 bees were triturated adding 30 ml dis-

tilled water. The homogenate was filtered and the resulting suspension was centrifuged for 6

minutes at 800g. The supernatant was removed and the spores resuspended in 3 ml distilled

water. The spore concentration was determined by counting using a haemocytometer cham-

ber. Amedian of 8.6 X 105spores/ml was obtained.

Inoculation of bees with N. ceranaeand RNA extraction from honeybees

Frames of Apis mellifera capped brood containing "about-to-emerge" pupae were cut out from

healthy colonies located in France. The hives were verified as N. ceranae free. Subsequently,

the frame of pupae from each colony was divided into 2 equal parts, introduced into two plas-

tic boxes and kept in an incubator at ~30˚C with high humidity. The experiment was per-

formed in the apiary of Luz Saint Sauveur located at 00˚ 00’ 50.4”O and 42˚ 51’ 57.6” N.

After about 2 days, the emerging bees were counted, and 30 bees were retained within each

box. The two boxes were transferred to the inoculation chamber (25˚C) with a 12 hour dark/

light (12/12 d/l) cycle. The bees of the "inoculation box" were fed for two days with 2 ml of

66% sucrose solution (w/v) containing 86,000 N. ceranae spores per bee (total of 2.6X105

spores per "inoculation box"). The bees of the “control box” were fed with 2 ml of a solution of

66% sucrose without N. ceranae spores for two days. Throughout the experiment, sucrose solu-

tion was supplemented only when the Pasteur pipettes in the boxes were completely empty.

On days 5, 10 and 15, five bees per box were removed and ground in liquid nitrogen, trans-

ferred in micro-tube containing Trizol and stored at -80˚C. The number of live/dead bees in

both boxes was counted daily and the dead bees were carefully removed. Total RNA was

extracted from three bees from each box and at each time point (5, 10 and 15 days post
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infection, P.I.) using TRIzol (Invitrogen Life Technologies, Milan-Italy) and RNeasy columns

(Qiagen). RNA quality was assessed by microcapillary electrophoresis on an Agilent 2001

Bioanalyzer (Agilent Technologies) with RNA 6000 Nanochips. RNA was quantified by spec-

trophotometry (ND-1000; NanoDrop Technologies).

Control for N. ceranae infection. Presence of N. ceranae RNA in each sample was

assessed by PCR [2] or qPCR [4,29]. Only samples from the "inoculation box" that were posi-

tive for N. ceranae RNA were used to create RNA sequencing libraries. To verify that the inoc-

ulation was successful, the 15 remaining bees after 14 days (P.I) were examined for N. ceranae
spores by microscopy and the number of spores present recorded.

Library preparation for RNA-seq

Eighteen libraries corresponding to 9 control and 9 infected samples at 5, 10 and 15 days P.I.

(3 samples each time-point) were sequenced. TruSeq Sample Prep Kits (Illumina Inc., San

Diego, CA) were used to create libraries for 1×100bp single-end sequencing on the Illumina

HiSeq 2000 instrument. The sequences obtained were submitted to the Sequence Read Archive

at NCBI (PRJNA378655).

RNA-seq data analysis and functional analysis of differentially

expressed genes between control and infected bees

RNA-seq data analysis was performed as reported by Badaoui et al [30]. Briefly, sequence visu-

alization and statistical analyses were performed with FASTQC (http://www.bioinformatics.

bbsrc.ac.uk/projects/fastqch). Reads were mapped to the latest version of the honeybee refer-

ence genome (Amel_4.5_scaffolds.fa) [22]) using TopHat v2.0.10 with default parameters [31].

Transcript assembly was performed using Cufflinks v2.2.0 [32]. Once the short read sequences

were assembled, the output files were merged using the Cuffmerge [31] function and processed

using Cuffcompare [32], along with a reference GTF annotation file downloaded from the bee-

base database (http://hymenopteragenome.org/beebase/). Differential expression analysis was

performed using the Cuffdiff function [32]. Three comparisons of gene expression were made

between the control and infected bees at days 5, 10 and 15 P.I. For all the analyses, a feature

was considered significant if the false discovery rate (FDR) was less than 0.05. The differen-

tially expressed genes at 5, 10 and 15 days P.I were mapped to pathways from the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) database [33]. The statistical analyses for bee survival

and hunger level were performed using the R software "stats" package.

