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Major goal of structural biology involve formation of protein-ligand complexes; in which the protein molecules act 
energetically in the course of binding. Therefore, perceptive of protein-ligand interaction will be very important for 
structure based drug design. Lack of knowledge of 3D structures has hindered efforts to understand the binding 
specificities of ligands with protein. With increasing in modeling software and the growing number of known 
protein structures, homology modeling is rapidly becoming the method of choice for obtaining 3D coordinates 
of proteins. Homology modeling is a representation of the similarity of environmental residues at topologically 
corresponding positions in the reference proteins. In the absence of experimental data, model building on the basis 
of a known 3D structure of a homologous protein is at present the only reliable method to obtain the structural 
information. Knowledge of the 3D structures of proteins provides invaluable insights into the molecular basis of 
their functions. The recent advances in homology modeling, particularly in detecting and aligning sequences with 
template structures, distant homologues, modeling of loops and side chains as well as detecting errors in a model 
contributed to consistent prediction of protein structure, which was not possible even several years ago. This review 
focused on the features and a role of homology modeling in predicting protein structure and described current 
developments in this field with victorious applications at the different stages of the drug design and discovery.
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The prediction of the 3D structure of a protein 
from its amino acid sequence remains a basic 
scientific problem. This can often achieved using 
different types of approaches and the first and most 
accurate approach is “comparative” or “homology” 
modeling[1]. Homology modeling methods use 
the fact that evolutionary related proteins share 
a similar structure[2,3]. Determination of protein 
structure by means of experimental methods such 
as X-ray crystallography or NMR spectroscopy is 
time consuming and not successful with all proteins, 
especially with membrane proteins[4]. Currently, 
experimental structure determination will continue to 
increases the number of newly discovered sequences 
which grows much faster than the number of 
structures solved. Currently, 79,356 experimental 
protein structures are available in the Protein Data 
Bank (PDB)[5], http://www.rcsb.org/pdb (February 
2012). Homology modeling is only the method of 
choice to generate a reliable 3D model of a protein 

from its amino acid sequence as notably shown in 
several meetings of the bi-annual critical assessment 
of techniques for protein structure prediction 
(CASP) [6]. Homology modeling is used to search the 
conformation space by minimally disturbing those 
existing solutions, i.e., the experimentally solved 
structures. Homology modeling technique relaxes 
the tough requirement of force field and enormous 
conformation searching, because it deals with the 
calculation of a force field and replaces it in large 
part, with the counting of sequence identities[7]. 
The method is based on the fact that structural 
conformation of a protein is more highly conserved 
than its amino acid sequence, and that small or 
medium changes in sequence normally result in 
little variation in the 3D structure[8]. The process of 
homology modeling consists of the various steps 
depicted in fig. 1[9]. These steps may be repeated 
until suitable models were built. Homology modeling 
is helpful in molecular biology, such as hypotheses 
about the drug design[10], ligand binding site[11,12], 
substrate specificity[13,14], and function annotation[15]. It 
can also provide starting models for solving structures 
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from X-ray crystallography, NMR and electron 
microscopy[16,17]. The conformational constancy of 
homology models of channels may be assessed by 
subsequent molecular dynamics simulations[18,19]. 
Homology modeling provides structural insight 
of protein although quality depends on sequence 
similarity with the template structure[20]. Quality of 
model is directly linked with the identity between 
template and target sequences, as a rule that, models 
built over 50% sequence similarities are accurate 
enough for drug discovery applications, those between 
25 and 50% identities can be helpful in designing 

of mutagenesis experiments and those in between 
10 and 25% are tentative at superlative[21–23]. In the 
present communication, we reviewed recent advances 
in the homology modeling methods, and reported 
some applications of homology modeling to the drug 
discovery process.

STEPS IN HOMOLOGY MODELLING

Development of homology model is a multi steps 
process, that can be summarized in following way 
(1) identification of template; (2) single or multiple 
sequence alignments; (3) model building for the target 
based on the 3D structure of the template; (4) model 
refinement, analysis of alignments, gap deletions and 
additions, and (5) model validation[24].

Template (fold) recognition and alignment:
This is the initial step in which the program/server 
compare the sequence of unknown structure with 
known structure stored in PDB (fig. 2). The most 
popular server is BLAST (Basic Local Alignment 
Search Tool)[23] (http://www.ncbi.nlm.nih.gov/blast/). 
A  search with BLAST against the database for Fig. 1: Homology modeling process

Fig. 2: Multiple sequence alignment of β-Arrestin family member (query is experimentally derived sequence taken from UNIPROT (ID: 
P32121) aligned with sequences of PDB entry codes 3P2D and 1G4M. Identical residues, conserved residues are indicated in the form of 
secondary structure using Discovery Studio Visualiser 2.5)
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optimal local alignments with the query, give a list of 
known protein structures that matches the sequence. 
BLAST cannot find a template when the sequence 
identity is well below 30%; homology hits from 
BLAST are not reliable. The sequence alignment is 
more sensitive in detecting evolutionary relationships 
among proteins and genes[25–27]. The resulting profile–
sequence alignment properly align approximately 
42-47% of residues in the 0-40% sequence identity 
range, this number is approximately double than that 
of the pair wise sequence methods[28,29]. Alignment 
errors are the main cause of deviations in comparative 
modeling even when the correct template is chosen. In 
recent years, significant progress has been made in the 
development of sensitive alignment methods based on 
iterative searches, e.g. PSI-BLAST[30], Hidden Markov 
Models (HMM), e.g. SAM[31],HMMER[32] or profile-
profile alignment such as FFAS03[33], profilescan[34] 
and HHsearch. Multiple alignments are typically 
heuristic[35] well known as progressive alignment. 
Progressive alignments are simple to perform and 
allow large alignments of distantly related sequences 
to be constructed. This is implemented in the most 
widely used programs (ClustalW[36] and ClustalX[37]). 
Alignment of divergent protein sequences can be 
performed with high accuracy using ClustalW[36] 
program. ClustalW includes many features like 
assigning individual weights to each sequence in a 
partial alignment and amino acid substitution matrices 
are varied at different alignment stages according 
to the divergence of the sequences to be aligned. 
Specific importance is given to residue-specific gap 
penalties in hydrophilic regions which encourage 
new gaps in potential loop regions. HMMs[31,32] are 
a class of probabilistic models that are generally 
applicable to time series or linear sequence. Profile 
HMM are very effective in detecting conserved 
patterns in multiple sequences. The SATCHMO 
algorithm in the LOBSTER package simultaneously 
constructs a similarity tree and compares multiple 
sequence alignments of each internal node of the tree 
using HMMs. A new HMM, SAM-T98 ID known 
for finding remote homologs of protein sequences. 
The method begins with a single target sequence 
and iteratively builds a HMM from the sequence 
and homologs found using the HMM for database 
search. This is also used in construction of model 
libraries automatically from sequences. The LAMA[38] 
program aligns two multiple sequence alignments, 
first by transforming them into profiles and then 
comparing these two with each other by the Pearson 

