
SPECIALTY GRAND CHALLENGE
published: 06 December 2016

doi: 10.3389/fpsyg.2016.01823

Frontiers in Psychology | www.frontiersin.org 1 December 2016 | Volume 7 | Article 1823

Edited and reviewed by:

Axel Cleeremans,

Université libre de Bruxelles, Belgium

*Correspondence:

Guy Cheron

gcheron@ulb.ac.be

Specialty section:

This article was submitted to

Movement Science and Sport

Psychology,

a section of the journal

Frontiers in Psychology

Received: 01 September 2016

Accepted: 03 November 2016

Published: 06 December 2016

Citation:

Cheron G (2016) How to Measure the

Psychological “Flow”? A Neuroscience

Perspective. Front. Psychol. 7:1823.

doi: 10.3389/fpsyg.2016.01823

How to Measure the Psychological
“Flow”? A Neuroscience Perspective

Guy Cheron 1, 2*

1 Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles,

Brussels, Belgium, 2 Laboratory of Electrophysiology, Université de Mons-Hainaut, Mons, Belgium

Keywords: flow, EEG, EMG, synchrony, stress

INTRODUCTION

The term “flow” as conceptualized by Csikszentmihalyi (1975) describes the optimal experiences
that are most enjoyable in human life while fully engaging in an activity (Csikszentmihalyi,
1978, 1990, 1998). Within athletic, artistic and occupational behaviors, the flow emerges from an
action that requires specific skills and challenges (Marin and Bhattacharya, 2013). It also expands
self-esteem and the individual’s capabilities through learning new optimizations that increase the
feelings of continuity and fluidity in attention and action. The flow does not occur for all types of
behavior. It requires clear goals, unambiguous and immediate feedback, assuming a perfect match
between skills and challenge (Mao et al., 2016).

In contrast to its behavioral counterpart, commonly expressed by the term “stress,” the flow
may be viewed as a convergent physiological entity supported by the emergence of a unique brain
state. Since flow requires challenges, it must be supported by short-term stress (the good one) that
assumes physiological protection (e.g., enhancement of immunoprotection) to deal with challenges.
On the contrary, long-term stress (chronic) impinges on reaching the flow state and disrupts
the immunoprotective effects on various physiological functions (Dhabhar, 2014). Because of the
conjunction of action skill, challenge and emotion in a single flow-state, the scientific community
remains confronted with the complex question of identifying its neurophysiological outcomes. This
challenge is in line with the unresolved questions relating neurometric-psychometric comparisons
in an attempt to identify neurophysiological activities and sensations (Stüttgen et al., 2011) that
occur during the flow.

In this Grand Challenges monograph, my intent is to trace experimental perspectives applying
tools of movement neuroscience (Cheron, 2015; Cheron et al., 2016) in order to characterize the
physiological aspects of the brain state during flow in sports.

THE ELECTROMYOGRAPHIC SIGNALS (EMG) AS A PREDICTION

OF FLOW PERCEPTION

To move our body in everyday situations, a functional tradeoff between external (e.g., gravity)
and internal force (e.g., muscular torques) must be continuously controlled. The perception of
flow would emerge in a particular physiological state where (1) the ascending somesthetic signals
including graviception, (2) the descendingmotor commands, and (3) an appropriate central resting
state, including memorized items, would combine to reach the flow consciousness. As the flow
sensation goes along with or follows movement, the initial intention must be translated to the
muscles in order to generate forces and displacements. The subsequent environmental changes
produce feedback sensations which close the loop between action and sensation (Schwartz, 2016).

Among these three complex signals, the surface EMG recording of multiple muscles may help
to quantify the final output signals coming from different motoneuron pools. These signals not
only represent the descending motor commands, but also the integration of the re-afferent signals
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coming from the peripheral sensors (Chéron and Godaux,
1986a). For some authors, the EMG signals represent pre-
programmed commands used by the CNS for controlling
movement (Chéron and Godaux, 1986b; Gottlieb, 1998a,b; Pfann
et al., 1998; Cheron et al., 2007), while for those supporting the
equilibrium point hypothesis (Feldman, 1986; Feldman et al.,
2013; Ambike et al., 2016) it represents an emergent property
of the system, and not the controlled variable of the movement.
Regardless of this unresolved debate, the close relationship
between EMG signals and the primary motor cortex (M1)
has recently been supported by simultaneous recording of the
corticomotoneuronal (CM) cells of M1 and their monosynaptic
targeted motoneurons in alert monkeys (Griffin et al., 2015).
These authors demonstrated that some CM cells were selectively
activated when the targeted muscle was used as an agonist, while
other CM cells when the samemuscle were used as an antagonist,
fixator or synergist. Positive or negative synchronization of M1
cell pairs, assume the existence of synchrony in the motor cortex
related to muscle action (Jackson et al., 2003), facilitating the
recording of EEG oscillations from the motor cortex in relation
to the EMG pattern. In this context, a recent study of Moscatelli
et al. (2016) demonstrated greater corticospinal excitability in
karate athletes with respect to controls, indicating a sport-
specific adaptation between inhibitory and excitatory network
in modulating the final command from M1. When comparing
professional handball players and ballet dancers, Meier et al.
(2016) demonstrated neuroplastic adaptations in the gray matter
(GM) representation and corticospinal path (CP) of the foot and
the hand area depending on sport practice. GM volume and
CP density were respectively more important in hand areas of
handball experts and in foot areas of ballet dancers. This sport-
specific dependency of the corticospinal commands (Hänggi
et al., 2010, 2015; Bar and DeSouza, 2016; Meier et al., 2016)
should be taken into account in the flow state research.