Proboscis Extension Reflex assay (PER) to assess hunger levels by

sucrose uptake behavior

After day 14, eight bees from each box were captured individually with forceps and each bee

was placed individually in a glass vial and chilled on ice for 1 min. The bees were fixed to a

long plastic drinking straw with tape around the thorax. Testing began 1h17min after the last

bees were attached to the straws. The antennae were touched with a droplet of sucrose and if a

bee responded by fully extending the proboscis—a Proboscis Extension Response (PER)—was

recorded. Each bee was assayed for PER with a concentration series of 0.1%, 0.3%, 1%, 3%,

10% and 30% sucrose solution. Desensitization with water was done between each sucrose

concentration. The number of N. ceranae spores in each bee was determined under a micro-

scope after the PER test.

Gene expression from honeybees infected with Nosema ceranae
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Results

Honeybees infection with N. ceranae: Infection status, survival rates and

hunger analysis

Infection with N. ceranae was assessed by PCR and qPCR: only three out of five bees sampled

from the "inoculated box" at 5 day P.I. were positive for N. ceranae, while all 5 bees were posi-

tive at days10 and 15 P.I. N. ceranae was not detected in any bees from the "control box". After

day14 P.I., 15 bees were examined for the presence of Nosema spores under the microscope

and the number of spores recorded. All the inoculated bees were infected, with a mean of 5.0

x105spores per bee, and all the control bees were free from any spore (S1 Table).

Survival of infected bees at day 5 P.I. was significantly decreased (p<0.1): 83% compared to

100% for the control bees (S1 Fig). However, the survival rates between the infected and con-

trol bees, were not statistically significant at days 10 and 15 P.I. Bees infected with N. ceranae
had increased levels of hunger compared with controls, assessed by the Proboscis Extension

Response and feeding experiments (S2 Fig).An increase in the Proboscis Extension Response

was seen especially at intermediate and high sucrose concentrations; 10% of sucrose solution

(p-value<0.1) and 30% (p-value<0.1).

1. Differentially expressed genes, isoforms and TSSs, and differential

promoter usage in honeybees infected with N. ceranae

1.1. RNA-seq reads features and statistics. The mean of the reads produced from the

eighteen libraries was 13.8 M per library. The mapping rate was, on average, 70% except for

one library which had a low mapping rate of 29% and which was discarded from further

analyses (S2 Table).The number of expressed unique genes and isoforms in infected and non-

infected bees were 15694and 33182, respectively. The most highly expressed genes, with Frag-

ments Per Kilobase of exon per Million fragments mapped (FPKM) between 1000 and 10000,

represented a small fraction of the total genes (0.9%). Genes expressed at a low level, with

FPKM between 1 and 10, were considerably more abundant (30–32%). Genes with intermedi-

ate expression, FPKM values from 100 to 1000 were the most abundant (33–36%).

The differentially expressed genes, isoforms, TSS and differential promoter usage between

control and infected bees were respectively {372;226;274;8} at day 5 P.I., {158;85;116;8} at day

10 P.I. and {67;27;42;0} at day 15 P.I. (S3 Table).Among the differentially expressed genes,

53%, 50% and 30% were also differentially expressed at the isoform level, at days 5, 10 and 15

P.I., respectively(see Venn diagram, S3 Fig). The transcripts with altered forms at more than

one time point of infection (days 5, 10 and 15 P.I.) were 15, 7 and 12 for the genes, isoforms

and TSS, respectively (see Venn diagram in Fig 1).

1.2. Transcriptional, post-transcriptional regulation and differential promoter usage in

bees after infection with N. ceranae. Generally, transciptionally regulated isoforms haddif-

ferent TSSs whilst post-transcriptionally regulated isoforms had the same TSSs (S4 Fig, [24]).