correlation coefficient. The COMPASS[39] program 
was developed to locally align two multiple sequence 
with assessment of statistical significance, which 
compare two profiles by constructing a matrix of 
scores for matching every position in one profile to 
each position in the other profile, followed by either 
local or global dynamic programming to calculate 
the optimal alignment. T-Coffee uses progressive 
alignment as optimization technique[40]. T-Coffee 
can merge heterogeneous data in alignments. 3D 
Coffee incorporates a link to the FUGUE[41] threading 
package, which carries out sequence alignment using 
local structural information. Probabilistic-based 
program PROBCONS uses BAliBASE[42], which 
is a most accurate method available for multiple 
alignments. In simple words PROBCONS is like 
T-Coffee, but it uses probabilities instead of the 
heuristic algorithms. HOMSTRAD is exclusively 
based on sequences with known 3D structures and 
PDB files. Katoh et al.[43] extended the HOMSTRAD 
by incorporating a large number of close homologues, 
as found by the BLAST search, which tend to 
increase the accuracy of the alignment[44]. Sadreyev 
and Grishin[39] reported that the accuracy of profile 
alignments can be increased by including confident 
homologues with the help of COMPASS program. 
Further knowledge on different programs and server 
for sequence alignment can be gained by the surfing 
the URL’s provided in the Table 1.

Model building:
After the target–template alignment, next step in the 
homology modeling is the model building. A variety 
of methods can be used to build a protein model 
for the target. Generally rigid-body assembly[45–47], 
segment matching[48], spatial restraint[49], and artificial 
evolution[50] are used for model building. Rigid-
body assembly model building relies on the natural 
dissection of the protein structure into conserved core 
regions, variable loops that connect them and side 
chains that decorate the backbone. Model accuracy 
is based on the template selection and alignment 
accuracy. Accordingly, significant modeling method 
allows a degree of flexibility and automation, making 
it easier and faster to obtain good models. Segment 
matching based on the construction of model by 
using a subset of atomic positions from template 
structures as guiding positions, and by identifying 
and assembling short. All-atom segments that match 
the guiding positions can be obtained either by 
scanning all the known protein structures. In addition 
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to that it includes those protein structures that are 
not related to the sequence being modeled[51], or 
by a conformational search restrained by an energy 
function[52,53]. Modeling by satisfaction of spatial 
restraints based on the generation of many constraints 
or restraints on the structure of target sequence, using 
its alignment to related protein structures as a guide. 
Generation of restraints is based upon the assumption 
the corresponding distances between aligned residues 
in the template and the target structures are similar.

Model refinement:
Model refinement is a very important task that 
requires efficient sampling for conformational 
space and a means to accurately identify near-
native structures[54]. Homology model building 
process evolves through a series of amino acid 
residue substitutions, insertions and deletions. Model 
refinement is based upon tuning alignment, modeling 
loops and side chains. The model refinement process 
will usually begin with an energy minimization 
step using one of the molecular mechanics force 
fields[55,56] and for further refinement, techniques such 
as molecular dynamics, Monte Carlo and genetic 
algorithm-based sampling can be applied[57,58]. Monte 
Carlo sampling focused on those regions which are 
likely to contain errors, while allowing the whole 
structure to relax in a physically realistic all-atom 
force field, can significantly improve the accuracy of 

models in terms of both the backbone conformations 
and the placement of core side chains. The accuracy 
of alignment by modeling strongly depends on the 
degree of sequence similarity. Misalignment of the 
models some time results into the errors which may 
be hard to remove at the later stages of refinement[59].

Loop modeling:
Homologous proteins have gaps or insertions in 
sequences, referred to as loops whose structures are not 
conserved during evolution. Loops are considered as 
the most variable regions of a protein where insertion 
and deletion often occur. Loops often determine the 
functional specificity of a protein structure. Loops 
contribute to active and binding sites. The accuracy 
of loop modeling is a major factor in determining the 
usefulness of homology models for studying protein-
ligand interactions[60]. Loop structures are more difficult 
to predict than the structure of the geometrically highly 
regular strands and helices because loops exhibit 
greater structural variability than strands and helices. 
Length of a loop region is generally much shorter than 
that of the whole protein chain. Modeling a loop region 
possess challenges, which are not likely to be present 
in the global protein structure. Modeled loop structure 
has to be geometrically consistent with the rest of the 
protein structure[61].

Loop prediction methods:
Loop prediction methods can be evaluated 
in determining their utilities for: (1) backbone 
construction; (2) what range of lengths are possible; 
(3) how widely is the conformational space 
searched; (4) how side chains are added; (5) how 
the conformations scored (i.e., the potential energy 
function) and (6) how much has the method been 
tested. Most of the loop construction methods were 
tested only on native structures from which the loop 
to be built[62,63]. But in reality homology modeling is 
more complicated process requiring several choices 
to be made in building the complete structure. The 
available programs for loop structure prediction along 
with their web addresses are given in Table 2.

Database methods:
Database methods of loop structure prediction 
measure the orientation and separation of the 
backbone segments, flanking the region to be 
modeled, and then search the PDB for segments of 
the same length that span a region of similar size and 
orientation. In current years, as the size of the PDB 

TABLE 1: SEQUENCE ALIGNMENT PROGRAMS AND 
THEIR WEB SERVER SITES
Program Internet address
Expresso http://www.tcoffee.org/
PROMALS3D http://prodata.swmed.edu/promals3d/
3D-Coffee http://igs-server.cnrs-mrs.fr/Tcoffee/tcoffee_cgi/

index.cgi 
MUSCLE http://www.drive5.com/muscle/
PROBCONS http://probcons.stanford.edu/
PRALINE http://ibivu.cs.vu.nl/programs/pralinewww/
VAST, Cn3D http://www.ncbi.nlm.nih.gov/Structure
ClustalW http://www.ebi.ac.uk/clustalw/
SAM http://www.cse.ucsc.edu/research/compbio/sam.

html
GENEWISE http://www.sanger.ac.uk/Software/Wise2/
MAFFT http://align.bmr.kyushu-u.ac.jp/mafft/online/

server/
T-Coffee http://www.tcoffee.org/
PROMALS http://prodata.swmed.edu/promals/
SPEM http://sparks.informatics.iupui.edu/Softwares 

-Services_files/spem.htm
PROBE ftp://ncbi.nlm.nih.gov/pub/neuwald/probe1.0/
BLOCKS http://www.blocks.fhcrc.org/
PSI-BLAST http://www.ncbi.nlm.nih.gov/BLAST/newblast.html
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has increased, database methods have continued to 
attract attention. Database methods are suitable for the 
loops of up to 8 residues[64].