The sculpting of the EMG signals into the classical triphasic
EMG burst on antagonistic muscles producing rapid and self-
terminated movements may serve as an experimental prototype
for the study of the flow sensation emergence. Indeed, in the
context of a single joint movement directed to a final position
respecting the “as fast as possible” consign, the duration and
the amplitude of the three main bursts, (action pulse, PA of
the agonist muscle; the braking pulse, PB of the antagonist
muscle and the clamping pulse, PC of the agonist muscle)
may characterize the final performance in terms of velocity or
precision (Hannaford et al., 1985; Chéron and Godaux, 1986b).

The training of these rapid movements induced reduction
of movement time, movement error, variability in amplitude,
and was accompanied by reduction of PA and PC duration and
PB and PC latencies (Liang et al., 2008). These modifications
are expected to be associated with the flow sensation. Such
triphasic EMG bursts have been successfully simulated with
a dynamic recurrent neural network (DRNN) (Cheron et al.,
2007). In this context, the different movement trials associated
with psychological assessment of subjects’ feelings about their
performance can be introduced into the DRNN in order to
determine the proper dynamics related to the best score or the
best self-esteem.

Recently, Toma and Lacquaniti (2016) have used the sense
of muscular effort as psychophysical performance in order to
correlate EMG signals and perceptual decisions. Indeed, EMG
signals are also representative of the functioning of the primary
motor cortex (M1) and relate to force production and the
sense of effort as previously demonstrated by the application
of repetitive transcranial magnetic stimulation (rTMS) (Nowak
et al., 2005; Goodall et al., 2013). In particular, rTMS applied
at slow frequency on M1 produced an overestimation of the
exerted force (Takarada et al., 2014). In contrast, theta-burst
TMS applied on the supplementary motor area (SMA) induced a
decrease in the sense of effort (Zénon et al., 2015) and an increase
in vibration sensation. The same type of TMS also reduced
the amplitude of the somatosensory N30 component (Legon
et al., 2013) partly originated in SMA (Kanovský et al., 2003;
Cebolla et al., 2011) and considered as a dopaminergic biomarker
(Cheron, 1999; Pierantozzi et al., 1999). These TMS experiments
and the responses of related evoked potentials strongly indicated
that M1 and SMA are good candidates for producing the sense of
flow (see below).

The new method proposed by Toma and Lacquaniti, (2016)
allows researchers to quantify a “muscle-metric function” related
to psychological decisions. It would be thus possible to capture
trial-by-trial EMG modulation associated with trial-by-trial
psychological judgments for which the different questionnaires
about the flow perception would be applied (e.g., the Jackson’s
Flow State Scale (FSS) (Jackson, 1996; Tenenbaum et al., 1999).

THE INTERNAL MODEL CONCEPT AND

THE FLOW

Another advantage of EMG recording is that it correlates well
with the formation of the internal model (IM). The IM is a central
concept in motor control (Wolpert et al., 1995, 1998; Ishikawa
et al., 2016) developed in different experimental fields. It may
help to circumscribe the emergency of flow because it contributes
to building new dynamic attitudes based on past experiments, it
may also allow some motor creativity to go “in the zone.”

Acting with a manipulandum inside of a controlled force field
is an appropriate situation to study the relationships between
EMG patterns and the adaptation of the IM. It was demonstrated
that the IM formation was first accompanied by EMG patterns
counteracting the force field initially driven by feedback error
signal (Thoroughman and Shadmehr, 1999) before being shifted
in advance of the movement in response of a feedforward
command. This predictive function of the IM reduces the co-
activation and spatially tunes the EMG of eachmuscle in function
of the direction of learned force field. We may reasonably
postulate that the flow sensation occurs when the IM output
perfectly fits the re-afferent input. As IMs are dynamics entities,
they use flexible combinations of motor primitives resulting from
the transformation of the desired movement trajectories into
motor commands (Thoroughman and Shadmehr, 2000; Degallier
and Ijspeert, 2010; Hogan and Sternad, 2012).