The transcriptional start sites and isoforms of the top twenty most differentially expressed

genes (S3 Table) at each time point (days 5, 10 and 15 P.I.) were investigated to assess if they

were regulated at transcriptional or post-transcriptional levels, or both.

Three groups of genes were defined:

Group1:“Un-spliced and Transcriptionally regulated” genes that had one isoform and one

TSS.This group had 9, 6 and 10 genesat days 5, 10 and 15 P.I. respectively (S5, S6 and S7

Figs (group 1)). Most of the genes in this group have a role in the immune response (e.g.

GB40713, GB43007, and GB42217)
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Group 2: “Spliced and Transcriptionally regulated” genes that had more than one isoform but

only one TSS for each isoform. This group had 5, 8 and 3 genes at days 5, 10 and 15 P.I,

respectively (S5, S6 and S7 Figs (group 2)).Many of these genes are involved in carbohydrate

metabolism and ion transport (e.g. GB51580, GB45152, and GB46516)

Group 3: “Spliced and both Transcriptionally and Post-Transcriptionally regulated” genes

with more than one isoform and more than one TSS. This group, contained genes with

isoforms that are transcriptionally regulated and other isoforms which are post-transcrip-

tionally regulated and had 6, 6 and 7 genes at days 5, 10 and 15 P.I, respectively (S5, S6

and S7 Figs (group 3)).These genes are involved, among other functions, in cuticle biosyn-

thesis, trans-membrane transport activity and ATP binding (e.g. GB42218, GB45300 and

GB47723).

Differential use of promoters between the control and infected bees was investigated as

described by Mortazavi et al [24].This approach groups the primary transcripts of a gene based

on the promoter used, followed by testing isoform abundance between the control and the

infected bees. Eight genes showed different promoter use at day 5 P.I (GB46442,GB41734,

GB42277,GB44487,GB46749,GB42364,GB44323 and GB40485), 8 genes at day 10 P.I

(GB40787,GB48346,GB47239,GB43964,GB40688,GB42265,GB55747 and GB55915) and

none at day 15 P.I (S3 Table).

1.3. Gene expression characteristics at days 5, 10 and 15 P.I. with N. ceranae. Princi-

ple component analysis (PCA) of the 675 genes which were differentially expressed in at least

one pairwise comparison (control vs infection at day 5, control vs infection at day 10, control

vs infections at day 15) (Fig 2) showed a clear difference between samples collected at days 5,

10 and 15. The control and infected samples showed the greatest difference at day 5 P.I while

this difference was lower at day 10 P.I and no difference between controls and infected bees

was found at day 15 P.I. This is reflected in the number of genes that were found to be differ-

entially expressed between the infected bees and controls: 372, 158 and 93 at days 5, 10 and

15 P.I, respectively. The overlap between differentially expressed genes at different time

Fig 1. Venn diagram illustrating the significantly affected genes (A), isoforms (B) and TSS (C)

between infections at days 5, 10 and 15 P.I.

https://doi.org/10.1371/journal.pone.0173438.g001
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points was greater than expected by chance for 5 days P.I versus 10 days P.I (p = 1.77e-52,

hypergeometric test), 5 days P.I versus 15 days P.I (p = 6.55e-33) and10 days P.I versus 15

days P.I (p = 1.92e-33).

At day 5 PI there was a strong down-regulation of Royal jelly genes: Mrjp1, Mrjp2, Mrjp3,

Mrjp4 and Mrjp6 (S4 Table) and a strong up-regulation of eight serine proteases: SP22, SP40,

SP44, SP17, SP18, SP35, SP36, SPH50 as well as the down-regulation of three other serine prote-

ases: SP34, SPH19 (serine protease homolog 19) and SPH42 (serine protease homolog 42) (S3

and S4 Tables).

1.4. Pathways affected during honeybee infection by N. ceranae. The most enriched

KEGG pathway at all-time points (5, 10 and 15 days P.I) was ’metabolic pathways’ (S5A Table,

S8 Fig) which includes ’Energy metabolism’, ’carbohydrate metabolism’, ’amino acids metabo-

lism’ and ’lipid metabolism’. The number of genes differentially expressed between infected

and control bees in the metabolic pathways decreases considerably from day 5 P.I (29 genes)

to day 10 P.I (17 genes) and day 15 P.I (9 genes). The changes in the expression of 29 genes in

this pathway were followed through the time-course of the challenge (Fig 3). Except the chiti-

nase 5 (Cht5) gene expression of which increased from day 5 P.I to day 10 P.I and to day 15 P.