Construction methods:
The main alternative to database methods is construction 
of loops by random or exhaustive search mechanisms. 
Moult and James[65] performed a systematic search to 
predict loop conformations up to 6 residues long. They 
found various useful concepts in loop modeling by 
construction: (1)  the use of a limited number of Φ, ψ 
pairs for construction; (2) construction from each end of 
the loop simultaneously; (3) discarding conformations 
of partial loops that span the remaining distance with 
those residues left to be modeled; (4) using side-chain 
clashes to reject partial loop conformations and (5) the 
use of electrostatic and hydrophobic free energy terms in 
evaluating predicted loops[66].

Scaling-relaxation method:
In scaling-relaxation method a full segment is 
sampled and its end-to-end distance is measured. If 
this distance is longer than the segment needs, then 
the segment is scaled in size so that it fits the end-to-
end distance of the protein anchors, which result in 
very short bond distances, and unphysical connections 
to the anchors. From there, energy minimization is 
performed on the loop, slowly relaxing the scaling 
constant, until the loop is scaled back to full size[67,68].

Molecular mechanics/molecular dynamics:
Other loop prediction methods build chains by 
sampling Ramachandran conformations randomly, 
keeping partial segments as long as they can complete 
the loop with the remaining residues to be built[69]. 
These methods are capable of building longer loops 
since they spend less time in unlikely conformations 
searched in the grid method. These methods are based 
on Monte Carlo or molecular dynamics simulations 
with simulated annealing to generate many 
conformations, which can then be energy minimized 
and tested with some energy function to choose the 
lowest energy conformation for prediction[68,70].

Side-chain modeling:
Side-chain modeling is an important step in predicting 
protein structure by homology. Side-chain prediction 
usually involve placing side chains onto fixed 
backbone coordinates either obtained from a parent 
structure or generated from ab initio modeling 
simulations or a combination of these two. Protein 

side chains tend to exist in a limited number of low 
energy conformation called rotamers. In side-chain 
prediction methods (Table 3), rotamers are selected 
based on the preferred protein sequence and the given 
backbone coordinates, by using a defined energy 
function and search strategy. The side-chain quality 
can be analyzed by root mean square deviation 
(RMSD) for all atoms or by detecting the fraction of 
correct rotamers found[71–73].

Model validation:
Each step in homology modeling is reliant on 
the former processes. Therefore, errors may be 
accidentally introduced and propagated, thus the model 
validation and assessment of protein is necessary 
for interpreting them (Table 4). The protein model 
can be evaluated as a whole as well as in individual 
regions[74]. Initially, fold of a model can be assessed 
by a high sequence similarity with the template. 
One basic necessity for a constructed model is to 

TABLE 2: LOOP MODELING PROGRAM
Loop prediction 
methods

Internet address

BRAGI http://bragi.gbf.de/index.html
BTPRED http://www.biochem.ucl.ac.uk/bsm/btpred/
RAMP http://www.ram.org/computing/ramp/

ramp.html
CONGEN http://www.congenomics.com/congen/doc/

index.html
Drawbridge http://www.cmpharm.ucsf.edu/cohen/
Swiss-PDB Viewer http://spdbv.vital-it.ch/

TABLE 3: SIDE CHAIN MODELING PROGRAM
Side-chain prediction 
methods

Internet address

RAMP http://www.ram.org/computing/ramp/
ramp.html

SCWRL http://www.fccc.edu/research/labs/
dunbrack/scwrl

Segmod/CARA http://www.bioinformatics.ucla.
edu/~genemine

SMD http://condor.urbb.jussieu.fr/Smd.html

TABLE 4: MODEL ASSESSMENT AND VALIDATION 
PROGRAM
Program Internet address
PROCHECK http://www.biochem.ucl.ac.uk/~roman/procheck/

procheck.html 
WHATCHECK http://www.sander.embl-heidelberg.de/whatcheck/
ProsaII http://www.came.sbg.ac
VERIFY3D http://www.doe-mbi.ucla.edu/Services/Verify_3D/
ERRAT http://www.doe-mbi.ucla.edu/Services/Errat.html 
ANOLEA http://www.fundp.ac.be/pub/ANOLEA.html
Probe http://kinemage.biochem.duke.edu/software/

probe.php 
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have good stereochemistry[75]. The most important 
factor in the assessment of constructed models is 
scoring function. The programs evaluate the location 
of each residue in a model with respect to the 
expected environment as found in the high-resolution 
X-ray structure[76]. Techniques used to determine 
misthreading in X-ray structures can be used to 
determine alignment errors in homology models. 
Errors in the model are very much common and 
most attention is needed towards refinement and 
validation. Errors in model are usually estimated 
by (1) superposition of model onto native structure 
with the structure alignment program Structal[77] and 
calculation of RMSD of Cα atoms[78]; (2) generation 
of Z-score, a measure of statistical significance 
between matched structures for the model, using the 
structure alignment program CE, scores four indicate 
good structural similarity and (3) development of 
a scoring function that is capable of discriminating 
good and bad models. Statistical effective energy 
functions[79] are based on the observed properties 
of amino acids in known structures. A variety of 
statistical criteria derived for various properties such 
as distributions of polar and apolar residues inside 
or outside of protein, thus detecting the misfolded 
models[80]. Solvation potentials can detect local errors 
and complete misfolds[81]; packing rules have been 
implemented for structure evaluation[82]. A model 
is said to be valid only when a few distortions in 
atomic contacts are present. The Ramachandran plot 
is probably the most powerful determinant of the 
quality of protein[83,84], when Ramachandran plot 
quality of the model is comparatively worse than that 
of the template, then it is likely that error took place 
in backbone modeling. WHAT_CHECK determines 
Asn, His or Gln side chains need to be rotated by 
180° about their C2, C2 or C3 angle, respectively. 
Side chain torsion angles are essential for hydrogen 
bonding, sometimes altered during the modeling 
process. Conformational free energy distinguishes 
the native structure of a protein from an incorrectly 
folded decoy. A distinct advantage of such physically 
derived functions is that they are based on well-
defined physical interactions, thus making it easier 
to learn and to gain insight from their performance. 
In addition, ab-initio methods showed success in 
recent CASP. One of the major drawbacks of physical 
chemical description of the folding free energy of 
a protein is that the treatment of solvation required 
usually comes at a significant computational expense. 
Fast solvation models such as the generalized born 

and a variety of simplified scoring schemes[85] may 
prove to be extremely useful in this regard. A number 
of freely available programs can be used to verify 
homology models, among them WHAT_CHECK 
(Table 4) solves typically crystallographic problems[86]. 
The validation programs are generally of two types: 
(1) first category (e.g. PROCHECK and WHATIF) 
checks for proper protein stereochemistry, such 
as symmetry checks, geometry checks (chirality, 
bond lengths, bond angles, torsion angles models[80]. 
Solvation) and structural packing quality and (2) 
the second category (e.g.VERIFY3D and PROSAII) 
checks the fitness of sequence to structure and assigns 
a score for each residue fitting its current environment. 
GRASP2 is new model assessment software developed 
by Honig[87]. For example, gaps and insertions can 
be mapped to the structures to verify that they make 
sense geometrically. It is suggested that, manual 
inspection should be combined with existing programs 
to further identify problems in the model.