For reaching the flow, the CNS must generate fluent
and skilled motor commands for which different challenges
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regarding the sensorimotor control need to be encompassed.
These problems include the presence of noise, uncertainty,
redundancy, nonlinearity, nonstationarity and delay in neuronal
loops (Franklin andWolpert, 2011). These authors demonstrated
that fluent and efficient sensorimotor behavior can be reached by
three types of control (feedback, impedance, predictive), referred
to the sensorimotor learning and the Bayesian Decision theory.

As it was demonstrated that subjects internally use the
statistical distribution of the information related to the task and
their sensorimotor uncertainty in order to realize a Bayesian
optimization process during learning (Körding and Wolpert,
2004; Orbán and Wolpert, 2011), we may suggest that the flow
occurs in some exceptional circumstances on top of this process.

The self-experiencing of the flow provides a vivid impression
that this sensation occurs simultaneously or in line with the
accomplishment of the movement and independent of the
completion of the entire action. For example, during the
realization of a “jibe,” a classical skilledmovement in windsurfing,
the flowmay emerge when the turning trajectory is accomplished
at high speed, but with a smoothness profile encompassing total
involvement of the whole body. The flow is thus experienced
before the final success or failure occurring at the end of the
action.

Smoothness perception seems to be on the root of
the flow sensation. This perception happens when the
movement is performed continuously without any interruption
(Balasubramanian et al., 2012, 2015). The recording ofmovement
kinematics may then well characterize the bell-shaped speed
profile of smooth movement. The smoothness can be robustly
quantified by Fourier speed profile spectrum (Balasubramanian
et al., 2012). In spite of the fact that some movement tasks
required inherent intermittencies marked by a dip in the speed
profile, inside of a specific task these movement intermittencies
could be indicative of the difficulty for producing smoothness
compatible with the flow.

Peripheral and central fatigue must also be taken into account.
If movement repetition may facilitate the flow emergence, it also
introduces, fatigue elements compromising the entry into “the
zone.” The studies of Amann et al. (2006, 2007) and the related
viewpoint defended by Noakes and Marino (2007) illustrates
the complexity of the interaction between multiple physiological
factors of peripheral and central fatigue. In this context, Torres-
Peralta et al. (2016) recently demonstrated that EMG alterations
during isokinetic sprint were not due to lactate accumulation
or muscle acidification but to central fatigue (see also Morales-
Alamo et al., 2015).

HOW TO CATCH THE FLOW WITH EEG

DYNAMICS

The initial definition of the psychological flow imposes to
assess whether EEG rhythms are simultaneously correlates
with perception and action into a single behavioral task. Two
main and complementary EEG approaches, both supported
by EEGLab software (Delorme and Makeig, 2004), consist of
the quantification of the (1) power and (2) the phase of the

different frequency EEG oscillations ranging from delta, theta,
beta and gamma bands occurring before, during and after
the flow. The power spectral modulations are expressed by
increase (event-related synchronization, ERS) or decrease (event-
related desynchronization, ERD) (Klimesch et al., 1990, 1997;
Pfurtscheller and Neuper, 1994; Neuper et al., 2006) measured
with respect to a “neutral” baseline occurring before a behavioral
event or by comparing the power modulation related to the same
event, but appearing during two different brain states (Cebolla
et al., 2011, 2014). These experimental approaches should be
applied in the behavioral context of the flow and will offer
the opportunity to decipher the neurophysiological mechanisms
at the basis of flow emergence. For example, when a power
modulation is recorded in a specific EEG frequency band in
response to a behavioral event, but without any concomitant
phase-locking of the same oscillation, it is possible to infer
that the modulation is well related to the event but that no
prediction or top-down are implicated. On contrary, when a
phase-locking (measured by the inter-trials coherency, ITC) is
present in a specific frequency band without any concomitant
power modulation of the same oscillation (pure phase-locking)
(Cebolla et al., 2009). It is possible to assume that the ongoing
EEG oscillation is implicated by a predictive shift of the phase
indicating the presence of a top-down mechanism (Bonnefond
and Jensen, 2015). As a specific oscillation cannot be phase-
locked to two different types of events occurring in the same
period of time (see beta-gamma oscillation during movement
gating (Cebolla et al., 2009), it should also be possible to decipher
which type of oscillation is implicated in the flow emergence.
Based on the fact that the CNS uses a multiplexing of different
oscillations (Wimmer et al., 2016) and that the phase-locking
of slower ongoing oscillations modulates the power of faster
oscillations, it is highly conceivable that the EEG “flow signature”
will be polyrhythmic and supported by different mechanisms.
The role played by theta oscillations modulated by dopamine
in the functional synchronization of the hippocampus and the
frontal cortex (Benchenane et al., 2011; Fujisawa and Buzsáki,
2011) must be taken into account in the future search of the
“flow signature.” In relation to the importance of dopaminergic
influence in positive thinking, it is interesting to note that alpha
and beta EEG rhythms recorded in the centro-parietal scalp
regions of Parkinsonian patient were increased after L-dopa
administration (Melgari et al., 2014).