I, expression of all the other genes decreased from day 5 P.I to days 10/15 P.I. Some genes

reached their lowest level of expression at day 10 P.I (GB44841,GB45654,GB50218,GB51814,

GB42963,GB49240,GB55706,GB42434), while others had the lowest level at day 15 P.I

(GB52756,GB51751,GB52724,GB42425,GB52923,GB48905,GB44367,GB40022,GB55705)

(Fig 3).The number of differentially expressed genes in the lysosome pathway, which is within

the “metabolic pathways”, was also enriched at day 5 P.I (GB53306,GB43825,GB51751,

GB54097,GB55242,GB42616) and day 10 P.I (GB53306,GB43825,GB51751,GB53579)

although not at day 15 P.I. (S5A Table).

Fig 2. Principal component analysis of RNA-seq data. Gene expression changes were investigated at

days 5, 10 and 15 P.I. in honeybees infected (INF) with N. ceranae or no treatment (CR). The PCA was

performed using normalized RNA-Seq data of 675 genes differentially expressed in at least one pairwise

comparison: control vs infection at day 5 10 P.I or 15 P.I.Clear differences were seen between samples

collected at days 5, 10 and 15 suggesting that ageing of the bees has a larger effect on the pattern of gene

expression pattern than infection status.

https://doi.org/10.1371/journal.pone.0173438.g002
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The KEGG annotation database contains little information on the bee signaling pathways.

Therefore the differentially expressed genes were used to manually infer other pathways

potentially modified during infection by N. ceranae. This identified the ’Immunity pathway’,

’Trehalose transporter pathway’, ’Cuticular pathway’, ’Cytochrome pathway’, ’Serine protease

pathway’ and ’Neurogenesis pathway’ as being affected by the infection (S5B Table).

Discussion

In this work we report differentially expressed genes, isoforms, TSS and promoter usage asso-

ciated with infection of the bees with N. ceranae.

Regulation complexity of differentially expressed genes in bees infected

with N. ceranae

The most differentially expressed genes between uninfected and infected bees were classified

into three groups according to their transcriptional/post-transcriptional regulation. The first

two groups included genes involved in the innate immune response. These genes did not show

any evidence of different isoforms and/or post-transcriptional regulation. Examples of these

groups include: GB48966, a homeotic protein caudal, which operates post-embryonically in the

intestine where it regulates antimicrobial peptide levels to maintain the normal gut flora [34];

GB51833, Sodium dependent nutrient amino acid trasporter, which contributes to the synthesis

of catecholamines for sclerotization pathways involved incuticle colour, wound curing, and

immune responses [35].

Fig 3. Expression profiles of the genes involved in the ’metabolic pathways’. The X axis shows the time

points following infection (days 5, 10 and 15 P.I). On the Y axis, genes expression fold changes.

https://doi.org/10.1371/journal.pone.0173438.g003
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Post transcriptional regulation is responsible for expanding protein functional diversity and

differs dependent on environmental conditions and developmental stage to expand pheno-

typic plasticity on the molecular level [36,37]. However, the selection of the incorrect splices

sites may cause gene dysfunction [38]. The genes in these first two groups may be under strong

selection pressure to prevent the emergence of new isoforms or alternative transcriptional reg-

ulation to avoid loss of function.

N. ceranae is amitochondriate, and so has high dependency on host ATP. The energy

demands of the parasite increase the energy requirement for the bee, which is seen in the

increased hunger of infected bees revealed by the PER test. GB41033, which is involved in the

metabolism of the sugar, was highly expressed in infected bees, and is consistent with increased

sugar metabolism associated with the higher energy requirement [11].GB42217, acyl-CoA desa-
turase 1-like, has a role in oxidation-reduction process following infection [39].