SOFTWARE FOR HOMOLOGY 
MODELING

Several programs and servers are available for 
homology modeling that are planned to build a 
complete model from query sequences. MODELLER 
developed by Andrej Sali and colleagues[88,89], 
SwissModel[90,91], RAMP, PrISM[92], COMPOSER[64,93] 
CONGEN+2[94,95] and DISGEO/Co-nsensus[96,97] 
are some of the examples. Homology modeling 
techniques are described in a number of available 
programs, both in the commercial and public area 
(Table 5). A comparative study of available modeling 
programs and servers (Table 6) for high-accuracy 
homology modeling has been captured in some 
excellent publications[98,99]. The authors tried to 
evaluate several characteristic of the homology 
modeling programs, including (1) the reliability; (2) 
the speed by which the programs build models and 
(3) the similarity of the structure.

MODELLER:
MODELLER uses the query structures to construct 
constraints on atomic distances, dihedral angles, and 
so forth, these are then combined with statistical 
distributions derived from many homologous structure 
pairs in the PDB. MODELLER combines the 
sequences and structures into a complete alignment 
which can then be examined using molecular graphics 
programs and edited manually[88,89].
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TABLE 5: SERVER AND PROGRAMS USEFUL IN 
HOMOLOGY MODELING
Programs Name WWW address Availability
SWISS-MODEL* http://swissmodel.expasy.

org/
Academically free

MODELLER** http://salilab.org/
modeller/

Academically free

ExPASy * http://www.expasy.ch/
tools/

Academically free

BLAST* http://blast.ncbi.nlm.nih.
gov/Blast.cgi

Academically free

SCHRODINGER** http://www.schrodinger.
com

Commercial

WHATIF* http://swift.cmbi.kun.nl/
whatif/

Academically free

SYBYL** http://www.tripos.com Commercial
SNPWEB* http://modbase.compbio.

ucsf.edu/LS-SNP/
Academically free

ICM http://www.molsoft.com/
homology.html

Academically free

SEA * http://bioinformatics.
burnham.org/sea/

Academically free

SCWRL* http://www1.jcsg.org/
prod/scripts/scwrl/serve.cgi

Academically free

EVA* http://rostlab.org/cms/
index.php?id=94

Academically free

VERIFY3D* http://nihserver.mbi.ucla.
edu/Verify_3D/

Academically free

MOE** http://www.chemcomp.
com/software.htm

Commercial

GOLD** http://www.ccdc.cam.
ac.uk/products/life_
sciences/gold/

Commercial

PROCHECK* http://www.ebi.ac.uk/
thornton-srv/software/
PROCHECK/

Academically free

*Server, **Program

TABLE 6: COMPARISON OF SOFTWARE FOR HOMOLOGY MODELING
Modeling program Potential energy Search method Description
MODELLER CHARMM Spatial restraints Modeling by satisfying spatial restraints
SwissModel GROMOS Rigid-body assembly Web server using rigid-body assembly with loop modeling
COMPOSER Rigid-body assembly Use of multiple template structures for building homology model
3D-JIGSAW Mean-field minimization 

methods
Rigid-body assembly Web server using rigid-body assembly with loop modeling

PrISM Rigid-body assembly Most appropriate template is used for each segment of the target 
to be built

CONGEN CHARMM Rigid-body assembly Distance constraints derived from known structure and alignment.

SwissModel:
SwissModel is accessible via a web server that 
accept the sequence to be modeled, and then delivers 
the model by an electronic mail[100]. In contrast to 
Modeller, SwissModel follows the standard protocol 
of homologue identification, sequence alignment, 
determining the core backbone and modeling loops 
and side chains. SwissModel will search a sequence 
database of proteins in the PDB with BLAST, and 
will attempt to build a model for any PDB hits[90,91].

PrISM:
PrISM performs homology modeling using alignment 
to builds a composite template by selecting each 
secondary structure from the most appropriate 
template. Ab initio methods are used for loop 
modeling and side-chain dihedrals are taken either 
from the template or predicted structure based on main 
chain torsion angles and a neural network algorithm[92].

COMPOSER:
COMPOSER uses multiple template structures for 
building homology models. If a target sequence 
is related to more than one template (of different 
sequence) then all templates are used to provide an 
average framework for building the structure[64,93].

CONCEN:
CONCEN develops distance restraints from the 
template structure and the sequence alignment of the 
target and template for atoms. These atoms include 
all backbone atoms and side-chain atoms of the same 
chemical type and hybridization state. No homologous 
atoms are defined in the loop regions[94,95].

Critical assessment of techniques for protein 
structure prediction (CASP):
CASP experiments are biannual and their main aim is 
to set benchmarking standards to the protein structure 
prediction methods followed by various online servers 
and software. They monitor the state of the art in 
modeling protein structure from the sequence. The 
main objective behind these experiments is to ensure 
overall quality of the models, accuracy of prediction 
and evaluating the parameters provided by the various 
tools. The independent assessors evaluate predictions 
using a battery of numerical criteria[101]. There are 
several conclusions drawn from the CASP such as, 
the comparative modeling remained most accurate 
technique for protein structure modeling when compared 
with others. Although majority of predictions were 
again closer to the template than to the real structure, 
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there has been improvement in some cases. However, 
accurate modeling by using a single template is not 
possible and model refinement has always been a 
challenge till date. Drastic changes are being done to 
the algorithm to meet the standards by various tools. 
Eighteen successful refinements of model coordinates 
to a value closer to the experimental structure were 
observed in CASP 7. Model refinement has been 
identified as an area in which further developments are 
required to be done[102–105]. Readily available models for 
a given sequence, such as those generated by automated 
servers often form the basis for the input to model 
refinement methods. Previous attempts have included 
molecular dynamics[106], Monte Carlo[107] and knowledge-
based techniques[108]. However automated prediction 
servers have found to improve their algorithms and 
models predicted were closer to the experimentally 
determined. The function prediction category (FN) was 
introduced in the 6th CASP (Table 7), where predictions 
for gene ontology molecular function terms, enzyme 
commission numbers and ligand-binding site residues 
were evaluated. These services, EVA[109], LiveBench[110] 
and CASP are very useful for the protein structure 
prediction community, giving clear observations of 
the development and the need for further progression 
within the field. Results of several CASP experiments 
and evaluations are made publicly available through 
the prediction centre website (http://predictioncenter.
org). The latest advances in structure prediction and 
assessment of model quality are to be evaluated by 
CASP 10th in the year 2012.