Among the different EEG rhythms recently revisited in sport
performance (Cheron et al., 2016), beta oscillation (13–30 Hz) is
probably another relevant candidate for indexing the flow. The
ERS/ERDmodulation in this frequency range was increased after
training (Moisello et al., 2015), a condition that must facilitate the
flow emergence.

CORTICOMUSCULAR COHERENCE AND

FLOW IDENTIFICATION

Another interesting approach using information from both EMG
and EEG signals is based on corticomuscular coherence (CMC),
i.e., frequency domain estimation of the functional coupling
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between EEG oscillations and the active muscles EMG (Mima
and Hallett, 1999). More specifically, CMC in the beta oscillation
range (13–30 Hz) is recognized as a communicational index
between cortical motor areas and muscles (Onushko et al., 2013;
Jacobs et al., 2015) CMC in the beta (15–30 Hz) range between
motor cortex and hand muscles during precision grip task was
positively increased with the lever of compliance (Kilner et al.,
2000). It was recently reported that the practice performance
of the manual dexterity promoted by smartphone and tablet
operations increases the CMC between beta EEG and hand
muscles (Larsen et al., 2016).

CMC has also been reported in the gamma range (35–
60 Hz) (magnetoencephalographic (MEG) signals) recorded in
the contralateral motor cortex and the 35–60 Hz EMG of
forearm muscles during maximal isometric contractions (Brown
et al., 1998; Brown, 2000; Brown and Marsden, 2001). As the
performance of a skilled movement implies the synchronization
of neural oscillations spatially distributed in different sites
(Brown and Marsden, 2001), the emergence of the flow could
be accompanied by highly specific cortico-cortical long-range
synchrony (Harris and Gordon, 2015) or coherency. Different
methodologies (Nolte et al., 2004; Stam et al., 2007; Ewald et al.,
2012) are now able to approach the temporal evolution of the
cortico-cortical coherency forming a functional network in which
the direction of the communication flux can be established
(Cheron et al., 2014; Hillebrand et al., 2016).

NEUROFEEDBACK AND FLOW TRAINING

Three recent reviews of Gruzelier (2014a,b,c) have paved the
way for the application of appropriate EEG neurofeedback not
only in BCI or rehabilitation domains but also in the search for
different mental attitudes that are required for flow emergence,
such as improvement of emotional-commitment, stage presence,
expressiveness and creativity in music performance (Gruzelier
et al., 2014). The same group (Gruzelier et al., 2010)
demonstrated that neurofeedback training of the sensorimotor
rhythm (SMR, 12–15 Hz) in virtual reality increased the Flow
State scale score on the self-ratings sense of control. SMR training
consists of providing feedback indication of three different
frequency band powers at the same time (beta, 22–30 Hz; SMR,

12–15 Hz and theta, 4–7 Hz) and rewarding subjects only if the
SMR is enhanced without any concurrent increase of theta and
beta oscillations (Gruzelier et al., 2014).

In summary, the characterization of the flow state will
benefit from the development of a new dialogue between
psychometric and neurometric approaches. This dialogue should
be promoted by new experimental paradigms taking account
of the specificity of athletic, artistic or occupational behaviors
during flow emergence. The recording of multiple biological
signals from the brain and the muscle during movement
measured in a well-defined environment should better define the
neurophysiological signature of the flow and facilitate training
procedures for reaching this optimal sensation. Therefore, the
role to be played by this Specialty Grand Challenge in Frontiers
in Movement Neuroscience and Sport Psychology is to provide

an ideal platform for sharing the scientific outcomes in the
search of the flow. It will also promote clear and high impact
publications including new methods, experimental paradigms
and scientific debates about this unique mental state encountered
in different behavioral contexts. These future publications will
also facilitate the training procedures for reaching this optimal
sensation.
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