The third group includes genes mainly regulate biochemical and developmental processes,

and includes receptors such as serpentine (GB45151) that regulate the expression of multiple

classes of developmental genes [39, 40], SLC6 (GB51834) that transport a whole suite of mole-

cules across cell membranes [41] and hedgehog (GB45300) which is required for normal regu-

lation of cell proliferation and differentiation during embryonic stages [40].

This third group genes includes immune function genes and shows abundant examples of

alternative splicing. There are many examples where the immune system has been shown to

use diverse mechanisms of gene regulation to increase the versatility of response, including

alternative splicing, different TSS and promoter usage [42,43], for example, in vertebrates alter-

native splicing of CD44, a protein involved in T cell homing, is crucial for T cell function [43].

The transcription factors p63, p73 and p53, implicated in cell response to stress and develop-

ment, and encodes multiple proteins as a result of post transcriptional regulation [42]. Diverse

post-transcriptional regulation mechanisms seen for genes involved in bee immune response,

cell signals and development may increase the immune repertoire to respond to infection.

Alternative promoter usage was found for 8 genes at days 5 and 10P.I in comparison with

uninfected controls, but none were seen at day 15 P.I. This suggests that alternative promoter

usage is important for bee-N. ceranae interaction as seen in previous studies where differential

promoter usage has been associated with the diversity of gene expression pattern to deal with

different pathogen challenges [44,45].That no alternative promoter usage was found at day 15

P.I and that a small number of differentially expressed genes is seen at this time point com-

pared with time points 5 and 10 P.I. may suggest that the host and parasite are becoming

adjusted to each other. It has been reported that genes with alternative promoters use are also

more likely to be differentially expressed [46]. Genes related to human cancer which have

altered expression have on average 2 promoters compared with an average of 1.5 promoters

for the other human genes [47].

The overrepresentation of the splice variants, 30%-53% of genes between 5 and 10 days PI

respectively of differentially expressed genes, seen following infection, suggests that extending

protein diversity is important for bees to deal with the N. ceranea infection. Therefore, start

site and post-transcriptional regulation is potentially important for tuning the response of

the bee to N. ceranea infection, possibly by controlling the strength and the duration of the

response [48]. This is in accordance with findings reported for Drosophila melanogaster [49]

and mammals [50] where splice variants play an important role in dealing with infection.

Interestingly, alternative TSSs have been associated with stable differences in behavior in hon-

eybees [51].

Genes involved in the “metabolic pathways” (S5 Table) have higher expression at day 5 P.I

than days 10 and 15 P.I. This suggests an increased energy demand placed on the bee by N. cer-
anae during early stages of the infection which is in agreement with the PER test responses.
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Pathways enriched in bees infected with N. ceranae

The global pathway ’metabolic pathways’ showed a general increase in expression at day 5 P.I.

Increased energy metabolism via carbohydrate catabolism is a key feature of bees infected with

N. ceranae. Increased energy need and hence hunger was seen in the present study from the

PER tests.Cht5, GMCOX3, LOC55124 and LOC408474were the most highly expressed genes

in this pathway at day 5 P.I with a log fold change greater than 1.5. Cht5 and GMCOX3 are

involved in chitin metabolism and immune response respectively, and have previously been

found to be modulated during honeybee infection with N. cerania [25]. While GMCOX3
expression decreased after day 5 P.I, expression of Cht5 continued to increase to reach log

fold changes of 4.28 and 4.52 at days 5 and 10 P.I, respectively. LOC55124 and LOC408474 are

involved in protein and lipid metabolism, respectively.

The lysosome pathway also plays an important role in bees infected with N. ceranae which

is shown by the genes GB53306, GB43825, GB51751, GB54097, GB55242, and GB42616in

this pathway having increased levels of expression in infected bees. Lysosome has been impli-

cated in antifungal and antiviral activity [52]. An increased level of lysosome activity maybe a

defense strategy used by the bee to digest the N. ceranae mycelia. Furthermore, the pathways:

’Immunity’, ’Trehalose transporter’, ’Cuticular’, ’Cytochrome’, ’Serine protease’ and ’Neuro-

genesis’ were modulated in infected bees compared with controls (S5B Table). These pathways

have also been found to be regulated by bees in response to N. ceranae, N. Microsporidia, E.coli
and Paenibacillus larva infections [25, 11, 53].