APPLICATIONS OF HOMOLOGY 
MODELING

Homology modeling is widely used in structure based 
drug design process. The importance of homology 
modeling is increasing as the number of available 

crystal structures increases. There are several other 
common applications of homology models: (1) studying 
the effect of mutations[111]; (2) identifying active and 
binding sites on protein (useful for ligand design) [112]; 
(3) searching for ligands of a given binding site 
(database mining)[113]; (4) designing novel ligands of a 
given binding site; (5) modeling substrate specificity[114]; 
(6) predicting antigenic epitopes[115]; (7) protein–protein 
docking simulations[116]; (8) molecular replacement in 
X-ray structure refinement[117]; (9) rationalizing known 
experimental observations[118] and (10) planning new 
computational experiments with the provided models. 
Typical applications of a homology model in drug 
discovery require a very high accuracy of the local side 
chain positions in the binding site. A very large number 
of homology models have been built over the years. 
Targets have included antibodies[119] and many proteins 
involved in human biology and medicine[120,121].

Case study of G-protein coupled receptors 
(GPCRs):
GPCRs constitute the largest family of signalling 
receptors in the cell and therefore being target 
for nearly half of all drug discovery programs. In 
the year 2000 only a single crystal structure was 
available, bovine rhodopsin (bRho) (PDB code 1f88, 
1l9h), before which bacterio-rhodopsin was used 
for modeling. Recently, the appearance of crystal 
structures of four new GPCRs (Opsin, 3cap; β2 
adrenergic (β2-AR), 2rh1; turkey b1 adrenergic (β1-
AR), 2vt4; human A2A adenosine receptor, 3eml) 
brings a broader template diversity for in  silico 
modeling. The newly crystallized β2-AR has been 
already investigated as an alternative template to 
model other Class-A GPCRs for drug discovery 
applications[122]. Analyzing the bovine rhodopsin 
structure with the human β2-adrenergic receptor 
(2rh1) gives basis for understanding some facts and 
drawbacks of the modeling techniques used earlier for 
GPCR’s[123]. Arrangement of the seven trans-membrane 
helix segments is generally correctly represented, and 
significant differences was observed in the relative 
orientation and shifts of the helices with regard to the 
centre of the receptor. Most deviations are observed 
for helices III, V and the extracellular loop ECL2, 
which connects helices IV and V, while ECL2 is 
forming a β-sheet structure in rhodopsin. β2-adrenergic 
receptor contains an unexpected additional α-helical 
segment and a second disulfide bridge that might 
stabilize the more solvent exposed conformation. 
Consequently, specific interactions between the ligand 

TABLE 7: CASPS RESULTS IN THE FUNCTION 
PREDICTION CATEGORY (FN)
Rank CASP ID Name
1 FN096 ZHANG
2 FN339 I-TASSER_FUNCTION
3 FN315 FIRESTAR
4 FN242 SEOK
5 FN035 CNIO-FIRESTAR
6 FN110 STERNBERG
7 FN104 JONES-UCL
8 FN094 MCGUFFIN
9 FN113 FAMSSEC
10 FN114 LEE 
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molecule and side chains forming the binding pocket 
are only partially reproduced by a comparative model 
based on rhodopsin. A novel ligand-steered homology 
modeling method was presented recently[124], in which 
the information about known ligands is explicitly 
used to shape and optimize the binding site through a 
docking-based stochastic global energy minimization 
procedure[125–128]. This method is useful to reduce the 
uncertainty in modeling the binding site, as both the 
ligand and receptor are held flexible during modeling. 
A combination of homology modeling and molecular 
dynamics studies on known inhibitors crystallized 
with other homologous proteins was used to shape 
and optimize the binding site of the ribosomal 
S6 kinase 2 (RSK2), target for human breast and 
prostate cancer. Subsequent docking reported two 
low micromolar inhibitors[129]. Homology models have 
proved to be an important source to rationalize SAR 
data and predict binding modes of compounds like 
cannabinoid receptor-2[130,131], human adenosine A2A 
receptor[132] and alpha-1-adrenoreceptors[133].

Homology model-based ligand design:
The Applications of homology modelling in ligand 
designing is given in Table 8. Watts et al.[134] generated 
two homology models of the gastric H+/K+-ATPase 
in the E1 and E2 conformations of its catalytic cycle 
based on templates provided by its related P-type 
ATPase (Ca2+-ATPase). Generated models were 
based on the CLUSTALW alignment, G-factor 
ranks values above −0.5 as positive candidates for 
homology models. In this study, the values were 
found to be exceeding −0.5 and ranged from −0.34 
to −0.05. Correlation between the results of ligand 
docking and existing mutagenesis information for 
the protein showed that the models are realistic and 
could reveal an insight into the binding mechanism 
for a class of site-specific reversible inhibitors of 
the gastric H+/K+-ATPase. A  3D model of the AT1 
receptor was constructed[135] using X-ray structure 
of bovine rhodopsin as template. The site-directed 
mutagenesis data was also taken into account. Docking 
based alignment was used for the development of a 
3D-QSAR model for several non-peptide antagonists. 
The results of this study confirmed the binding 
hypothesis and reliability of the model. Cavasotto et 
al.[136] developed a ligand-steered homology modeling 
approach followed by docking-based virtual screening 
to model melanin-concentrating hormone receptor 
1 (MCH-R1). MCH-R1 is a GPCR and a target 
for obesity. Ligand-steered homology modeling 

method was applied to shape and optimize the 
binding site, which reduced the uncertainty in its 
structural characterization by homology modeling. 
The authors reported that the absence of solid 
experimental evidence has led them to use small-
scale virtual screening for model validation. They 
evaluated the accuracy of the models by estimating 
the ability to discriminate binders and nonbinders in 
a virtual screening of known MCH-R1 antagonists 
seeded within a GPCR class A ligand library. Wiest  
et al.[137] constructed 3D models of class I histone 
deacetylases, HDAC1, HDAC2, HDAC3, and HDAC8 
for understanding of differences between the isoforms 
of class-I HDAC. A series of HDAC inhibitors were 
docked to understand the similarities and differences 
between the binding modes. The results of the study 
helped in design of novel HDAC inhibitors. 3D 
structure of Fyn kinase was modeled[138] using the 
Sybyl-Composer. Rosmarinic acid was evaluated as 
a new Fyn kinase inhibitor using immunochemical 
and in silico methods. In the process to identify 
possible active site of homology model for docking 
of the ligands, PDB data was searched for solved 
crystal structures of tyrosine kinases in complex 
with ligands. The crystal structure of Lck complexed 
with staurosporine (1QPJ) was spatially aligned with 
model of the Fyn. Active sites of both structures were 
carefully analyzed, and the most important differences 
in the residue positions were identified. The study 
reported that the rosmarinic acid binds to the second 
“non-ATP” binding site of the Fyn tyrosine kinase. 

TABLE 8: APPLICATIONS OF HOMOLOGY MODELING 
RELEVANT TO LIGAND DESIGN
Protein structure Program/Server Reference
Gastric H+/K+-ATPase MODELLER, PROCHECK, 

PROFIT, AUTODOCK3.0, 
CLUSTALW, ProsaII3.0

[134]

AT1 receptor MODELLER, AUTODOCK, 
PROCHECK, MACROMODEL

[135]

Melanin-concentrating 
hormone receptor 1 
(MCH-R1)

MODELLER [136]

Histone deacetylases 
(HDACs)

MODELER 7, WHAT IF, 
AutoDock 3.0, BLAST

[137]

Fyn tyrosine kinase SYBYL, BLASTP, GOLD, 
FlexX

[138]

Acetyl CoA 
carboxylase

SWISS-MODEL, CLUSTALW, 
PROCHECK, Sybyl 7.0

[139]

Human histamine H4 
receptor (H4R)

MOE [140]

Human dopamine (D2L 
and D3) receptors 

MODELLER 9.2, SYBYL7.2, 
PROCHECK

[141]

Dopamine D2 receptor Clustal X 2.09, BLAST, 
MODELER, SYBYL

[142]
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Yang et al.[139] constructed homology models of the 
carboxyl-transferase domain of acetyl-coenzyme 
A carboxylase from sensitive and resistant foxtail 
and used these models as templates to study the 
molecular mechanism and stereochemistry-activity 
relationships of aryloxyphenoxypropionates (APPs). 
Further docking analysis using the Insight II program 
indicated that the binding model of highly active 
compounds was similar to that in the crystal structure 
of enzyme-ligand complexes. A  3D protein model 
of the human histamine H4R has been constructed 
by Leurs et al.[140] using rhodopsin as template. The 
derived computational model was able to explain the 
experimental data obtained for several mutant receptors 
at the fundamental atomic level. All simulations 
were performed using Amber99 force field in MOE 
2006.08. Reichert et al.[141] reported homology models 
for both human D2L and D3 receptors in complex with 
haloperidol using MODELLER 9.2. Further structure 
and ligand-based approach was explored for a class 
of D2-like dopamine receptor ligands. 3D-QSAR 
analyses were performed to explore the intermolecular 
interactions of a large library of ligands with dopamine 
D2/ D3 receptors. Chen et al.[142] employed molecular 
dynamics simulation techniques to identify the 
predicted D2 receptor structure. Homology models 
of the protein were developed on the basis of crystal 
structures of four available receptor crystals. Clustal 
X 2.09 program was used for sequence alignment and 
MODELLER program was used to model D2 receptor. 
Docking studies revealed the possible binding mode 
and five other residues (Asp72, Val73, Cys76, Leu183 
and Phe187) which were responsible for the selectivity 
of the tetralindiol derivatives. The result of this study 
revealed that constructed novel models can be used to 
design new protease antagonists.

Structure-based homology modeling:
The structure based homology modelling studied 
are given in Table 9. Nowak et al.[143] constructed 
rhodopsin-based homology model of 5-HT1A serotonin 
receptor. The crystal structure of bovine rhodopsin 
was used as a template structure. Modeller was used 
to produce 400 models and a cyclohexylarylpiperazine 
derivative was docked to all the 400 receptor 
models using FlexX. Ligand binding mode in the 
5-HT1A receptor was analyzed based on top-scored 
ligand-receptor complexes. The main objectives 
of this study was to validate the model with a 
decreased conformational flexibility, which encoded 
the information on a shape of binding site and the 
spatial arrangement of specific interaction points 
within the binding pocket. The anaplastic lymphoma 
kinase (ALK) is a receptor tyrosine kinase normally 
expressed in neural tissues during embryogenesis is 
a valid target for anticancer therapy. In the absence 
of a resolved crystal structure of ALK, Passerini and 
colleagues[144] generated homology models of the ALK 
kinase domain in different conformational states. The 
authors observed that mutation of the leucine residue 
in ALK to a smaller threonine residue, which was 
found sufficient to allow binding of the inhibitors 
inside the ATP pocket and consequently, inhibition 
of mutated ALK. Evers et al.[145] modeled alpha1A 
receptor based on the X-ray structure of bovine 
rhodopsin (template). The authors applied a modified 
version of the MOBILE approach (modelling binding 
sites including ligand information explicitly), which 
modeled protein by homology including information 
about bound ligands as restraints, thus resulting in 
more relevant geometries of protein binding sites. 
Virtual screening study identified putative alpha1A 
receptor antagonists. The authors mentioned that 

TABLE 9: APPLICATIONS OF STRUCTURE-BASED HOMOLOGY MODELING
Protein Program/Server Reference
Serotonin 5-HT1A Receptor MODELLER 7v7, SYBYL 7.0, FlexX [143]

Anaplastic lymphoma kinase (ALK) MODELLER 6v2, FlexX [144]

Alpha1A adrenergic receptor MOE, MOBILE, GOLD2.0, Sybyl 6.92 [145]

Human CCR5 chemokine receptor MODELLEER 6.2, NMRCLUST, GridHex38
[146]

Carbonic Anhydrase IX MODELLER 9v1, PROCHECK, GOLD [147]

Leishmanial Farnesyl Pyrophosphate Synthases MODELLER 7.0, SWISS-PROT, BLAST, Sybyl 6.9, InsightII [148]

hASIC1a ion channel MODELLER 9v4, DOT 2.0, SHAKE [149]

Aminergic GPCRs Dopamine (D2, D3, and D4), serotonin (5-HT1B, 5-HT2A,5-
HT2B, and 5-HT2C), histamine (H1), and muscarinic (M1) receptors

MODELLER, Sybyl, Prime, ICM [150]

Cytochrome P450 sterol 14α-demethylase AMBER 8.0, CPHmodels2.0, FlexX/GOLD, PROCHECK, 
SYBYL 7.0, PMF, DOCK

[151]

Dopamine (D3) receptor Modeller 9v2, GOLD [152]

Human galactose-1-phosphateuridylyltransferase MODELLER, PROCHECK [153]