Infection with N. ceranae reduces the bees energy reserves

Food quantity and quality is a key factor regulating the development of female larvae, either

into a queen or a worker. Specifically, the Major Royal Jelly Proteins (MRJPs) are consumed to

some extent by all larvae, but mainly by the larvae destine to become the adult queen [35].The

Royal Jelly genes: Mrjp1, Mrjp2, Mrjp3, Mrjp4 and Mrjp6were down regulated at day 5 P.I. The

protein hexamerin (HEX) is accumulated by the bees to enhance their growth [54].Expression

of this gene was not changed at day 5 P.I but was down-regulated at days 10 and 15 P.I. Down-

regulation of HEX110,HEX70b and HEX70c has previously been reported in bees infected

with Paenibacillus larvae and chalkbrood fungus [55, 56]. Neuropeptide Y (NPY), has been

implicated in regulating food intake [57].The receptor for this neuropeptide was up-regulated

following N. ceranae infection. Insulin growth factor binding protein was also up-regulated

(S3 Table). Insulin signaling regulates nutritional balance [57]. Importantly, among the top

pathways differentially expressed (up-regulated) at day 5 P.I, were ’Energy metabolism’, ’lipid

metabolism’ and ’carbohydrate metabolism’. Therefore N. ceranae infection seems to affect

metabolism and nutritional status of the infected bees. The increased transcription of four

genes mapping to the trehalose transporter (LOC413576,LOC726505,LOC724874 and

LOC413575), which constitute the main major carbohydrate energy storage molecule in

insects, supports this observation.

Many studies have reported changes in nutrition [14,58] and increased feeding rate [59,60]

in parasitized insects. In particular, studies of bees infected with N. ceranae have reported a

higher sugar demand [11,14,60–64]. N. ceranae requires ATP to replicate within the honey

bee mid-gut tissue [11,65] but being amitochondriate, has limited metabolic capacity and is

unable to produce ATP.As a consequence it is completely dependent on host ATP [66,67].

N. ceranae therefore imposes an energetic demand on its host, which is consistent with the

changes expression of metabolism related genes the increased hunger responses and lower sur-

vival seen in the present study.
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N. ceranae infection alters amino acid metabolism and suppresses the

bee immune response

The amino acids metabolic pathway was modulated by N. ceranae infection. In a previous

study, worker bees infected with N. ceranae were found to have altered amino acids titers in

their haemolymph [68], which may affect the immune function [69–71]. Disturbance of

protein metabolism may be a strategy adopted by N. ceranae to suppress the bee’s immune

response [13] and promote its own survival. Bees infected with Varroa mite, show changes the

expression of genes related to protein metabolism, including the down regulation of the Vg

[72–74]. In the present study the expression of genes coding for the Vg, MRJP protein were

found to be down-regulated.

Following infection by N. ceranae, a large number of genes coding for serine proteases were

modulated (SP17, SP18, SP22, SP34, SP35, SP36, SP40, SP44, SPH19, SPH42,SPH50) at days 5,

10 and 15 P.I. The serine proteases are implicated in the immune response for Drosophila

where 94 out of 201 serine protease genes are involved in diverse immune protease cascades

[53].

Except SP36 and SPH42, all these genes showed alternative splicing and differential TSS

(S3 Table) which might increase their expression plasticity and function. Activation of these

molecules in the arthropod hemolymph is a central component of several immune responses,

including the activation of antimicrobial peptide synthesis, and modulation of hemocyte func-

tion [75, 76].

Therefore, in addition to placing additional energy demands on the host N. ceranae also

seems to affect the immune response of infected bees.