Human serum carnosinase FlexX, STRIDE [154]
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among the 80 top-scored hits, 37 revealed affinity 
below 10 µM, with 24 compounds binding in the 
submicromolar range. Chemokine receptors (CCRs) 
are the members of the GPCRs, identified as potential 
target systems for preventing virus-cell fusion. The 
authors[146] modeled a 3D structure of the human 
CCR5 from the bovine rhodopsin by incorporating 
extensive molecular dynamics simulations (MD), 
flexible docking of a synthetic antagonist and soft 
protein-protein docking with the large (70 KD) 
natural agonists using some novel docking protocol. 
The results of this combined modeling, dynamics 
and docking study provides new structural insights 
into CCR5/chemokine interactions, which may be 
useful in the rational design of HIV-1 entry blockers. 
Tuccinardi et al.[147] developed a homology model of 
carbonic anhydrase (CA) IX using the X-ray structure 
of murine CA XIV as a template. CA IX constitutes 
an interesting target for cancer therapy. The authors 
docked one twenty four CA IX inhibitors, and the 
best poses were used for developing a receptor-
based 3D-QSAR model. The results of the study 
suggested structural peculiarities which can be useful 
for the design of new CA IX active and CA IX/
CA II selective ligands. Avery et  al. [148] generated 
highly refined homology models of Leishmania 
donovani farnesyl pyrophosphate synthase (LdFPPS) 
and Leishmania major FPPS (LmFPPS) enzyme using 
Trypanosoma cruzi FPPS (TcFPPS) as a reference 
structural homologue. The authors suggested that 
highly refined model along with the validated docking 
and scoring algorithms could be utilized to identify 
hits with novel scaffolds as antileishmanial agents. 
Pietra et al.[149] constructed homology models of acid-
sensing cation-permeable, ligand-gated ion channel 
(hASIC1) using the crystal structure of the cASIC1 
channel as a template and the known sequence 
of hASIC1a. ASIC channels are under intense 
scrutiny for their ability in sensing proton gradients. 
Psalmotoxin 1 (PcTx1) - a peptide isolated from the 
venom of the aggressive Trinidad chevron tarantula 
(Psalmopoeus cambridge) is a inhibitor of ASIC. The 
results of the study showed the way to in silico search 
for improved peptides, for blocking ASIC1a channels. 
Yuriev et al.[150] constructed homology models of 
dopamine (D2, D3 and D4), serotonin (5-HT1B, 5-HT2A, 
5-HT2B and 5-HT2C), histamine (H1), and muscarinic 
(M1) receptors using β2-adrenergic receptor. The 
authors performed induced fit docking for binding 
site optimization and virtual screening of known 
ligands and decoys. The study addressed the required 

modeling of extracellular loop 2, which is implicated 
in ligand binding. Feng et  al.[151] generated homology 
models of cytochrome P450 sterol 14R-demethylases 
(CYP51s) from Penicillium digitatum (PD-CYP51). 
The preceding 3D structure of PD-CYP51 was 
further subjected to a molecular dynamic (MD) 
study to reduce steric clashes and obtain converged 
3D modeling structure of PD-CYP51. After active 
site generation docking-based virtual screening was 
performed using FlexX/GOLD. The seven new hit 
compounds with comparable inhibitory activities were 
identified. Zhang et al.[152] constructed homology model 
of human D3 receptor using the X-ray crystal structure 
of the human β2AD receptor (PDB entry: 2RH1, 
resolution 2.4 Å) as the template structure. The authors 
performed combined computational study to investigate 
the agonist binding to the D3 receptor, which is 
important for the design of potent D3 receptor agonists. 
Marabotti et al.[153] constructed homology models 
of human galactose-1-phosphate uridylyltransferase 
(GALT). The genetic disorder called “classical 
galactosemia” or “galactosemia I” is associated with 
the impairment of GALT. Mutation is associated 
with genetic galactosemia. The authors analyzed the 
impact of this mutation both on enzyme-substrate 
interactions as well as on inter-chain interactions. It 
was concluded from the study that constructed model 
will be useful for characterization of all galactosemia-
linked mutations at a molecular level. Inhibition 
of serum carnosinase may be a useful therapeutic 
approach in the treatment of diabetic nephropathy. 
Vistoli et al.[154] constructed homology models of 
human serum carnosinase on the basis of β-alanine 
synthetase structure. Homology model was validated 
by docking a few histidine-containing dipeptides, later 
on, molecular dynamics (MD) simulations were used 
to examine the effects of citrate ions on the activity of 
serum carnosinase.

Loop structure prediction:
The homology modelling is very good tool for 
prediction of loop structures, the exaples are given 
in Table 10. Loops frequently resolved the functional 
specificity of a protein environment, thus contribute 
to active and binding sites. Zhang et al.[155] developed 
homology models of the lysophosphatidic acid (LPA4) 
receptor based on the X-ray crystal structures of 
photoactivated bovine rhodopsin (PDB code 1U19). 
GOLD, was employed to dock LPA molecule into the 
homology models of the receptors. It was observed 
that three non-conserved amino acid residues engaged 
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in hydrogen bonding interactions with the polar head 
group of the LPA molecule. These hydrogen bonding 
patterns were found to contribute significantly to the 
recognition of LPA within the LPA4 receptor. Turjanski 
et al.[156] modeled the structure of Trypanosoma cruzi 
fanesyl pyrophosphate synthase (TcFPPS) based on the 
structure of the avian FPPS which share 36% identity 
and 50% similarity with the sequence of TcFPPS. 
The authors constructed the model using Swiss 
PDBViewer version 3.7. The authors modeled the 
interaction of TcFPPS with isopentenyl pyrophosphate 
and dimethylallyl pyrophosphate. Based on the study, 
authors have proposed specific role for the third Mg2+ 
in closing of the protein active site based on molecular 
dynamics simulations (MD). Scapozza et al.[157] 
constructed homology models of Varicella Zoster virus 
thymidine kinase (VZV TK) based on herpes simplex 
virus type 1 thymidine kinase (HSV-1 TK) structure 
as template. Acyclovir and ganciclovir were docked 
in the constructed model to investigate the predictivity 
of these model as well as the characteristics of the 
binding with other substrates. It was found that there 
are slight differences in the way VZV TK binds 
the substrates in respect with HSV-1 TK. Missing 
loops in the VZV TK was modeled using the loop 
search routine of SYBYL 6.8. The study suggested 
that differences could be exploited for future ligand 
design in order to obtain more selective drugs. Li 
et al.[158] built homology models for a glycogen 
synthase kinase (GSK3)/SHAGGY-like kinase based 
on the known crystal structure of glycogen synthase 
kinase-3β (Gsk3 β PDB code:1I09). Initial module 
of GSK-3β was obtained with the help of FASTA 
program. Binding pocket of GSK3/SHAGGY-like 
kinase was determined by binding site search module. 
Several variable regions (loops) were constructed 
using loop searching algorithm. Optimization of 
structure was done by INSIGHT-II and PROFILE-

3D. The authors[159] constructed homology models of 
hemoglobin-binding protein HgbA from Actinobacillus 
pleuropneumoniae using BtuB, FepA, FhuA and 
FecA of Escherichia coli as template structure. Using 
HMM the authors assigned β strands to regions of 
predicted HgbA amino acid sequence, culminating in 
a structure-based multiple sequence alignment to BtuB, 
FepA, FhuA, and FecA. 3D model generated from this 
alignment provides an overall topology of HgbA and 
identifies extracellular loop regions.

Miscellaneous applications of homology modeling 
for protein structure prediction:
Pillai et al.[160] provided a structural basis for the 
biological functions of human Smad5 by building a 
model of the DNA-binding domain of it. The authors 
reported similarities and differences between the 
human Smad family members using the constructed 
model. Gellert et al.[161] constructed homology models 
of cucumber mosaic virus (CMV) strains R, M and 
Trk7, tomato aspermy virus (TAV) strain P and 
peanut stunt virus (PSV) strain Er, using Fny-CMV 
CP subunit B as a template. Models were analyzed by 
the PROCHECK program and electrostatic potential 
calculations were applied to all models. Guo et al.[162] 
developed 3D model of human phosphate mannose 
isomerase based on the known crystal structure of 
mannose-6-phosphate isomerase (PDB code: 1PMI). 
The homologous protein was searched by the FASTA 
program and 3 reference proteins were taken i.e. 
mannose-6-phosphate isomerase from C. albicans, 
B. subtilis and human. The sequence alignment 
was done based on identification of structurally 
conserved regions (SCRs). This study facilitated 
the understanding of the mode of action of the 
ligands and guided further genetic studies. Reddanna 
et al.[163] generated homology models of human 
12R-LOX structure, based upon rabbit reticulocyte 
15-Lipoxygenase 1LOX as a template. The 3D model 
was built using Modeller and BLAST, ClustalW for 
sequence alignment, AMBER 3.0 for refinement and 
PROCHECK was used for validation of themodel. 
The authors[164] built 3D structure of the chorismate 
synthase (CS) from S. flexneri with the cofactor 
FMN and using MODELLER 6 v.2. The AMBER 
8.0 program and AMBER 2003 force field were 
used for molecular simulation. CS is a valid target 
for antibacterial drugs. Hirashima et  al. [165] suggested 
homology models of octopamine receptor (OAR2) of 
Periplanata americana using DS Modeling 1.1 using 
rhodopsin as a template. BLAST and PSI-BLAST 

TABLE 10: APPLICATIONS OF HOMOLOGY MODELING 
RELEVANT TO LOOP STRUCTURE PREDICTION
Protein Program/Servers Reference
Lysophosphatidic acid 
LPA4 receptor

SYBYL v7.3, GOLD 3.1, 
SCWRL 3.0

[155]

Farnesyl pyrophosphate 
synthase

PSI-BLAST, Swiss-
PDBViewer v3.7, 
WHATCHECK, AMBER 7.0 

[156]

Varicella zoster virus 
thymidine kinase (VZV TK)

SYBYL 6.8, AUTODOCK 3.0, 
SHAKE, AMBER, PROCHECK

[157]

Glycogen synthase kinase 
(GSK3/SHAGGY)

FASTA, INSIGHT-II, 
PROFILE-3D

[158]

Hemoglobin-binding 
protein HgbA

PROCHECK, WHAT IF, 
Modeller

[159]
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were used for alignment, and docking study was 
performed using LigandFit. These models can be 
used in scheming new leads for OAR2 receptors. 
Kayastha et al.[166] constructed homology models 
of α-amylase from germinated mung beans (Vigna 
radiata) using the automated Swissmodel server 
where two known structure of amylase AMY1 and 
AMY2 were chosen as a templates. The sequence 
identity between target and templates is over 65%. 
The Ramachandran Z-score for the model is -1.132. 
Serrano et al.[167] presented model for the 3D structure 
of the C-terminal 19 kDa fragment of P. vivax MSP-1, 
based on the known crystal structure of P. cynomolgy 
MSP-119. The presence of a main binding pocket was 
determined by CASTp and the combination of GOLD 
docking and scoring functions was used to observe 
the interaction between Akt PH (protein kinase β 
pleckstrin) domain and its inhibitors. Park et al.[168] 
constructed homology models for yeast β-glycosidase 
using BLAST, PSI BLAST and MODELLER. 
Furthermore, the author performed virtual screening 
with docking simulations to study the effects of ligand 
solvation in the binding free energy function which 
results in 13 novel α-glucosidase inhibitors. Wang 
et  al.[170] used human cytochrome P450 2C8 (CYP2C8) 
as template and created human cytochrome P450 
2C11 (CYP2C11) and human cytochrome P450 2C13 
(CYP2C13) models. The authors demonstrated the 
pattern of testosterone binding with various human 
cytochrome P450 enzymes. Rigid structure and induced-
fit docking proposed that testosterone binds in both 
CYP2C11 and CYP2C13. These results demonstrated 
the binding of substrate to CYPs. Kotra et al.[171] 
modeled two new epidermal growth factor receptors 
(EGFR) taking SYK tyrosine kinase coordinates as 
template. Mutation was incorporated at G695S and 
L834R to develop the new receptor structures. This 
study determined the receptor-inhibitor interactions 
and thus provides rational approach to design and 
development of potent inhibitors. Construction of 
homology models of dipeptide epimerase suggested 
novel enzymatic functions[172]. Docking of dipeptide 
library against the binding site of these models was 
performed using Glide. The dipeptide library was 
prepared by using Ligprep. Homology modeling 
of trihydroxynaphthalene reductase (3HNR) was 
performed with 17b-HSDcl as a template, which 
possesses 58% identical residues. Molecular modelling 
package WHATIF was used along with the CHARMM 
program for macromolecular simulations. The study of 
3HNR explained the binding modes of the ligand with 

the model. Chavatte et al.[173] constructed models for 
both human melatoninergic (MT1 and MT2) receptors 
by homology modeling using the X-ray structure of 
bovine rhodopsin as template. Models were checked 
using Ramachandran plots to assess the quality of 
structure. No residue lies in the disallowed part 
of the plots and very few residues are in the less 
favourable regions. Thus, constructed models can be 
explored at an atomic level for the melatoninergic 
receptors. Yao et al.[174] studied the two metabolic 
pathway for gliclazide by building homology models 
of human cytochrome P450 2C9 (CYP2C9) and 
human cytochrome P450 2C19 (CYP2C19) enzyme. 
Structural optimization was performed using molecular 
mechanics and molecular dynamics simulations. 
To further check the reliability of the 3D structure 
of models, the automated molecular docking was 
performed using docking program Insight II. It was 
found that affinity for methylhydroxylgliclazide 
pathway found to be more than 6β-hydroxylgliclazide 
with respect to both refined model of CYP2C19 and 
crystal structure of CYP2C9.

CONCLUSION

Structure-based drug design techniques were hampered 
in the past by the lack of a crystal structure for 
the target protein. In this instance, now a day the 
best option is building a homology model of the 
entire protein. The main aim of homology modeling 
is to predict a structure from its sequence with 
an accuracy that is similar to the results obtained 
experimentally. Homology modeling provides a 
feasible cost-effective alternative method to generate 
models. Homology modeling studies are fastened 
through the use of visualization technique, and 
the differential properties of the proteins can be 
discovered. The role and reliability of homology 
model building will continue to grow as the number 
of experimentally determined structures increases. 
Homology modeling is a powerful tool to suggest 
modeling of ligand-receptor interactions, enzyme-
substrate interactions, mutagenesis experiments, SAR 
data, lead optimization, loop structure prediction and 
to identify hits. Homology modeling strongly relies on 
the virtual screening and successful docking results. 
Various examples of the successful applications of 
homology modeling in drug discovery are described 
in this review. These recent advances should help to 
improve our knowledge of understanding the role of 
homology modeling in drug discovery process.
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