Honeybees have many immune pathways and defense mechanisms consisting of both cellu-

lar and humoral immune response [16] including antimicrobial peptide (AMPs) synthesis

[77]. Honeybee humoral immunity involves four main antimicrobial peptides: abaecin, api-

daecin, defensin and hymenoptaecin [20]. In the present study, apidaecin (Apid1, Apid73),

defencin (Def1) and hymenoptaecin (GB51223) were strongly down-regulated at day 5 P.I

compared with uninfected controls but not at days 10 and 15 P.I, except for the hymenoptae-

cin gene that was up-regulated at day 15 P.I. All these genes have at least two differentially

expressed isoforms and TSS [78]. Different sequences of apidaecin arising from post transla-

tional regulation have been reported [79, 17], and Klaudiny et al [78] have reported a novel

defensin isoform in honeybee. The finding reported here suggests that specific splice variation

and TSS may occur in response to pathogens.

The egg yolk protein vitellogenin, which has been implicated in regulating the number of

haemocytes [80] was significantly decreased following N. ceranae infection at day 5 P.I.

Immune suppression has been reported following infection with by N. ceranae [13] and the

Varroa mite [81].

Two genes coding for the major components of pathogen recognition (PGRPs) were modu-

lated in this study: peptidoglycan recognition protein S1 (PGRP-S1) was down-regulated and

peptidoglycan recognition protein S3 (PGRP-S3) was up-regulated. Honeybees have four

PGRPs, PGRP-S1, PGRP-S2, PGRP-S3, and PGRP-LC [79], either act as recognition proteins,

or can degrade bacterial cell wall through amidase activity [82, 83].Honeybees have much

lower diversity of PGRP than Drosophila and Anopheles which have 13 and seven genes,

respectively. This may limit the diversity of pathogens that bees can recognize compared with

drosophila [79]. The present study identified that all the honeybee PGRPs were subjected to

alternative splicing and TSS differentiation, which may be an evolutionary strategy to diversify

the protein repertoire and overcome the limited number of PGRPs.
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Cuticular, olfactory and neuronal modifications during infection of bees

with N. ceranae

Cuticle coatings are important to protect insects from pathogens and cuticle structure may

be altered during infection [84]. In this work, seven cuticle genes (LOC724464,CPR19,

LOC725547,Cpap3-a, CPR24, CPR5 and Cpap3-dC) were down-regulated at day 5 P.I com-

pared with controls and one additional gene (CPR2) was down-regulated at day 10 P.I. All

these genes showed alternative splicing and differential TSS. The down-regulation of these

cuticle genes maybe a strategy of the pathogen to improve its survival, by facilitating transfer

among members of infected hive. Expression of the cuticle genes is associated with hygienic

behavior [85, 86] which may also affect parasite transfer and survival.

Infection by N. ceranae may also change the behavior of bees by altering olfactory acuity.

Three genes coding for (Obp14,Obp18 and Obp3), were down-regulated at day 5 P.I. compared

with controls, two (obp3, obp17) at day 10 P.I and two (obp14, obp3) at day 15 P.I. The odor

binding proteins are not restricted to olfaction and they have other functions, including the

adaptation to different environments [87]. Changes in expression of odor binding proteins fol-

lowing N. ceranae may change the behavioral or physiological responses of bees.

Transcripts involved in neurogenesis such as Slit genes, LOC410555,LOC724772, leucine-

rich repeat neuronal protein 3 (LOC724187), neuropeptide and neurotransmitter transporter

8, were modulated at day 5 P.I but not at days 10 and 15 P.I. Slitis part of a large network of

genes involved in tissue regeneration and has been shown to be down regulated following

infection by Nosema [11]. Changes in expression of genes involved in neuronal development

have also been reported following infestation with the Varroa mite [88].Therefore bee para-

sites may affect behavior either to enhance their survival or to promote the spread within the

colony.

Conclusions

N. ceranae infection results in the regulation of gene function, both at the level of expression

and through changes in promoter usage and post translational variation. The effects of N. cera-
nae infection are seen on expression of genes involved in three key processes:1) energetic stress

which is reflected in elevated hunger levels, 2) the modulation of the metabolic pathways, par-

ticularly immune function and 3) changes in behavior mediated through altered olfactory or

hygiene related gene expression. These observed changes could be associated with the host

responding to clear the infection, and with the infecting N.Ceranea altering host gene expres-

sion to promote its survival.
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